
Security Engineering in Windows Vista

Black Hat 2006

John Lambert

Security Group Manager, SWI

Contact: johnla at microsoft dot com

Intro – Who Am I?

• Joined Microsoft 6 years ago
o There for Code Red, Nimda, SQL Slammer, Blaster

o There for Windows Security Push, Windows XPSP2,
SDL

o At the billg meeting where Trustworthy Computing
was kicked off

• Security Group Manager, Secure Windows
Initiative
o Security Development Lifecycle (SDL) at Microsoft

o Manage an internal team of hackers and security
program managers

Agenda

• Here to explain what we’re doing in Windows
Vista
o Overview of security engineering activities

o Some detail on our major security initiatives

o Overview of our mitigations work

• Here to listen to:
o Any engineering focused feedback you have

o How you think we’re doing

• What you WON’T hear in this presentation:
o Security features

• What’s changed in Kerberos, PKI, BitLocker, etc

Security Deployment Lifecycle Tasks
and Processes

Product Inception
Assign resource
Security plan

Design
Design guidelines applied
Security architecture
Security design review
Ship criteria agreed upon

Guidelines & Best Practices
Coding Standards
Testing based on threat
models
Tool usage

Security Push
Security push training
Review threat models
Review code
Attack testing
Review against new threats
Meet signoff criteria

Final Security Review (FSR)
Review threat models
Penetration Testing
Archiving of Compliance Info

Security
Response
Feedback loop
- Tools/
Processes

- Postmortems
- SRLs

RTM &
Deployment
Signoff

Design Response

Threat Modeling
Models created
Mitigations in design
and functional specs

Security Docs &
Tools
Customer deliverables
for secure deployment

Requirements Implementation Verification Release

Windows Vista Security Approach

Stop playing catch up - find & fix before ship
o Use root cause analysis to ensure we’re solid against previous issues
o Look forward to get ahead of new classes of issues
o Apply all the lessons from Windows XP SP2, Windows Server 2003 SP1 to a

mainline release
1. Apply least privilege throughout architecture

o Harden services, applications, browser
2. Automate proven techniques

o Buffer overruns and common coding mistakes
o RPC and File parser fuzzing
o Banned API removal

3. Methodically apply security expertise on whole product
o Attack Surface Reduction, Threat Model reviews
o Feature reviews
o Penetration testing

4. Defense-in-Depth Mitigations
o Firewall on by default
o Enhanced protections for stack, heap, and more

• Training

• Threat Models

• Component level
code review and
testingC

om
po

ne
nt

T
ea

m

“Winmain”
Main Source

Tree

Security
 PREfast

 Banned API Removal

 SAL Annotations

 FxCop
 Privacy, Reliability, …

Security Bug Tracking
PREfix, Default Permissions

3rd Party Code SDL Tracking
Weak Crypto Removal, Service Hardening

Legacy Banned API Removal
& SAL Annotations

Mitigations (/GS, etc)

Threat Models Reviewed

Privacy Review

Design & Attack Surface Review

Network and File Parser testing

Pentration Testing
Mini-Security Push (if necessary)

In Depth Threat Model Review

Special Cleanup Projects

Windows XPWindows XPWindows VistaWindows Vista

PART 1:
APPLY LEAST PRIVILEGE
THROUGHOUT
ARCHITECTURE

Pervasive Least Privilege

• Problem: If a program runs as SYSTEM or
Administrator, any compromise is catastrophic

• Approach:
– Applications

• Enhance standard user
• Administrators use full privilege only for administrative tasks

or applications
• Run some applications with heightened restrictions

– Service Hardening
• Minimize privilege user pervasively in applications and

services
• Define restrictions to ensure behavior conforms to expected

activity

A Look at Service Hardening

• Motivation:
o Services are attractive targets for malware

• Sasser, Blaster, Slammer, Zotob, CodeRed

o No need for user interaction

o Often run in elevated identities

o Many worms:
• Tinker with the OS (drop a root kit)

