
Revolutionizing the Field of Grey-box
Attack Surface Testing with Evolutionary

Fuzzing

Jared DeMott
Dr. Richard Enbody @msu.edu
Dr. William Punch

Black Hat 2007

VDA Labs, LLCwww.vdalabs.com

Agenda

 Goals and previous works

 (1) Background
 Software, fuzzing, and evolutionary testing

 (2) Describe EFS in detail
 GPF && PaiMei && development++ == EFS

 (3) Initial benchmarking results

 (4) Initial results on a real world application

 Conclusion and future works

Goals and Previous Works

 Research is focused on building a better fuzzer
 EFS is a new breed of fuzzer

 No definitive proof (yet) that it’s better than current approaches
 Need to compare to Full RFC type, GPF, Autodafe, Sulley, etc

 As of 6/21/07 there are no (available) other fuzzers that learn
the protocol via a grey-box evolutionary approach
 Embleton, Sparks, and Cunningham’s Sidewinder research

 Code has not been released

 Hoglund claims to have recreated something like Sidewinder, but
also didn’t release details

 Autodafe and Sulley are grey-box but require a capture (like
GPF), or definition file (like Spike), respectively, and do not evolve

Section 1: Background

 Software Testing

 Fuzz Testing
 Read Sutton/Greene/Amini
 And than read DeMott/Takanen

 Evolutionary Testing

Software Testing
 Software testing can be

 Difficult, tedious, and labor intensive
 Cannot “prove” anything other than existence of bugs

 Poorly integrated into the development process
 Abused and/or misunderstood
 Has a stigma as being, “easier” than engineering

 Software testing is expensive and time-consuming
 About 50% of initial development costs

 However, primary method for gaining confidence in the
correctness of software (pre-release)
 Done right, does increase usability, reliability, and security

 Example, Microsoft’s new security push: SDL

 In Short, testing is a (NP) hard problem
 New methods to better test software are important and in

constant research

Fuzzing, Testing, QC, and QA

 How does fuzzing fit into the development life
cycle?
 Formal Methods of Development
 Quality Assurance

 Quality Control
 Testing
 Fuzzing
 Many other types of testing!

 Fuzzing is one small piece of the bigger
puzzle, but one that has be shown useful to
ensure better security

Fuzzing
 Fuzzing is simply another

term for interface robustness
testing
 Focuses on:

 Input validation errors
 Actual applications - dynamic

testing of the finished product
 Interfaces that have security

implications
 Known as an attack surface
 Portion of code that is externally

exercisable in the finished
product

 Changes of privilege may occur

3. App
failure or possible

problem?

1. Generate or
get data

2. Deliver to
application

4. Save data and
crash/problem info

Yes

No

Peter Oehlert, “Violating Assumptions with Fuzzing”, IEEE Security & Privacy, Pgs 58-62, March/April 2005

Attack Surface Testing

Fuzz testing (typically on)
attack surface
with semi-valid data

Application

Process Monitor

Attack surface = External Interfaces

Network

Local

Evolutionary Testing

 Uses evolutionary algorithms (GAs) to
discover better test data
 A GA is a computer science search technique

inspired by evolutionary biology
 Evaluating a granular fitness function is the key

 ET requires structural (white-box) information
(source code)
 Couldn’t find others doing grey-box ET

 Brief look at ET:
 Standard approach, typical uses, problems

Current ET Method for Deriving Fitness

 Approach_level + norm(branch distance)
 Example: a=10, b=20, c=30, d=40

 Answer: fitness = 2 + norm(10). (Zero == we’ve found test data.)

