Revolutionizing the Field of Grey-box
Attack Surface Testing with Evolutionary

Fuzzing

Jared DeMott

Dr. Richard Enbody @msu.edu
Dr. William Punch

Black Hat 2007

www.vdalabs.com VDA Labs, LLC

Agenda

Goals and previous works

(1) Background
o Software, fuzzing, and evolutionary testing

(2) Describe EFS in detall
0 GPF && PaiMel && development++ == EFS

(3) Initial benchmarking results
(4) Initial results on a real world application
Conclusion and future works

Goals and Previous Works

Research is focused on building a better fuzzer

o EFS is a new breed of fuzzer

No definitive proof (yet) that it's better than current approaches
0 Need to compare to Full RFC type, GPF, Autodafe, Sulley, etc
As of 6/21/07 there are no (available) other fuzzers that learn
the protocol via a grey-box evolutionary approach
0 Embleton, Sparks, and Cunningham’s Sidewinder research

Code has not been released

0 Hoglund claims to have recreated something like Sidewinder, but
also didn’t release details

0 Autodafe and Sulley are grey-box but require a capture (like
GPF), or definition file (like Spike), respectively, and do not evolve

Section 1. Background

Software Testing

Fuzz Testing

o Read Sutton/Greene/Amini
o And than read DeMott/Takanen

Evolutionary Testing

Software Testing

Software testing can be

o Difficult, tedious, and labor intensive
Cannot “prove” anything other than existence of bugs

o Poorly integrated into the development process

o Abused and/or misunderstood

o Has a stigma as being, “easier” than engineering
Software testing is expensive and time-consuming
o About 50% of initial development costs

However, primary method for gaining confidence in the
correctness of software (pre-release)

o Done right, does increase usability, reliability, and security
Example, Microsoft’s new security push: SDL
In Short, testing is a (NP) hard problem

o New methods to better test software are important and in
constant research

Fuzzing, Testing, QC, and QA

How does fuzzing fit into the development life
cycle?
o Formal Methods of Development

o Quality Assurance
Quality Control
o Testing
= Fuzzing
= Many other types of testing!
Fuzzing is one small piece of the bigger
puzzle, but one that has be shown useful to

ensure better security

Fuzzing

1. Generate or

Fuzzing is simply another

get data

A

2. Deliver to
application

3. App
failure or possible
problem?

4. Save data and
crash/problem info

term for interface robustness
testing

o Focuses on:
Input validation errors

Actual applications - dynamic
testing of the finished product

Interfaces that have security
NG Implications
2 Known as an attack surface

Portion of code that is externally
exercisable in the finished
product

Changes of privilege may occur

Peter Oehlert, “Violating Assumptions with Fuzzing”, IEEE Security & Privacy, Pgs 58-62, March/April 2005

| Attack Surface Testing

Process Monitor

Attack surface = External Interfaces

Evolutionary Testing

Uses evolutionary algorithms (GAS) to
discover better test data

2 A GA Is a computer science search technigue
Inspired by evolutionary biology
Evaluating a granular fitness function is the key

o ET requires structural (white-box) information
(source code)
Couldn’t find others doing grey-box ET

Brief look at ET:
o Standard approach, typical uses, problems

Current ET Method for Deriving Fitness

Approach_level + norm(branch distance)
o Example: a=10, b=20, ¢=30, d=40
Answer: fithess = 2 + norm(10). (Zero == we've found test data.)