• Open network connections to propagate

Reduce Privilege Level of Services

• Get services out of SYSTEM to LOCAL SERVICE or NETWORK
SERVICE

• Reductions from Windows XP SP2
– Eight (8) SYSTEM services now run as LOCAL SERVICE

• Windows Audio
• DHCP Client
• Windows Event Log
• COM+ Event System
• Workstation Service
• Windows Time
• Security Center
• Windows Image Acquisition

– Four (4) SYSTEM services now run as NETWORK SERVICE
• Cryptographic Services
• Policy Agent
• Telephony
• Terminal Services

• And 48% of new services in Windows Vista run
under a low privilege account

Compartmentalize Resources with
Service SIDs

• Per Service SIDs
o Derived from

service name in SCM

o S-1-5-80-xxxx

• ACL objects such
that only your service
can manipulate them

• Integrated into:
o LookupAccountSid

o LookupAccountName

Example:
S-1-5-80-242729624-280608522-2219052887-3187409060-2225943459
Resolves to NT SERVICE\CryptSvc

Eliminate Unnecessary Privileges

• Describe the privileges your service needs and all others
are removed

• Process that host multiple services get union of required
privileges

// Set up the required privileges
SERVICE_REQUIRED_PRIVILEGES_INFOW servicePrivileges;
servicePrivileges.pmszRequiredPrivileges =

(L"SeChangeNotifyPrivilege\0"
 L"SeCreateGlobalPrivilege\0"
 L"SeImpersonatePrivilege\0");

fRet = ChangeServiceConfig2(
 schService,
 SERVICE_CONFIG_REQUIRED_PRIVILEGES_INFO,
 &servicePrivileges);

Restricted Network Behavior

• Define the network requirements for your
service…
– You describe and OS enforces network access policy
– Eg: foo.exe can only open port TCP/123 inbound

• |Action=Allow|Dir=In|LPORT=123|Protocol=17|App=%SystemRoot%\foo.exe

– If foo.exe has a bug, the rogue code cannot make
outbound connections

• …enforced by the firewall

Group services to take advantage of
restrictions

• New svchosts
o LocalServiceNoNetwork

• Runs under local service account. This group has no network access and has a write-
restricted token

o LocalServiceRestricted
• Runs under local service account. This group uses a fixed set of network ports on the

system and a write-restricted token

o LocalServiceNetworkRestricted
• Runs under local service account. This group uses a fixed set of network ports on the

system but not a write-restricted token

o NetworkServiceRestricted
• Runs under network service account. This group uses a fixed set of network ports on

the system and a write-restricted token

o NetworkServiceNetworkRestricted
• Runs under network service account. This group uses a fixed set of network ports on

the system but not a write-restricted token

o LocalSystemNetworkRestricted
• Runs under local system account and accesses fixed set of network ports.

Case Study: DHCP Client Service

YesNoUses Fixed Set of
Ports?

YesNoData accessible
only by service?

(Service SID)

NoYes (Machine
Account)

Network Identity?

424Privileges

LOCAL SERVICESYSTEMAccount

Windows VistaWindows XP SP2

PART 2:
AUTOMATE PROVEN
TECHNIQUES

A Brief Introduction to the Standard Annotation
Language (SAL)

• Tools can only find “so much” without more
contextual information
o SAL helps bridge the gap by providing interface

contract information to the tools
• SAL leads to improved analysis (More bugs, Less noise)

o The concept is not new: think IDL in RPC

• Prime focus is finding buffer overrun bugs
o Given the code buff[x] = y;

o How big is buff, and what is the value of x?

o Problem is C/C++ don’t associate buffer to their sizes

SAL Example

• If cchBuf doesn’t correspond to the actual
size of buf, the loop will walk off the end of
buf

void FillString(
TCHAR* buf,
size_t cchBuf,
char ch)

