
Revolutionizing the Field of Grey-box
Attack Surface Testing with Evolutionary

Fuzzing

Jared DeMott
Dr. Richard Enbody @msu.edu
Dr. William Punch

Black Hat 2007

VDA Labs, LLCwww.vdalabs.com

Agenda

 Goals and previous works

 (1) Background
 Software, fuzzing, and evolutionary testing

 (2) Describe EFS in detail
 GPF && PaiMei && development++ == EFS

 (3) Initial benchmarking results

 (4) Initial results on a real world application

 Conclusion and future works

Goals and Previous Works

 Research is focused on building a better fuzzer
 EFS is a new breed of fuzzer

 No definitive proof (yet) that it’s better than current approaches
 Need to compare to Full RFC type, GPF, Autodafe, Sulley, etc

 As of 6/21/07 there are no (available) other fuzzers that learn
the protocol via a grey-box evolutionary approach
 Embleton, Sparks, and Cunningham’s Sidewinder research

 Code has not been released

 Hoglund claims to have recreated something like Sidewinder, but
also didn’t release details

 Autodafe and Sulley are grey-box but require a capture (like
GPF), or definition file (like Spike), respectively, and do not evolve

Section 1: Background

 Software Testing

 Fuzz Testing
 Read Sutton/Greene/Amini
 And than read DeMott/Takanen

 Evolutionary Testing

Software Testing
 Software testing can be

 Difficult, tedious, and labor intensive
 Cannot “prove” anything other than existence of bugs

 Poorly integrated into the development process
 Abused and/or misunderstood
 Has a stigma as being, “easier” than engineering

 Software testing is expensive and time-consuming
 About 50% of initial development costs

 However, primary method for gaining confidence in the
correctness of software (pre-release)‏
 Done right, does increase usability, reliability, and security

 Example, Microsoft’s new security push: SDL

 In Short, testing is a (NP) hard problem
 New methods to better test software are important and in

constant research

Fuzzing, Testing, QC, and QA

 How does fuzzing fit into the development life
cycle?
 Formal Methods of Development
 Quality Assurance

 Quality Control
 Testing
 Fuzzing
 Many other types of testing!

 Fuzzing is one small piece of the bigger
puzzle, but one that has be shown useful to
ensure better security

Fuzzing
 Fuzzing is simply another

term for interface robustness
testing
 Focuses on:

 Input validation errors
 Actual applications - dynamic

testing of the finished product
 Interfaces that have security

implications
 Known as an attack surface
 Portion of code that is externally

exercisable in the finished
product

 Changes of privilege may occur

3. App
failure or possible

problem?

1. Generate or
get data

2. Deliver to
application

4. Save data and
crash/problem info

Yes

No

Peter Oehlert, “Violating Assumptions with Fuzzing”, IEEE Security & Privacy, Pgs 58-62, March/April 2005

Attack Surface Testing

Fuzz testing (typically on)
attack surface
with semi-valid data

Application

Process Monitor

Attack surface = External Interfaces

Network

Local

Evolutionary Testing

 Uses evolutionary algorithms (GAs) to
discover better test data
 A GA is a computer science search technique

inspired by evolutionary biology
 Evaluating a granular fitness function is the key

 ET requires structural (white-box) information
(source code)
 Couldn’t find others doing grey-box ET

 Brief look at ET:
 Standard approach, typical uses, problems

Current ET Method for Deriving Fitness

 Approach_level + norm(branch distance)‏
 Example: a=10, b=20, c=30, d=40

 Answer: fitness = 2 + norm(10). (Zero == we’ve found test data.)‏

(s) void example(int a, int b, int c, int d)‏
{

(1) if (a >= b)‏
{

(2) if (b <= c)‏
{

(3) if (c == d)‏
{

//target

Typical ET uses

 Structural software testing
 Instrument discovered test cases for initial and

regression testing

 Wegener et al. of DaimlerChrysler [2001] are
working on ET for safety critical systems

 Boden and Martino [1996] concentrate on
error treatment routines of operating system
calls