(s) void example(int a, int b, int c, int d)

{
(1) if (a >= b)
{
(2) if (b <= c)
{
(3) if (c == d)
{

[[target

Typical ET uses

Structural software testing

o Instrument discovered test cases for initial and
regression testing

Wegener et al. of DaimlerChrysler [2001] are

working on ET for safety critical systems

Boden and Martino [1996] concentrate on
error treatment routines of operating system
calls

Schultz et al. [1993] test error tolerance
mechanisms of an autonomous vehicle

ET Problems

Flag problem == flat Deceptive problems
landscape. Resort to

random search double function_under_test

(double x)
void flag_example(int a, int b) {
{ if (inverse(x) ==0)
Int flag = 0O; [ltarget
If (a==0) }
flag = 1; double inverse (double d)
If (b !1=0) {
flag = O; if (d ==0)
If (flag) return O;
[ltarget else
} return 1/ d;

Evolutionary Fuzzing System

McMinn and Holcombe (u.o.sheffield) are working
on solving ET problems [2]

o 2006 paper on Extended Chaining Approach

Our approach is different for two reasons:
o Grey-box, so no source code needed

o Application is being monitored while test cases
are being discovered. Fuzzing heuristics are used
In mutations. This equals real-time testing. Crash
files are written while evolution continues. Also
Includes reporting capability. Seed file helps with
some of the traditional ET problems, though still
rough fitness landscape.

Section 2: A Novel Approach

Evolutionary Fuzzing System

o Evolutionary Testing
EFS uses GA'’s, but does not require source code

o Fuzzing
EFS uses GPF for fuzzing

o PaiMel

EFS uses a modified version of pstalker for code
coverage

'EFS: A System View

s 0

Cess

Python code

C code

EFS: GPF - Stalker (PaiMel) Protocol

GPF initialization/setup data - PaiMel
Ready < PaiMel

<GPF carries out communication session
with target>

GPF {OK|ERR} > PaiMei

<PaiMeil stores all of the hit and crash
Information to the database>

EFS: How the Evolution works

GA or GP?

o Variable length GA. Not working to find code
snippets as in GP. We’'re working with data (GA).

Code coverage + diversity = fithess function

The niching or speciation used for diversity is defined
later

o Corollary 1:

Code coverage != security, but < 100% attack surface
coverage == even less security

o Corollary 2:

100% attack surface coverage + diverse test cases that
follow and break the protocol with attack/fuzzing
heuristics throughout == the best | know how to do

EFS: How the Evolution works (cont.)

Any portion of the data structures can be reorganized
or modified in various ways

o But not the best pool or the best session/pool
Elitism of 1

All evolutionary code is 100% custom code

o Session Crossover

o Session Mutation

o Pool Crossover

o Pool Mutation

\ EFS: Data Structures

Pool O Pool 1

\ EFS: Session Crossover

A HEE-EE-

: */-/- Uy

A [EEE - EE - S5 - B - EE

B BT

\ EFS: Session Mutation

ASCII_CMD ASCII_SPACE ASCII_CMDVAR Binary
WRITE READ
ASCII_CMD MIXED ASCII_CMDVAR Binary

WRITE WRITE

\ EFS: Pool Crossover

A B
A B’

\ EFS: Pool Mutation

A B
A B’

Simple Example of Maturing EFS Data

GENERATION 1

S1: “USER #3$%"&*Aflkdsjflk”

S2: “ksdfik\nPASS %n%n%n%n”
S3: “\r\njksd Jared9338498\d\d\xfefe”

GENERATION 15

S1: “USER #3%%\n PASS %n%n%n%n\r\njksd”
S2: "PASS\nQUIT NNNNNNNNNN\rn”

S3: “RETR\NNUSER ;asidf;asifh; kldsjf;kdf}”

EFS: GPF —E Parameters

Mysql Host, mysql user, mysgl passwd

D, generation

PaiMel host, PaiMel port, stalk type
Playmode, host, port, sport, proto, delay, wait
Display level, print choice

Pools, MaxSessions, MaxLegs, MaxToks,
MaxGenerations, SessionMutationRate,
PoolCrossoverRate, PoolMutationRate

UserFunc, SeedFile, Proxy

Seed File

SMTP FTP

o HELO o USER anonymous
o Mail from: o PASS
o Rcpt to: root o CMD
o Data o PASV
o “Hello there” o RETR
o \r\n.\r\n o STOR
o EHLO o PORT
o RSET o APPE
o QUIT o FEAT
o HELP o OPTS
o AUTH o PWD
o BDAT o LIST
o VRFY o NLST
o EXPN o TYPE
o NOOP o SYST
o STARTTLS o DELE
o etc. o etc.