(s) void example(int a, int b, int c, int d)
{

(1) if (a >= b)
{

(2) if (b <= c)
{

(3) if (c == d)
{

//target

Typical ET uses

 Structural software testing
 Instrument discovered test cases for initial and

regression testing

 Wegener et al. of DaimlerChrysler [2001] are
working on ET for safety critical systems

 Boden and Martino [1996] concentrate on
error treatment routines of operating system
calls

 Schultz et al. [1993] test error tolerance
mechanisms of an autonomous vehicle

ET Problems

 Flag problem == flat
landscape. Resort to
random search

void flag_example(int a, int b)
{

int flag = 0;
if (a == 0)

flag = 1;
if (b != 0)

flag = 0;
if (flag)

//target
}

 Deceptive problems

double function_under_test
(double x)

{
if (inverse(x) == 0)

//target
}
double inverse (double d)
{

if (d == 0)
return 0;

else
return 1 / d;

}

Evolutionary Fuzzing System

 McMinn and Holcombe (U.o.Sheffield) are working
on solving ET problems [2]
 2006 paper on Extended Chaining Approach

 Our approach is different for two reasons:
 Grey-box, so no source code needed
 Application is being monitored while test cases

are being discovered. Fuzzing heuristics are used
in mutations. This equals real-time testing. Crash
files are written while evolution continues. Also
includes reporting capability. Seed file helps with
some of the traditional ET problems, though still
rough fitness landscape.

Section 2: A Novel Approach

 Evolutionary Fuzzing System
 Evolutionary Testing

 EFS uses GA’s, but does not require source code

 Fuzzing
 EFS uses GPF for fuzzing

 PaiMei
 EFS uses a modified version of pstalker for code

coverage

EFS: A System View

GPF

PaiMei

Debugger

Target Process

Mysql

Each Generation

Apache

.php

Reporting
In Browser

C code

Python code

EFS: GPF - Stalker (PaiMei) Protocol

 GPF initialization/setup data PaiMei

 Ready PaiMei

 <GPF carries out communication session
with target>

 GPF {OK|ERR} PaiMei

 <PaiMei stores all of the hit and crash
information to the database>

EFS: How the Evolution works

 GA or GP?
 Variable length GA. Not working to find code

snippets as in GP. We’re working with data (GA).
 Code coverage + diversity = fitness function

 The niching or speciation used for diversity is defined
later

 Corollary 1:
 Code coverage != security, but < 100% attack surface

coverage == even less security

 Corollary 2:
 100% attack surface coverage + diverse test cases that

follow and break the protocol with attack/fuzzing
heuristics throughout == the best I know how to do

EFS: How the Evolution works (cont.)

 Any portion of the data structures can be reorganized
or modified in various ways
 But not the best pool or the best session/pool

 Elitism of 1

 All evolutionary code is 100% custom code
 Session Crossover
 Session Mutation
 Pool Crossover
 Pool Mutation

EFS: Data Structures

Pool 0

Token 3Leg 1Session 0

Pool 1

Token 1Leg 1Session 0

EFS: Session Crossover

A

B

A’

B’

EFS: Session Mutation

A

ASCII_CMD

“USER”

ASCII_SPACE

“ ”

ASCII_CMDVAR

“Jared”

Binary

0xfe839121

Len

0x000a

A’

ASCII_CMD

“USER”

MIXED

“ ”

ASCII_CMDVAR

“Ja%n%n
%n%nred”

Binary

0xfe839121

Len

0x000a

WRITE READ

WRITEWRITE

EFS: Pool Crossover
BA

B’A’

EFS: Pool Mutation
BA

B’A’

Simple Example of Maturing EFS Data

 GENERATION 1
 S1: “USER #$%^&*Aflkdsjflk”
 S2: “ksdfjkj\nPASS %n%n%n%n”
 S3: “\r\njksd Jared9338498\d\d\xfefe”
 ...
 GENERATION 15
 S1: “USER #$%\n PASS %n%n%n%n\r\njksd”
 S2: ”PASS\nQUIT NNNNNNNNNN\r\n”
 S3: “RETR\r\nUSER ;asidf;asifh; kldsjf;kdfj”
 ...

