
Subverting VistaTM Kernel For
Fun And Profit

Joanna Rutkowska
Advanced Malware Labs

SyScan’06
July 21st, 2006, Singapore

&
Black Hat Briefings 2006

August 3rd, 2006, Las Vegas

2© COSEINC Research, Advanced Malware Labs, 2006

About this presentation

This presentation is based on the research done
exclusively for COSEINC Research

This presentation has been first presented at SyScan
conference in Singapore, on July 21st, 2006

3© COSEINC Research, Advanced Malware Labs, 2006

Content

Part I
loading unsigned code into Vista Beta 2 kernel (x64)
without reboot

Part II
Blue Pill – creating undetectable malware on x64 using
Pacifica technology

Part I – getting into the kernel

5© COSEINC Research, Advanced Malware Labs, 2006

Signed Drivers in Vista x64

All kernel mode drivers must be signed
Vista allows to load only signed code into kernel
Even administrator can not load unsigned module!
This is to prevent kernel malware and anti-DRM
Mechanism can be deactivated by:

attaching Kernel Debugger (reboot required)
Using F8 during boot (reboot required)
using BCDEdit (reboot required, will not be available in
later Vista versions)

This protection has been for the first time implemented in
Vista Beta 2 build 5384.

6© COSEINC Research, Advanced Malware Labs, 2006

How to bypass?

Vista allows usermode app to get raw access to disk
CreateFile(\\.\C:)

CreateFile(\\.\PHYSICALDRIVE0))

This allows us to read and write disk sectors which are
occupied by the pagefile
So, we can modify the contents of the pagefile, which
may contain the code and data of the paged kernel
drivers!
No undocumented functionality required – all
documented in SDK :)

7© COSEINC Research, Advanced Malware Labs, 2006

Challenges

How to make sure that the specific kernel code is paged
out to the pagefile?

How to find that code inside pagefile?

How to cause the code (now modified) to be loaded into
kernel again?

How to make sure this new code is executed by kernel?

8© COSEINC Research, Advanced Malware Labs, 2006

How to force drivers to be paged?

Allocate *lots of* memory for a process (e.g. using
VirtualAlloc())

The system will try to do its best to back up this memory
with the actual physical pages

At some point there will be no more physical pages
available, so the system will try to page out some
unused code…

Guess what is going to paged now… some unused
drivers :)

9© COSEINC Research, Advanced Malware Labs, 2006

Eating memory…

10© COSEINC Research, Advanced Malware Labs, 2006

What could be paged?

Pageable sections of kernel drivers (recognized by the
section name starting with ‘PAGE’ string)

Driver’s data allocated from Non-Paged pool (e.g.
ExAllocatePool())

11© COSEINC Research, Advanced Malware Labs, 2006

Finding a target

We need to find some rarely used driver, which has
some of its code sections marked as pageable…
How about NULL.SYS?
After quick look at the code we see that its dispatch
routine is located inside a PAGE section – one could not
ask for more :)
It should be noted that there are more drivers which
could be used instead of NULL – finding them all is left
as an exercise to the audience ;)

12© COSEINC Research, Advanced Malware Labs, 2006

Locating paged code inside pagefile

This is easy – we just do a pattern search
if we take a sufficiently long binary string (a few tens of
bytes) its very unlikely that it will appear more then once in
a page file

Once we find a patter we just replace the first bytes of
the dispatch function with our shellcode

The next slide demonstrates how to use disk editor to do
that

13© COSEINC Research, Advanced Malware Labs, 2006

How to make sure our shellcode gets executed?

We need to ask kernel to be kind enough and execute
our driver’s routine (whose code we have just replaced in
pagefile)

In case of replacing driver’s dispatch routine it’s just
enough to call CreateFile() specifying the target
driver’s object to be opened

This will cause the driver’s paged section to be loaded
into memory and then executed!

14© COSEINC Research, Advanced Malware Labs, 2006

Putting it all together

Allocate lots of memory to cause unused drivers code to
be paged

Replace the paged out code (inside pagefile) with some
shellcode

Ask kernel to call the driver code which was just
replaced

15© COSEINC Research, Advanced Malware Labs, 2006

DEMO

The above attack has been implemented in a form of a
‘1-click tool’
Special heuristics has been used to automatically find
out how much memory should be allocated, before
‘knocking the driver’
The shellcode used in the demo disables signature
checking, thus allowing any unsigned driver to be
subsequently loaded

16© COSEINC Research, Advanced Malware Labs, 2006

Creating useful shellcodes

We can create a shellcode which would disable
signature checking...