EFS: Stalker Start-up Sequence

Create and PIDA file using IDApro
o Load the PIDA file in PaiMel

Configure/start test target
Stalk by functions or basic blocks

Filter common break points
o Start-up, connect, send junk, disconnect, GUI
Allows EFS to run faster

Connect to mysq|
o Listen for incoming GPF connection

Start GPF in the —E (evolutionary) mode

'EES GUI (the PaiMei

177

PAIMEldocs

Data Sources

Daka Exploration

portion

[rata Caphure

[

Refresh Targek List # EIP TID

= = Available Targets

= filter

= :_t] aftp_start_gui_conn_junk_discor
b !"1 ridaemon_startup_gui_smtponn
:_t] msftp_start_conn_junk_disconn
:_b] rssmtp_start_conn_junk_discon

Module Func?

Tag

Refresh Process List

PID Process

Target: ("ciimy difha.exe” args) or (a.exe)

- Textserver_bb_startup_conn_ju StartScript: | | ’ P]
¢ erl5] TextServer_starbup_con _jurk_d
=2 GFF Functions: 0/ 309 Basic Blocks: 0 671 Load)attach: |"c:'|,te><tserver.| ’ Eraowse]
H [#]
| |
Coverage Depth Start | 1.
Wik
Dereferenced Data (O Functions (%) Basic Blocks
Database to Save Hits
< | » - [CPrint Hits
PAIMElexplore — = L @GPF () Paimei
PIDA Modules
Func # BB PIDA Module [Jrestore BPs [|Heavy [|Unhandled Only
309 671 textserver....
[Start Stalking
&‘FF After Stalk
(%) Mone () Detach () Terminate
PAIME Hilefuzz
On Crash
’ Add Module(s) (%) Mane (O Detach (O Terminate
*] EFS (Ewolwing Fuzzer Systeml, by Jared DeMott
*] Based on the FaiMei Frocess Stalker module, by FPedram amini
*] Loaded PIDA module 'textserwer.exe' in 0.25 seconds.
*] Function cowerage at 0.000000%. Basic block cowerage at 0.000000%.
*] Using 'gpfT' as stalking tag.
Listen for Fuzzer Command & Control [g|
Hosk: 0.0.0.0
Park: 31338
General Wai: ke
Dump Directory: mps| TextServeri
GPF_ID: o
’ Listen]
Lisken For fuzzer CR.C, EFS

Section 3: Research Evaluation

Benchmarking EFS

o Attack surface coverage

o Text and Binary protocols

o Functions (funcs) vs. basic blocks (bbs)
o Pool vs. Diversity (also called niching)

See benchmarking paper for more details [3]
2 Wil be up on vdalabs.com when complete

Benchmarking: An investigation into the
properties of EFS

Develop a tool kit that can be used to test
various products

Currently the toolkit is simply two network
programs used to test EFS’s ability to
discover a protocol

o Clear text (TextServer)

o Binary (BinaryServer)

Intend to insert easy and hard to find bugs, to
test Oday hunting ability

TextServer

Three settings, low (1 path), med (9 paths),
high (19 paths)

Protocol

< “Welcome.\r\n Your IP 1s 192.168.31.103”
“cmd x\r\n” 2

< “Cmd x ready. Proceed.\r\n”

“Y\r\n” -

< “Sub Cmd y ok.\r\n”

“calculate\r\n” =

< =x+y\n\n”

o 0o 0 0 0 o0 O

Aside: Measuring the Attack Surface

One example, TextServer on Medium:

o Startup and shutdown = 137 BBs or 137/597 =
23% of code.

o Network code = 15 BBs or 15/597 = 3% of code

o Parsing = 94 BBs or 16% of code. This is the
portion of code likely to contain bugs!

o Total Attack surface = network code + parsing.
109bb or 18% of code.