 Schultz et al. [1993] test error tolerance
mechanisms of an autonomous vehicle

ET Problems

 Flag problem == flat
landscape. Resort to
random search

void flag_example(int a, int b)‏
{

int flag = 0;
if (a == 0)‏

flag = 1;
if (b != 0)‏

flag = 0;
if (flag)‏

//target
}

 Deceptive problems

double function_under_test
(double x)‏

{
if (inverse(x) == 0)‏

//target
}
double inverse (double d)‏
{

if (d == 0)‏
return 0;

else
return 1 / d;

}

Evolutionary Fuzzing System

 McMinn and Holcombe (U.o.Sheffield) are working
on solving ET problems [2]
 2006 paper on Extended Chaining Approach

 Our approach is different for two reasons:
 Grey-box, so no source code needed
 Application is being monitored while test cases

are being discovered. Fuzzing heuristics are used
in mutations. This equals real-time testing. Crash
files are written while evolution continues. Also
includes reporting capability. Seed file helps with
some of the traditional ET problems, though still
rough fitness landscape.

Section 2: A Novel Approach

 Evolutionary Fuzzing System
 Evolutionary Testing

 EFS uses GA’s, but does not require source code

 Fuzzing
 EFS uses GPF for fuzzing

 PaiMei
 EFS uses a modified version of pstalker for code

coverage

EFS: A System View

GPF

PaiMei

Debugger

Target Process

Mysql

Each Generation

Apache

.php

Reporting
In Browser

C code

Python code

EFS: GPF - Stalker (PaiMei) Protocol

 GPF initialization/setup data  PaiMei

 Ready  PaiMei

 <GPF carries out communication session
with target>

 GPF {OK|ERR}  PaiMei

 <PaiMei stores all of the hit and crash
information to the database>

EFS: How the Evolution works

 GA or GP?
 Variable length GA. Not working to find code

snippets as in GP. We’re working with data (GA).
 Code coverage + diversity = fitness function

 The niching or speciation used for diversity is defined
later

 Corollary 1:
 Code coverage != security, but < 100% attack surface

coverage == even less security

 Corollary 2:
 100% attack surface coverage + diverse test cases that

follow and break the protocol with attack/fuzzing
heuristics throughout == the best I know how to do

EFS: How the Evolution works (cont.)‏

 Any portion of the data structures can be reorganized
or modified in various ways
 But not the best pool or the best session/pool

 Elitism of 1

 All evolutionary code is 100% custom code
 Session Crossover
 Session Mutation
 Pool Crossover
 Pool Mutation

EFS: Data Structures

Pool 0

Token 3Leg 1Session 0

Pool 1

Token 1Leg 1Session 0

EFS: Session Crossover

A

B

A’

B’

EFS: Session Mutation

A

ASCII_CMD

“USER”

ASCII_SPACE

“ ”

ASCII_CMDVAR

“Jared”

Binary

0xfe839121

Len

0x000a

A’

ASCII_CMD

“USER”

MIXED

“ ”

ASCII_CMDVAR

“Ja%n%n
%n%nred”

Binary

0xfe839121

Len

0x000a

WRITE READ

WRITEWRITE

EFS: Pool Crossover
BA

B’A’

EFS: Pool Mutation
BA

B’A’

Simple Example of Maturing EFS Data

 GENERATION 1
 S1: “USER #$%^&*Aflkdsjflk”
 S2: “ksdfjkj\nPASS %n%n%n%n”
 S3: “\r\njksd Jared9338498\d\d\xfefe”
 ...
 GENERATION 15
 S1: “USER #$%\n PASS %n%n%n%n\r\njksd”
 S2: ”PASS\nQUIT NNNNNNNNNN\r\n”
 S3: “RETR\r\nUSER ;asidf;asifh; kldsjf;kdfj”
 ...