{
 for (size_t i = 0; i < cchBuf; i++) {
 buf[i] = ch;
 }
}

Pointer to a TCHAR buffer,
we should annotate

Function writes this many
characters to buf

Annotations – A Closer Look
void FillString(

__out_ecount(cchBuf) TCHAR* buf,
size_t cchBuf,
char ch)

_out_ecount(cchBuf)

Out parameter
(will be written to)
and is non-null

Buffer size is an
Element count

Buffer is cchBuf
elements in size

Adding Annotations

1. Warning C6386: Buffer overrun: accessing 'argument 1',
2. The writable size is ‘200*2' bytes, but '420' bytes might be written
3. The specification for the function. warning C6387: 'argument 1' might be

'0': this does not adhere to 'FillString’ __out

void FillString(
__out_ecount(cchBuf) TCHAR* buf,
size_t cchBuf,
char ch)

{

 for (size_t i = 0; i < cchBuf; i++) {
 buf[i] = ch;
 }
}

void main() {
TCHAR *buff = malloc(200 * sizeof(TCHAR));
FillString(buff,210,’x’);

}

Remember this Buffer Overrun?

• Buffer overrun found in IE7 Beta 2 on Jan 31, 2006.
o http://www.security-protocols.com/advisory/sp-x23-advisory.txt
o <BGSOUND SRC=file://---

--
--
---- >

• Workaround: Mozilla Firefox

WCHAR pwzTempPath[MAX_PATH];

PathCreateFromUrlW(
pwzPath,

(LPWSTR) pwzTempPath,
&cchPath,
0);

PREfast & SAL in Action

1. Description: Potential overflow using expression '& pwzTempPath'

2. Buffer access is apparently unbounded by the buffer size.

3. In particular: cchPath`3485a is not constrained by any constant

4. Buffer is of length 260 elements (2 bytes/element) [size of variable or field]

5. Annotation on function PathCreateFromUrlW@16 requires that {parameter 2} is of
length >= *{parameter 3} elements (2 bytes/element)

6. where {parameter 2} is & pwzTempPath; {parameter 3} is & cchPath

LWSTDAPI
PathCreateFromUrlW(
 LPCWSTR pszIn,
 __out_ecount(*pcchOut) LPWSTR pszOut,
 __inout LPDWORD pcchOut,
 DWORD dwFlags)

WCHAR pwzTempPath[MAX_PATH];

PathCreateFromUrlW(
pwzPath,
(LPWSTR) pwzTempPath,
&cchPath ,
0);

11/24/2005 5:50 AM Bug # ______ Opened by PREfast

Did SDL succeed or fail?

• Root cause analysis leads to tools Improvement
o After PnP RPC bug (Zotob worm), PREfast was improved (warning

#2015)

• Process improved to auto-file bugs on #2015

• IE bug identified immediately and filed by PREfast toolset in Nov
2005
o Caught by PREfast due to SAL annotation on PathCreateFromUrlW

API

• Found through internal fuzzing efforts 8 days after public vuln report

• Reported through Windows Error Reporting 1 day later

• Bug was found and would have been fixed by RTM
o Focus on root cause analysis, continuous tools and process

improvements in SDL pays off

File Parsers: Under Attack

MS05-036: 9 ICM (JPG,PNG,BMP)

MS05-050 AVI

MS05-002: 3 ANI

MS06-002 EOT

MS05-009: PNGMS05-012: OLE/COM

MS05-014: CDF

MS05-018: Fonts

MS05-022: GIFs

MS05-025: PNG

MS05-020: MSRatings .RATMS05-026: .ITS

MS06-004 WMF

MS05-053 EMF

MS06-005: BMP

MS06-003: TNEF

Multi-Prong Approach on Parsers

• Automate what you can:
o Code coverage helps in “template reduction” & to show basic

block coverage
• 19,154 JPGs were optimized down to 47 with the same block coverage. Fuzzed using