o Code accounted for: 137+94bb or 39%.
(68+22funcs or 31%)

‘The seed file for TextServer

H\r\nﬂ
“calculate”
“Cm d 11

o 00000000 opoeCro

© 05~ Oy Ul R BN

Clear Text Results

EFS had no trouble learning the language of
TextServer.exe

Best session was found quickly

But the entire attack surface was not

completely covered
2 Why? Think “error” or “corner cases”

o Used pools to increase session diversity. Had
some success, but still not 100%

o In a few slides we see that niching was used as
well, and did better than pools, but still not 100%

BinaryServer

Will be similar to TextProtocol, but binary

format
Client Eequest essage Structure—:
Total LEN | Session IDr | CRD LEM | CMD Str
4 bytes 4 bytes 2 bytes War hytes
« oberver Fesponse Message Structure:
Total LEM | Session IDr | ESF LEN F.SF Str
4 hytes 4 hytes 2 hytes War bytes

Binary Protocol Results

Lengths shouldn't be too much trouble as
EFS/GPF has a tok type for lengths

Initial tests support this
0 Hashes are not yet implemented in GPF

o Binary protocol not yet implemented/tested

Functions vs. Basic Blocks

For applications with few functions, basic
blocks should be used

For more complex protocols, functions suffice
and increase run speec

| [Session Average Best Session Pool fuerage Best Fool ¢ Total Diversity
uuuuuuuuu 60

Fu
[>¢ sess ty

uuuuuuuuuuuuuuu

Low, Funcs, 1 Pool: Low, BBs, 1 Pool:
Best Session: 4/6 or 66% Best Session: 40/37 or 100%+

‘Funcs vS. BBs (cont.

20

18

17

16

15

For textserver.exe: Overall look at GPF_ID=0, TP=192,168.31.101, Hits=hit_funcs. Num Pools=1

[>¢ session fverage Best Session — Pool Averaze Best Pool 0 Tokal Diversity |

No Crashes Found

W'y

For textserver.exe: Overall look at GPF_ID=1. IP=182,168.31.100, Hits=hit_blocks. Num Pools=1
¢ Session Average Best Session — Poal Average Best Pool 0 Takal Diversity |

B8O

75

70

60 [

55

301

20|

No Crashes Found

L L L L
10 20 30 40 50 60 70 80 920 100 1o 120 130 140 150 160

L
170

L
180

L
190

0 L L L L L L L L L L L L L L L L L L

o 10 20 30 40 50 60 70 80 80 100 10 120 130 140 150 160 170 180

190

Med, Funcs, 1 Pool:
Best Session: 6/6 or 100%
Diversity Peak: 20/22 or 90%

Med, BBs, 1 Pool:
Best Session: 47/37 or 100%+
Diversity Peak: 83/94 or 88%

Testing the effects of Pools

Pools work to achieve better session diversity
o Also achieved better crash diversity in gftp

Didn't achieve 100% coverage of attack
surface

Case study at the end will show the positive
affects of pools

Comparing and adding to niching

Niching (or Speciation) to Foster
Diversity

Recently implemented so grab the new stuff
off vdalabs.com

Provides a fithess boost for sessions and
Dools that are diverse when compared to the

nest

Fitness = Hits + ((UNIQUE/BEST) * (BEST-1))
0 Hits: code coverage, funcs or bbs

0 UNIQUE: number of hits not found in the best
session

0 BEST: Session or Pool with the best CC fithess

Diversity in Action

S1:10 hits-(a, b, c,d, e, f,g, h, 1,))
S2:7hits-(a, b,d, e, f, g, h)
S3:5hits - (v, w, X, Y, 2)

Final fithesses:

S1:10 +((0/10)*9) =10
S2:7 +((0/10)*9) =7
S3:5 +((5/10) *9) =9.5

Same for pools

Pools and Diversi

Hits

For textserver,exe:

Overall look at GPF_ID=3, IP=192,168,31,100, Hits=hit_hlocks, Num Pools=1

96 Session Average

Best Session = Pool Average

Best Pool % Total Diversity |

+
4 ¢ 11
]