EFS: GPF –E Parameters

 Mysql Host, mysql user, mysql passwd
 ID, generation
 PaiMei host, PaiMei port, stalk type
 Playmode, host, port, sport, proto, delay, wait
 Display level, print choice
 Pools, MaxSessions, MaxLegs, MaxToks,

MaxGenerations, SessionMutationRate,
PoolCrossoverRate, PoolMutationRate

 UserFunc, SeedFile, Proxy

Seed File
 SMTP

 HELO
 Mail from: me@you.com
 Rcpt to: root
 Data
 “Hello there”
 \r\n.\r\n
 EHLO
 RSET
 QUIT
 HELP
 AUTH
 BDAT
 VRFY
 EXPN
 NOOP
 STARTTLS
 etc.

 FTP
 USER anonymous
 PASS me@you.com
 CMD
 PASV
 RETR
 STOR
 PORT
 APPE
 FEAT
 OPTS
 PWD
 LIST
 NLST
 TYPE
 SYST
 DELE
 etc.

EFS: Stalker Start-up Sequence

 Create and PIDA file using IDApro
 Load the PIDA file in PaiMei

 Configure/start test target

 Stalk by functions or basic blocks

 Filter common break points
 Start-up, connect, send junk, disconnect, GUI

 Allows EFS to run faster

 Connect to mysql
 Listen for incoming GPF connection

 Start GPF in the –E (evolutionary) mode

EFS GUI (the PaiMei portion)

Section 3: Research Evaluation

 Benchmarking EFS
 Attack surface coverage
 Text and Binary protocols
 Functions (funcs) vs. basic blocks (bbs)
 Pool vs. Diversity (also called niching)

 See benchmarking paper for more details [3]
 Will be up on vdalabs.com when complete

Benchmarking: An investigation into the
properties of EFS
 Develop a tool kit that can be used to test

various products

 Currently the toolkit is simply two network
programs used to test EFS’s ability to
discover a protocol
 Clear text (TextServer)

 Binary (BinaryServer)

 Intend to insert easy and hard to find bugs, to
test 0day hunting ability

TextServer

 Three settings, low (1 path), med (9 paths),
high (19 paths)

 Protocol
 “Welcome.\r\n Your IP is 192.168.31.103”
 “cmd x\r\n”
 “Cmd x ready. Proceed.\r\n”
 “y\r\n”
 “Sub Cmd y ok.\r\n”
 “calculate\r\n”
 “= x + y\r\n”

Aside: Measuring the Attack Surface

 One example, TextServer on Medium:
 Startup and shutdown = 137 BBs or 137/597 =

23% of code.

 Network code = 15 BBs or 15/597 = 3% of code

 Parsing = 94 BBs or 16% of code. This is the
portion of code likely to contain bugs!

 Total Attack surface = network code + parsing.
109bb or 18% of code.

 Code accounted for: 137+94bb or 39%.
(68+22funcs or 31%)

The seed file for TextServer

 “\r\n”
 “calculate”
 “cmd “
 “1”
 “2”
 “3”
 “4”
 “5”
 “6”
 “7”
 “8”
 “9”

Clear Text Results

 EFS had no trouble learning the language of
TextServer.exe

 Best session was found quickly

 But the entire attack surface was not
completely covered
 Why? Think “error” or “corner cases”

 Used pools to increase session diversity. Had
some success, but still not 100%

 In a few slides we see that niching was used as
well, and did better than pools, but still not 100%

BinaryServer

 Will be similar to TextProtocol, but binary
format

Binary Protocol Results

 Lengths shouldn't be too much trouble as
EFS/GPF has a tok type for lengths

 Initial tests support this

 Hashes are not yet implemented in GPF

 Binary protocol not yet implemented/tested

Functions vs. Basic Blocks

 For applications with few functions, basic
blocks should be used

 For more complex protocols, functions suffice
and increase run speed

Low, Funcs, 1 Pool:
Best Session: 4/6 or 66%

Low, BBs, 1 Pool:
Best Session: 40/37 or 100%+

Funcs vs. BBs (cont.)