101 templates (3 optimized sets)

o All parsers: Internally developed general purpose fuzzer
• Over 83 Million manipulations by Beta 2

o Highest risk parsers: get Data-Definition-Language extensions

o Hard targets: Smart fuzzers (Examples: EMF, HTML)

o Run under debugger with “fail fast” options enabled;

o Review all Access Violations & Memory Spikes

• Apply security expertise where you need it:
o Manual code review + detailed program analysis on “problem

parsers”

o Extended SAL annotations for struct members

o Emit runtime stack protections more aggressively in “attack path”

PART 3:
METHODICALLY APPLY
SECURITY EXPERTISE

Feature Reviews

• Features prioritized using multiple risk factors
o Listens to the network

o Historical MSRC issues? Legacy code?

o Accepts anonymous or untrusted input

o Makes security guarantees

o Runs with high privilege, and more…

• Feature Reviewer analyzes threat models, design, and
attack surface
o Weak areas referred to pentest for deep inspection

• Internal reviews augmented with security consultants
o Affinitize reviewer to area of expertise where possible

o Each reviewer has a MS “driver” to assist with process, pushback

Penetration Testing

• Largest Pentest in MS History
o Internal team of hackers (remember LSD?)

o Multiple simultaneous pentests (e.g. TCP/IP)

o “Blue Hat hackers” :^)
• 20+ security consultants (aka hackers) in a room

• Access to Full Source + Symbols, specs, threat models

• Access to members of product teams, SWI experts

• All necessary expertise is within 1 building radius

• Modus Operandi
o Target selection

o Diagnostic in nature: engineering remediation as necessary
• You will never pentest your way to a secure product

o Spend anywhere from 1 week to 2 months per target

• Nothing is out-of-scope

Sampling of Findings

• Process tended to yield “rabbit holes”

• Contradiction in Security Assumptions
o TM #1: “We have no risk because we don’t parse anything, we

just pass things down.”

o TM #2: “We have no risk because our input is normalized; we
just receive validated content.”

• Process handicaps

• Failures of Imagination
• Unwise filenames

o wls0wndh.dll
o Winlogon Session0 Viewer Window Hook DLL

It Came from the Codebase…

n -= (e = (e = 0x4000 - ((d &= 0x3fff)
> w ? d : w)) > n ? n : e);

“It’s actually quite beautiful. Almost like a Haiku or
something.”

Found by Felix Von Leitner (n.Runs)

How to Identify Truly Old Code?

• Pentesters wanted to focus some time on
“legacy code”

• How to identify what’s been around a while?

• “I know, can we find old copies of MSDN?”

How to Identify Truly Old Code?

Windows 95 Was a Simpler Era

Safe String handling circa 1995:

LPTSTR SafeStrcpy(LPTSTR lpszString1, LPTSTR
lpszString2) {

 try {
 return strcpy(string1, string2);
 }
 except (GetExceptionCode() ==
EXCEPTION_ACCESS_VIOLATION ?

 EXCEPTION_EXECUTE_HANDLER :
 EXCEPTION_CONTINUE_SEARCH) {
 return NULL;
 }
}

We’ve come a loooooooooooooooooong way….

PART 4:
DEFENSE-IN-DEPTH
MITIGATIONS

Mitigations

• /GS improved in MSVC 8.0 (Visual C++ 2005 aka Whidbey)
o Significantly improved /GS stack protection from Whidbey compiler

o Annotations force more aggressive protection in forward facing areas

• Hardened Heap: Many Defense in Depth changes:
o Lookasides no longer used

o Arrays of free lists no longer used

o Early detection of errors due to block header integrity check

o Dynamic adjustment of algorithms based upon the usage (target
attacks)

o Pseudo-random base address

o Heap TerminateOnCorruption
o On by default for 64bit

o On for services & most apps on x86. still fine tuning

o See in depth talk by Adrian Marinescu later today

Function Pointer Encoding

• Function pointer encoding
o Overwriting a function pointer in a predictable location is a common

technique to gain control of EIP

o Encode function pointer with secret ; Decode prior to dereference

o Decreases reliability of exploit by increasing chances of process
termination due to AV on EIP, NX exception, invalid instruction, etc.