EFS: GPF –E Parameters

 Mysql Host, mysql user, mysql passwd
 ID, generation
 PaiMei host, PaiMei port, stalk type
 Playmode, host, port, sport, proto, delay, wait
 Display level, print choice
 Pools, MaxSessions, MaxLegs, MaxToks,

MaxGenerations, SessionMutationRate,
PoolCrossoverRate, PoolMutationRate

 UserFunc, SeedFile, Proxy

Seed File
 SMTP

 HELO
 Mail from: me@you.com
 Rcpt to: root
 Data
 “Hello there”
 \r\n.\r\n
 EHLO
 RSET
 QUIT
 HELP
 AUTH
 BDAT
 VRFY
 EXPN
 NOOP
 STARTTLS
 etc.

 FTP
 USER anonymous
 PASS me@you.com
 CMD
 PASV
 RETR
 STOR
 PORT
 APPE
 FEAT
 OPTS
 PWD
 LIST
 NLST
 TYPE
 SYST
 DELE
 etc.

EFS: Stalker Start-up Sequence

 Create and PIDA file using IDApro
 Load the PIDA file in PaiMei

 Configure/start test target

 Stalk by functions or basic blocks

 Filter common break points
 Start-up, connect, send junk, disconnect, GUI

 Allows EFS to run faster

 Connect to mysql
 Listen for incoming GPF connection

 Start GPF in the –E (evolutionary) mode

EFS GUI (the PaiMei portion)‏

Section 3: Research Evaluation

 Benchmarking EFS
 Attack surface coverage
 Text and Binary protocols
 Functions (funcs) vs. basic blocks (bbs)‏
 Pool vs. Diversity (also called niching)‏

 See benchmarking paper for more details [3]
 Will be up on vdalabs.com when complete

Benchmarking: An investigation into the
properties of EFS
 Develop a tool kit that can be used to test

various products

 Currently the toolkit is simply two network
programs used to test EFS’s ability to
discover a protocol
 Clear text (TextServer)‏

 Binary (BinaryServer)‏

 Intend to insert easy and hard to find bugs, to
test 0day hunting ability

TextServer

 Three settings, low (1 path), med (9 paths),
high (19 paths)‏

 Protocol
  “Welcome.\r\n Your IP is 192.168.31.103”
 “cmd x\r\n”
  “Cmd x ready. Proceed.\r\n”
 “y\r\n”
  “Sub Cmd y ok.\r\n”
 “calculate\r\n”
  “= x + y\r\n”

Aside: Measuring the Attack Surface

 One example, TextServer on Medium:
 Startup and shutdown = 137 BBs or 137/597 =

23% of code.

 Network code = 15 BBs or 15/597 = 3% of code

 Parsing = 94 BBs or 16% of code. This is the
portion of code likely to contain bugs!

 Total Attack surface = network code + parsing.
109bb or 18% of code.

 Code accounted for: 137+94bb or 39%.
(68+22funcs or 31%)‏

The seed file for TextServer

 “\r\n”
 “calculate”
 “cmd “
 “1”
 “2”
 “3”
 “4”
 “5”
 “6”
 “7”
 “8”
 “9”

Clear Text Results

 EFS had no trouble learning the language of
TextServer.exe

 Best session was found quickly

 But the entire attack surface was not
completely covered
 Why? Think “error” or “corner cases”

 Used pools to increase session diversity. Had
some success, but still not 100%

 In a few slides we see that niching was used as
well, and did better than pools, but still not 100%

BinaryServer

 Will be similar to TextProtocol, but binary
format

Binary Protocol Results

 Lengths shouldn't be too much trouble as
EFS/GPF has a tok type for lengths

 Initial tests support this

 Hashes are not yet implemented in GPF

 Binary protocol not yet implemented/tested

Functions vs. Basic Blocks

 For applications with few functions, basic
blocks should be used

 For more complex protocols, functions suffice
and increase run speed

Low, Funcs, 1 Pool:
Best Session: 4/6 or 66%

Low, BBs, 1 Pool:
Best Session: 40/37 or 100%+

Funcs vs. BBs (cont.)‏

Med, BBs, 1 Pool:
Best Session: 47/37 or 100%+
Diversity Peak: 83/94 or 88%

Med, Funcs, 1 Pool:
Best Session: 6/6 or 100%
Diversity Peak: 20/22 or 90%

Testing the effects of Pools

 Pools work to achieve better session diversity
 Also achieved better crash diversity in gftp