… or we can create a small shellcode which would
allocate some memory (via ExAllocatePool) and then
“download” the rest of the malware from ring 3…

17© COSEINC Research, Advanced Malware Labs, 2006

DEMO

18© COSEINC Research, Advanced Malware Labs, 2006

Possible solutions (1/3)

Solution #1: Forbid raw disk access from usermode.

This would probably break lots of programs:
diskeditors/undeleters

some AV programs?

some data bases?

Besides, access would still be possible from kernel mode

So we can expect that lots of legal apps would provide
their own drivers for raw disk access

Those drivers would be signed of course, but could be
used by attacker as well (no bug is required!).

19© COSEINC Research, Advanced Malware Labs, 2006

Possible solutions (2/3)

Solution #2: Encrypt pagefile!

Generate encryption key while system starts and keep it
in kernel non-paged memory. Do not write it to disk nor
to the registry!

Big (?) performance impact

Encrypt only those pages which were paged from ring0,
keep ring3 pages unencrypted

Sounds better, still introduces some performance impact
(not sure how much though)

20© COSEINC Research, Advanced Malware Labs, 2006

Possible solutions (3/3)

Solution #3: Disable kernel memory paging!

Disadvantage: wasting precious physical memory…

On the other hand:
is RAM really so precious these days?

BTW, you can manually disable kernel memory paging in
registry!

But it can be enabled again (reboot required), so it’s not a
good solution.

21© COSEINC Research, Advanced Malware Labs, 2006

Bottom line

The presented attack does not rely on any
implementation bug nor on any undocumented
functionality

MS did a good thing towards securing kernel by
implementing signature check mechanism

The fact that this mechanism was bypassed does not
mean that Vista is completely insecure (it’s just not that
secure as it’s advertised)

It’s very difficult to implement a 100% efficient kernel
protection in a general purpose operating system

Part II – Blue Pill

23© COSEINC Research, Advanced Malware Labs, 2006

Invisibility by Obscurity

Current malware is based on a concept...

e.g. FU unlinks EPROCESS from the list of active
processes in the system

e.g. deepdoor modifies some function pointers inside
NDIS data structures

… etc…

Once you know the concept you can write a detector!

This is boring!

24© COSEINC Research, Advanced Malware Labs, 2006

Imagine a malware…

…which does not rely on a concept to remain
undetected…

…which can not be detected, even though its algorithm
(concept) is publicly known!

…which can not be detected, even though it’s code is
publicly known!

Does this reminds you a modern crypto?

25© COSEINC Research, Advanced Malware Labs, 2006

Blue Pill Idea

Exploit AMD64 SVM extensions to move the operating
system into the virtual machine (do it ‘on-the-fly’)

Provide thin hypervisor to control the OS

Hypervisor is responsible for controlling “interesting”
events inside gust OS

26© COSEINC Research, Advanced Malware Labs, 2006

AMD64 & SVM

Secure Virtual Machine (AMD SVM) Extensions (AKA
Pacifica)

May 23rd, 2006 – AMD releases Athlon 64 processors
based on socket AM2 (revision F)

AM2 based processors are the first to support SVM
extensions

AM2 based hardware is available in shops for end users
as of June 2006

27© COSEINC Research, Advanced Malware Labs, 2006

SVM

SVM is a set of instructions which can be used to
implement Secure Virtual Machines on AMD64

MSR EFER register: bit 12 (SVME) controls weather
SVM mode is enabled or not

EFER.SVME must be set to 1 before execution of any
SVM instruction.

Reference:
AMD64 Architecture Programmer’s Manual Vol. 2: System
Programming Rev 3.11
http://www.amd.com/us-en/assets/content_type/white_papers_and_tech_docs/24593.pdf

28© COSEINC Research, Advanced Malware Labs, 2006

The heart of SVM: VMRUN instruction

29© COSEINC Research, Advanced Malware Labs, 2006

Blue Pill Idea (simplified)

30© COSEINC Research, Advanced Malware Labs, 2006

BP installs itself ON THE FLY!