High, BBs, 1 Pool
Best Session: 43
Diversity Peak: 80

Downward trend

Overall look at GPF_ID=4, IP=192,168,31,100, Hits=hit_blocks, Num Pools=10
Best. Pool - Total Diversity

For textserver,exe:

56 Session Average Best Session = Pool Average

High, BBs, Multi-Pool
DIVERSITY ON
AVG: 46

Total Peak: 107

i Up and down trend

For textserver,exe:

Overall look at GPF_ID=6, IP=192,168,0,101, Hits=hit_blocks, Nun Pools=4

¢ Session Average

Best Session — Pool Average Best Pool ¢ Total Diversity |

0 2

30

High, BBs, Multi-Pool
Best Session: 47 '
Diversity Peak: 87
Up and down trend

fio Crashes Found

30 40 50 60 70 80 90
Generations

\ Section 4: Results

= Initial Results
o Golden FTP
o IS FTP/SMTP

Testing on Real World Code

Golden FTP
o Found lots of bugs

IS FTP and SMTP

o Found no bugs, but did seem to show some
iInstability in FTP
Would lock or die once and a while

Plan to test many more
o Haven't tried any with diversity on yet

EFS FOUﬂd USGI’ & password (outdated picture)

= PAIMEIconsole

Connections Advanced Help

Daka Sources Data Exploration Daka Capture
7 7 ? [Refresh Target List # EIP TID Madule Func? Tag Refresh Process List |
= = Available Targets FID Process
PAIMEldocs E| B filter_hits
'_bl skartup_gui_connect_junk_disco
7 aPE30_
Functions: 0 f 5145 Basic Blocks: 0/ 11716
o | |
PAIMElexplore Dereferenced Data Use/Load: |erver'|,gFtp.exe | | [Browse
< | [[close after Stalk. Use if Running
PIDE Modules — Coverage Depth
Func # BB PIDA ... () Functions
&FF 5145 11716 gftp.exe 0 Basic Blacks
PAIME Hilefuzz [restore BPs Heawy [Junhandied or
Add Moduleds) [Stop Stalking

Setting 1222 breakpoints on functions in main module e
Loading O<7FCc00000 “WINMDOWShsystem32hntd11.d11 —
Loading Ox7FCS00000 SWINDOWSHsystem3zhkernel3z.dll

Loading O0x77dd000n SWINDOWSYsystems2hadwvapilz.dll

Loading Ox7F7e70000 “WINDOWSHSystems32hrport4.dll

Loading Ox7F7cO0000 “SWINDOWSSSystems2hwersion.dll

Loading O0x7lad0oon SWINDOWSHSystem32hwsock3z. dl1

Loading Ox<7Flab0oo0 “WINDOWSHSystem3zhwsz_32.d11

Loading Ox7F7Clo000 SWIMDOWShSystemszvmswvert.dll

Loading 0Ox7F1laad0ooo “WIMDDOWS system2zhwszhelp.dll

Loading Ox772d0000 SWINDOWSWInSxsy 36 _MicrosoTo.windows . Cammon-Controls_g535hadldaccTldf_&.0.2600. 29582 <—wn_aciTacozhcomctl13z2.d11
Loading Ox<7F7 10000 “WIMDOWSHswstem3zhgdizz.dll

Loading O=<7F7d40000 “WIMDOWSHSystemz2huser3z.dll

Loading Ox77 0000 “WINDOWSHSystem2z2hshlwapi.dll

Loading OxFCc2c0000 SWINDOWSHSystem22hshell3z2.d11

Loading Ox774e0000 SWIMDOWSHSswstem3zholezz.dll

Loading O=<7F71l20000 “WIMDOWSHSwstem32holeautzz.dll

Loading O<7&220000 “WIMDOWSHSwstema2himmzz.dll

Loading O<5ad”0000 “WINDOWSSyws tems 2t ux<theme. d11

Loading Ox<7F4720000 “WINDOWSYsyws tem? 2 MSCTF.d11

Loading 0x10000000 “Program F11es\McAfee\SpamK111er\MSKDEP1g dill
Loading OxF55cC0000 SWINDOWSSSys tem3 2 " MSCTFIME. IM