 Didn't achieve 100% coverage of attack
surface

 Case study at the end will show the positive
affects of pools

 Comparing and adding to niching

Niching (or Speciation)‏to Foster
Diversity
 Recently implemented so grab the new stuff

off vdalabs.com

 Provides a fitness boost for sessions and
pools that are diverse when compared to the
best

 Fitness = Hits + ((UNIQUE/BEST) * (BEST-1))‏
 Hits: code coverage, funcs or bbs
 UNIQUE: number of hits not found in the best

session
 BEST: Session or Pool with the best CC fitness

Diversity in Action

 S1: 10 hits - (a, b, c, d, e, f, g, h, i, j)‏
 S2: 7 hits - (a, b, d, e, f, g, h)‏
 S3: 5 hits - (v, w, x, y, z)‏

 Final fitnesses:
 S1: 10 +((0/10) * 9) = 10
 S2: 7 + ((0/10) * 9) = 7
 S3: 5 + ((5/10) * 9) = 9.5

 Same for pools

Pools and Diversity

High, BBs, 1 Pool
Best Session: 43
Diversity Peak: 80
Downward trend

High, BBs, Multi-Pool
Best Session: 47
Diversity Peak: 87
Up and down trend

High, BBs, Multi-Pool
DIVERSITY ON
AVG: 46
Total Peak: 107
Up and down trend

Section 4: Results

 Initial Results
 Golden FTP

 IIS FTP/SMTP

Testing on Real World Code

 Golden FTP
 Found lots of bugs

 IIS FTP and SMTP
 Found no bugs, but did seem to show some

instability in FTP
 Would lock or die once and a while

 Plan to test many more
 Haven't tried any with diversity on yet

EFS: Found user & password (outdated picture)‏

EFS: Crash Example (outdated picture)‏

EFS: gftp.exe Results (max) (outdated picture)‏

EFS: gftp.exe Results (avg) (outdated picture)‏

GFTP Pool Effects – Avg over 6 runs

Best of Pool and Session

Average fitness of
pool and session

Crash Results – For all Runs

1-pool Crash Total

4-pool Crash Total

10-pool Crash Total

Challenges and Future Work

 Modifying EFS to work on files as well
 How does its performance compare with

existing fuzzing technologies?
 What is the probability to find various bug types as

this is the final goal of this research
 What bugs can be found and in what software?

 The fuzzing technology to use seems to
depend on the application and general domain
robustness (i.e. min work to get a bug)‏
 File fuzzing == dumb fuzzing
 Network apps == Intelligent (RFC aware) fuzzing

Challenges and Future Work (cont.)‏

 PIDA files are great but a pain
 Binary could be obfuscated, encrypted, or IDA just

doesn’t do well with it. Considered MSR, that there
are issues there as well.

 Speed
 Auto-detecting the optimal session-wait to

determine if funcs or BBs is more parcticle
 Binary Protocols
 Need more testing here

 Normal testing challenges
 Monitoring, Instrumentation, logging, statistics, etc.

References:

1. J. DeMott, R. Enbody, W. Punch, “Revolutionizing the
Field of Grey-box Attack Surface Testing with Evolutionary
Fuzzing”, BlackHat and Defcon 2007

2. P. McMinn and M. Holcombe, “Evolutionary Testing Using
an Extended Chaining Approach”, ACM Evolutionary
Computation, Pgs 41-64, Volume 14, Issue 1 (March
‏(2006

3. J. DeMott, “Benchmarking Grey-box Robustness Testing
Tools with an Analysis of the Evolutionary Fuzzing System
(EFS)”, continuing PhD research

Thanks to so many!

 God
 Family (Wonderful wife and two boys that think I'm the coolest.)‏

 Friends
 BH and DEFCON
 Applied Security, Inc.
 Michigan State University
 JS -- my hacker bug from VDA Labs
 Arun K. from Infosecwriters.com
 L@stplace for letting me do CTF with them