• APIs
o EncodePointer - XOR with a per process cookie

o EncodeSystemPointer - XOR with a shared cookie in
SharedUserData

• Use to share a pointer cross process

• Does not require a kernel transition

• Example usages:
o PEB Lock/Unlock routines

o Pointers internal to NT heap

o Vectored exception handler pointers

o ~300 other usages as of Beta 2, typically long lived function pointers

Data Execution Protection aka NX

• Most Windows Vista PCs will have hardware
support for NX

• Default Mode: Opt-in
o EXEs linked with /NXCOMPAT:YES have NX turned

on permanently

o All Windows services and most EXEs will be opted in
• Still battling compat issues with IE & Explorer and oddities with ATL

thunk emulation

• Customers can put Windows in Opt-out mode
o Everything has NX turned on

o Exception list is configurable in registry

However DEP isn’t Good Enough by Itself

http://www.uninformed.org/?v=2&a=4
mmiller at hick.org, Skywing at valhallalegends.com

As can be seen, the technique described in this document
outlines a feasible method that can be used to
circumvent the security enhancements provided by
hardware-enforced DEP…

First and foremost, the technique depends on knowing the
location of three separate addresses…The first
dependency could be broken by instituting some
form of Address Space Layout Randomization that
would thereby make the location of the dependent code
blocks unknown to an attacker.

Mitigations - ASLR

• Address Space Layout Randomization (ASLR)
o Powerful complement to NX (aka Data Execution Protection)

• Final design still being tweaked, but currently:
o Images must opt-in via bit in PE header: DYNAMIC_BASE

• New linker adds support; also emits reloc in EXEs

o Limited # of bits available for randomness on 32bit. Main trade-off:
• How difficult do you want the guess to be?

• How much contiguous virtual address space do you want to be available to apps?

o Currently set so that 99.6% of the time, your first guess will fail

o Still working through issues: service restart, CLR

• Impact:
o No major hit on performance. Some wins. Some minor losses.

o Appcompat is looking good with current design (600 apps passed)

• On by default in Beta 2; All of Windows Vista is Opted-in

Windows 2000

Windows XP SP1

Windows XP SP2

Windows Server 2003

Even if we had missed it in
Windows XP SP2

Remote unauthenticated code execution
possible (No SDL prior to ship)

Attacker requires authentication to exploit
(ACL restricted)

No remote security threat
(Security RPC Callback added)

No remote security threat (Reviewed and
implemented Windows Server 2003
changes)

Blocked by firewall that is on by default

Windows Vista

And if that failed…

Improved PREfast & PREfix code scanners

RPC Fuzzing and Penetration Testing

Protected by an improved version of /GS &
SafeSEH

Protected by NX and ASLR

And if that failed…

And if that failed…

And if that failed… And still blocked by firewall that is on by
default

And In Vista?And In Vista?

Still to Come!

Abolade GbadegesinThe NetIO Stack: Reinventing TCP/IP in
Windows Vista

11:15 – 12:30

Noel Anderson &
Taroon Mandhana

WiFi in Windows Vista: A Peek Inside the
Kimono

13:45 – 15:00

Adrian MarinescuWindows Vista Heap Management
Enhancements – Security, Reliability and
Performance

15:15 – 16:30

Tony ChorCase Study: The Security Development
Lifecycle and Internet Explorer 7

16:45 – 18:30

44

secure@microsoft.com

This presentation is for informational purposes only. Microsoft makes no warranties, express or implied, in this summary.

Questions?

	MAIN MENU
	PREVIOUS MENU

	Search
	Next Document
	Next Result
	Previous Result
	Previous Document

	Print