Loading Ox71aS0000 “WINDOWSSSys tems 2 msws ock. d11

Loading Ox&&s2b0000 “WINDOWSYsystems2hhnetcfg.dll

Loading 0x71a20000 “WINDOWSHSsystems3zhwshtopip.dl]

Loading Ox00e30000 “Program FilessMcatee. comhwsohMowsske. D11
debugger hit 004z3T0C cC #1

debugger hit 004laftrzs cc #2

debugger hit 004232fho cc #2

debugger hit 00412%az0 cC #4

debugger hit 0041tefc cC #G

debugger hit 0041b2f4 cC #&

debugger hit 00422fCS CC #7

debugger hit 00422F70 cc #8

debugger hit 00423Ccl cC #9

PAIMElpstalker

L N R N N R N R N N R R R N N R

debugger hit 00417ccc ©c #10 j{) Golden FTP Server |
debugger hit 004127c0 cc #11
debugger hit 004135868 cC #12 Incoming connection:

IF - 192.165.31.103
L_ Llsernamme - ananymous

3

Connected ko GPF!

_5; PAIMEIconsole [& ¢ - Thunderbird f i runningPainei PRG -

‘ EFS CraSh Example (outdated picture)

* PAIMElconsole

Conneckions

777

PAIMEIldocs

i e

PAIMElexplore

x<FF

PAIMEHilefuzz

PAIMElpstalker

Advanced Help

[Craka Sources Data Exploration

Daka Capkure

[Refrash Target List # EIP TID Madule Func? Tag ~| [Refresh Process List |
Available Targets 1 00423f0c 2028 gftp.exe Ny 25 =%
= Eé" B= fiker hitsg = on41af7s 028 aftp.exe ¥ 25 ik HlFelsske
Fl = ” . y 3 00423rb0 2025 gftp.exe hi 25
[startup_gui_connect_junk_disco| | 4 00413320 2028 aftp.ese ¥ 25 v
“f7 GPF30_1 = —
Functions: 17 5145 Basic Blocks: 17 / 11716
l Loading
Dereferenced Data UsefLoad: |erver'|,gFtp.exe | [Browse
< I S [close after Stalk Use if Running
FIDA Modules — Coverage Depth
Func # BB FIDA ... () Functions
5145 11716 gftp.exe (0) Basic Blocks
[Jrestore BPs Heawy [CJunhandled o

Add Modulels)

[Stop Stalking

[*] debugger hit O040eedc cC #2292
[*] oO=o040za0d rep mowsd from thread 2824 caused access wiolation
when attempting to write to 0x004174c4

CONTEXT DUMP
EIF: 0O040zaod rep mowvsd
Efx: 0O04174cd [42EI7FIZT —» MAA
EEx: oO0Thfed4n [1651462471 -= LATE ;B ;B1<E<ETE(+F ,EB(-EB1-EBhcC,S8EBE=8E,SE,4.36, hDB@0E (stack)
ECx: 0000000l [13 -> NSA
ED0: 00000004 [47 -> NSA
EDI: 004174cCd [42EIFIZ] - MSA
ESI: 004174cCd [42EIFIZ] = MSA
EEBF: 00TbfTdad4 15514465 = MNFA
ESP: 0O0TbTds0 [1e514448)1 —=> CARA(CACCTYHCOHIKS$2GRG_ADASATLADTE(LATE ;B ;B1<B<BTE(+ (stack)
+00: 004174c4 [428597327 —= NJSA
+04: 00000000 [03 —= MNSA
+08: 00as%4ac [1091703&) -= 1TA (Cheap
+0c: 0O0Fbfe40 [1eS1l4624) —= EATE ;B :B1<B<ETE(+F ,EB(-EB1-BhC,SE=8E,2EB,4.9E,hDBEDE (stack)
+10: TEFFFFFf (42949672957 —= NAA :
+14: 00Ffbfedo [1651456071 —= DASATLADTE(LATE ;B ;EB1<E<ETE(+F ,E(-EB1-Bhc,S5E=S2E, (stack)

disasm araound:

Ox0040z2a02 sub edi,ecx
Ox00402a04 mow edsx, ecx
Ox00402a0& =chg edi,esd
0x00402a08 shr ecx,0x2
Ox0040za0b mow eax<,edi
Ox0040za0d rep mowsd
Ox00402a0f mov ecx, edx
0x00402all and ecx,0x32
0x00402al4 rep movsh
Ox00402ale pop esi
Ox00402al? =or edi,edi

stack unwind:
oo40f010
0041523t
o04z3fcs
oo4zzct4

Connected bo GPF!

= [PAIME

Process Stalker

EFS gftp eXG RGSUltS (maX) (outdated picture)

ions that Crashed the Target

EFS gftp eXG RGSUltS (avg) (outdated picture)

sions that Crashed the Target

GFTP Pool Effects Av(g over 6 runs

t\'” "m MJ‘“ M

Average fitness of
pool and session

eeeeeeee itness (6 runs/group) at each Generation

80 |-
55 -
[tmsession = 1:pon) dizession — dipool . ‘y' ‘
20 50 80 100 45 N. ly’vj." “ﬁt& ‘!'

Best of Pool and Session e

‘ Crash Results — For all Runs

31295

O 48E27F
B 7CaocFeD
O a0zro0
W az4760
O a187A9
B 417FE7
[48EEDO
[4raE74
O 433E55
O a8BERC
3
5355
0O 418700
W 40zr00
\\2 [7eeocFen
W a17E25
@ az4760
W 417863
@ assEDe
O agez7F
O 4g8EAG
5 10-pool Crash Total
24453
1-pool Crash Total
p O 424760
W 418700
O dozaon
3643 W 7C80CFED

731 O 4sE27F
T W 45EED0
T [402c88
ET—— 1z W 43312057
\ 1 e
o8 |— 674 W 402072
4-pool Crash Total > i

O 7es18307
O 7es11E58
O 48BERO

Challenges and Future Work

Modifying EFS to work on files as well

How does its performance compare with
existing fuzzing technologies?

o What is the probability to find various bug types as
this is the final goal of this research

What bugs can be found and in what software?

The fuzzing technology to use seems to
depend on the application and general domain
robustness (i.e. min work to get a bug)

o File fuzzing == dumb fuzzing

o Network apps == Intelligent (RFC aware) fuzzing

Challenges and Future Work (cont.)

PIDA files are great but a pain

o Binary could be obfuscated, encrypted, or IDA just
doesn’t do well with it. Considered MSR, that there
are issues there as well.

Speed

o Auto-detecting the optimal session-wait to
determine if funcs or BBs is more parcticle

Binary Protocols
o Need more testing here

Normal testing challenges
o Monitoring, Instrumentation, logging, statistics, etc.

References:

J. DeMott, R. Enbody, W. Punch, “Revolutionizing the
Field of Grey-box Attack Surface Testing with Evolutionary
Fuzzing”, BlackHat and Defcon 2007

P. McMinn and M. Holcombe, “Evolutionary Testing Using
an Extended Chaining Approach”, ACM Evolutionary
Computation, Pgs 41-64, Volume 14, Issue 1 (March

2006)
J. DeMott, “Benchmarking Grey-box Robustness Testing

Tools with an Analysis of the Evolutionary Fuzzing System
(EFS)”, continuing PhD research

Thanks to so many!

God

Fami Iy (Wonderful wife and two boys that think I'm the coolest.)
Friends

BH and DEFCON

Applied Security, Inc.

Michigan State University

JS -- my hacker bug from VDA Labs

Arun K. from Infosecwriters.com

L @stplace for letting me do CTF with them