The main idea behind BP is that it installs itself on the fly
Thus, no modifications to BIOS, boot sector or system
files are necessary
BP, by default, does not survive system reboot
But this is not a problem:

servers are rarely restarted
In Vista the ‘Power Off’ button does not shut down the
system – it only puts it into stand by mode!

And also we can intercept (this has not been yet
implemented):

restart events (hypervisor survives the reboot)
shutdown events (emulated shutdown)

31© COSEINC Research, Advanced Malware Labs, 2006

SubVirt Rootkit

SubVirt has been created a few months ago by
researches at MS Research and University of Michigan

SubVirt uses commercial VMM (Virtual PC or VMWare)
to run the original OS inside a VM

32© COSEINC Research, Advanced Malware Labs, 2006

SubVirt vs. Blue Pill

SV is permanent! SV has to
take control before the original
OS during the boot phase. SV
can be detected off line.

SV runs on x86, which does
not allow for full virtualization
(e.g. SxDT attack)

SV is based on a commercial
VMM, which creates and
emulates virtual hardware.
This allows for easy detection

Blue Pill can be installed on
the fly – no reboot nor any
modifications in BIOS or boot
sectors are necessary. BP can
not be detected off line.

BP relies on AMD SVM
technology which promises full
virtualization

BP uses ultra thin hypervisor
and all the hardware is natively
accessible without
performance penalty

33© COSEINC Research, Advanced Malware Labs, 2006

Matrix inside another Matrix

What happens when you install Blue Pill inside a system
which is already bluepilled?

If nested virtualization is not handled correctly this will
allow for trivial detection – all the detector would have to
do was to try creating a test VM using a VMRUN
instruction

Of course we can cheat the guest OS that the processor
does not support SVM (because we control MSR
registers from hypervisor), but this wouldn’t cheat more
inquisitive users ;)

So, we need to handle nested VMs…

34© COSEINC Research, Advanced Malware Labs, 2006

Nested VMs

35© COSEINC Research, Advanced Malware Labs, 2006

Detection via timing analysis

We can assume that some of the instructions are always
intercepted by the hypervisor

VMMCALL

RDMSR – to cheat about the value of EFER.SVME bit

So, not surprisingly, the time needed to execute RDMSR
to read the value of EFER would be different (longer)
when running from guest

Detector can execute such instructions a few millions of
times and measure the time.

36© COSEINC Research, Advanced Malware Labs, 2006

Cheating timing analysis

The first problem is that detector (usually) does not have
a base line to compare the results with…

But even if it had (e.g. when testing access to physical
pages and while one of them being backed up by disk)
still we can cheat it!

SVM offers a way to fool the guest’s time stamp counter
(obtained using RDTSC).

All we have to do is to adjust VMCB.TSC_OFFSET
accordingly before executing VMRUN (which resumes
the guest)

37© COSEINC Research, Advanced Malware Labs, 2006

Time dilatation for guest

38© COSEINC Research, Advanced Malware Labs, 2006

Getting the real time…

39© COSEINC Research, Advanced Malware Labs, 2006

Time profiling in practice

Now imagine that you need to check 1000 computers in
your company using the “external” stopwatch…

Now imagine that you need to do this a couple of time
every day…

Time dilatation should make it impossible to write a self
sufficient detector based on timing analysis!

The challenge: we need a good ‘calibrating’ mechanism
so that we know how much time to subtract.

40© COSEINC Research, Advanced Malware Labs, 2006

Blue Pill based malware

Blue Pill is just a way of silently moving the running OS
into Matrix on the fly

BP technology can be exploited in many various ways in
order to create stealth malware

Basically ‘sky is the limit’ here :)

On the next slides we present some simple example:

41© COSEINC Research, Advanced Malware Labs, 2006

Delusion Backdoor

Simple Blue Pill based network backdoor
Uses two DB registers to hook:

ReceiveNetBufferListsHandler
SendNetBufferListsComplete

Blue Pill takes care about:
handling #DB exception (no need for IDT[1] hooking inside
guest) and protecting
protecting debug registers, so that guest can not realize
they are used for hooking