Med, BBs, 1 Pool:
Best Session: 47/37 or 100%+
Diversity Peak: 83/94 or 88%

Med, Funcs, 1 Pool:
Best Session: 6/6 or 100%
Diversity Peak: 20/22 or 90%

Testing the effects of Pools

 Pools work to achieve better session diversity
 Also achieved better crash diversity in gftp

 Didn't achieve 100% coverage of attack
surface

 Case study at the end will show the positive
affects of pools

 Comparing and adding to niching

Niching (or Speciation)to Foster
Diversity
 Recently implemented so grab the new stuff

off vdalabs.com

 Provides a fitness boost for sessions and
pools that are diverse when compared to the
best

 Fitness = Hits + ((UNIQUE/BEST) * (BEST-1))
 Hits: code coverage, funcs or bbs
 UNIQUE: number of hits not found in the best

session
 BEST: Session or Pool with the best CC fitness

Diversity in Action

 S1: 10 hits - (a, b, c, d, e, f, g, h, i, j)
 S2: 7 hits - (a, b, d, e, f, g, h)
 S3: 5 hits - (v, w, x, y, z)

 Final fitnesses:
 S1: 10 +((0/10) * 9) = 10
 S2: 7 + ((0/10) * 9) = 7
 S3: 5 + ((5/10) * 9) = 9.5

 Same for pools

Pools and Diversity

High, BBs, 1 Pool
Best Session: 43
Diversity Peak: 80
Downward trend

High, BBs, Multi-Pool
Best Session: 47
Diversity Peak: 87
Up and down trend

High, BBs, Multi-Pool
DIVERSITY ON
AVG: 46
Total Peak: 107
Up and down trend

Section 4: Results

 Initial Results
 Golden FTP

 IIS FTP/SMTP

Testing on Real World Code

 Golden FTP
 Found lots of bugs

 IIS FTP and SMTP
 Found no bugs, but did seem to show some

instability in FTP
 Would lock or die once and a while

 Plan to test many more
 Haven't tried any with diversity on yet

EFS: Found user & password (outdated picture)

EFS: Crash Example (outdated picture)

EFS: gftp.exe Results (max) (outdated picture)

EFS: gftp.exe Results (avg) (outdated picture)

GFTP Pool Effects – Avg over 6 runs

Best of Pool and Session

Average fitness of
pool and session

Crash Results – For all Runs

1-pool Crash Total

4-pool Crash Total

10-pool Crash Total

Challenges and Future Work

 Modifying EFS to work on files as well
 How does its performance compare with

existing fuzzing technologies?
 What is the probability to find various bug types as

this is the final goal of this research
 What bugs can be found and in what software?

 The fuzzing technology to use seems to
depend on the application and general domain
robustness (i.e. min work to get a bug)
 File fuzzing == dumb fuzzing
 Network apps == Intelligent (RFC aware) fuzzing

Challenges and Future Work (cont.)

 PIDA files are great but a pain
 Binary could be obfuscated, encrypted, or IDA just

doesn’t do well with it. Considered MSR, that there
are issues there as well.

 Speed
 Auto-detecting the optimal session-wait to

determine if funcs or BBs is more parcticle
 Binary Protocols
 Need more testing here

 Normal testing challenges
 Monitoring, Instrumentation, logging, statistics, etc.

References:

1. J. DeMott, R. Enbody, W. Punch, “Revolutionizing the
Field of Grey-box Attack Surface Testing with Evolutionary
Fuzzing”, BlackHat and Defcon 2007

2. P. McMinn and M. Holcombe, “Evolutionary Testing Using
an Extended Chaining Approach”, ACM Evolutionary
Computation, Pgs 41-64, Volume 14, Issue 1 (March
(2006

3. J. DeMott, “Benchmarking Grey-box Robustness Testing
Tools with an Analysis of the Evolutionary Fuzzing System
(EFS)”, continuing PhD research

Thanks to so many!

 God
 Family (Wonderful wife and two boys that think I'm the coolest.)

 Friends
 BH and DEFCON
 Applied Security, Inc.
 Michigan State University
 JS -- my hacker bug from VDA Labs
 Arun K. from Infosecwriters.com
 L@stplace for letting me do CTF with them