Not even a single byte is modified in the NDIS data
structures nor code!
Delusion comes with its own TCP/IP stack based on lwIP

42© COSEINC Research, Advanced Malware Labs, 2006

Delusion Demo (Blue Pill powered)

43© COSEINC Research, Advanced Malware Labs, 2006

Blue Pill detection

Two level of stealth:
level 1: can not be detected even though the concept is
publicly known (BPL1)

level 2: can not be detected even if the code is publicly
known (BPL2)

Level 1 does not requite BP’s pages protection

Level 2 is about avoiding signature based detection

Level 2 is not needed in targeted attacks

BPL2 has not been implemented yet!

44© COSEINC Research, Advanced Malware Labs, 2006

Generic BP detection

If we could come up with a generic program which would
detect SVM virtual mode then…

it would mean that SVM/Pacifica design/implementation
does not support full virtualization!

To be fair: AMD does not claim full virtualization in SVM
documentation – it only says it is ‘Secure VM’…
However it’s commonly believed that SVM == full
virtualization…

45© COSEINC Research, Advanced Malware Labs, 2006

Blue Pill detection

We currently research some theoretical generic attacks
against BPL1

It seems that the attack would only allow for crashing the
system if its bluepilled

It seems that the only attack against BPL2 would be
based on timing analysis (or crashing when some
special conditions will be met, like e.g. user removing
SATA disk in a specific moment during tests)

46© COSEINC Research, Advanced Malware Labs, 2006

Pacifica vs. Vanderpool

Pacifica (SVM) and Vanderpool (VT-x) are not binary
compatible

However they seem to be very similar

XEN even implements a common abstraction layer for
both technologies

It seems possible to port BP to Intel VT-x

47© COSEINC Research, Advanced Malware Labs, 2006

Blue Pill Prevention

Disable it in BIOS
Its better not to buy SVM capable processor at all!

Hypervisor built into OS
What would be the criteria to allow 3rd party VMM (e.g.
VMWare or some AV product) to load or not?
Or should we stuck with “The Only Justifiable VMM”,
provided by our OS vendor? ;)

Not allowing to move underlying OS on the fly into virtual
machine

would not solve the problem of permanent, “classic” VM
based malware

or maybe another hardware solution…

48© COSEINC Research, Advanced Malware Labs, 2006

Hardware Red Pill?

How about creating a new instruction – SVMCHECK:
mov rax, <password>
svmcheck
cmp rax, 0
jnz inside_vm

Password should be different for every processor
Password is necessary so that it would be impossible to
write a generic program which would behave differently
inside VM and on a native machine.
Users would get the passwords on certificates when they
buy a new processor or computer
Password would have to be entered to the AV program
during its installation.

49© COSEINC Research, Advanced Malware Labs, 2006

Future work

Implement nested VMs

Intercept restart and shutdown events (controlled restart,
emulated shutdown)

Support for multi-core processors

Implement BPL1 using Intel VT-x

Implement Blue Pill Level 2 (BPL2)

Implement time dilatation for guest

50© COSEINC Research, Advanced Malware Labs, 2006

Bottom line

Arbitrary code can be injected into Vista x64 kernel

This could be abused to create Blue Pill based malware on
processors supporting virtualization

BP installs itself on the fly and does not introduce any modifications
to BIOS nor hard disk

BP can be used in many different ways to create the actual malware
– Delusion was just one example

BP should be undetectable in any practical way (when fully
implemented)

Blocking BP based attacks on software level would also prevent
ISVs from providing their own VMMs and security products based on
SVM technology

Changes in hardware (processor) could allow for easy BP detection

51© COSEINC Research, Advanced Malware Labs, 2006

Credits

Neil Clift for interesting discussions about Windows
kernel

Edgar Barbosa for preparing shellcode for the kernel
strike attack

Edgar joined COSEINC AML at the end of June!

Alexander Tereshkin AKA 90210 for thrilling discussions
about Blue Pill detection

Alex is going to join COSEINC AML in August!

Thank you!

joanna@research.coseinc.com

check out http://coseinc.com/

for information about available trainings!

	MAIN MENU
	PREVIOUS MENU

	Search
	Next Document
	Next Result
	Previous Result
	Previous Document

	Print

