
Finding and Preventing Cross-
Site Request Forgery

Tom Gallagher

Security Test Lead, Microsoft

Agenda

• Quick reminder of how HTML forms work
• How cross-site request forgery (CSRF) attack works
• Obstacles and how attackers work around them
• Demo of attack
• Common proposals for prevention
• Demo of detected attack
• How to pen-test the prevention mechanism
• Built-in features to prevent attacks
• Impact on SOAP
• Automated testing

Why is CSRF interesting?

• Allows an attacker to take arbitrary actions as the victim against a web
site.

• Similar to cross-site scripting

• Often missed by web pen-testers

• Not a small coding error like XSS

• Many platforms do not have built-in features to prevent the attack

• Preventing the attack may require implementing a new feature and
often isn’t trivial to do right

• Can apply to SOAP

Refresher on HTML Forms

Client Requests Page from Server

Server Responds with HTML Form

User completes HTML
form and submits it

Client Sends Form Data

Server authenticates and
authorizes user. If success,
performs requested action.

Okay, what’s the security problem?
Only authorized users can perform actions.

Client using
Web Browser

Web Server

Reminder: Browser Security Model

• Browsers prevent cross-domain read access
to data.
– Example: http://www.contoso.com cannot read

http://www.microsoft.com

• Cross-domain form submissions are allowed.

• CSRF Attack - Attacker coerces victim to
submit attacker’s form data to the victim’s
web server. (Cross-site form submission)

Anatomy of CSRF Attack

• Step 1: Attacker hosts web page with pre-populated HTML form
data.

• Step2: Victim browses to attacker’s HTML form.

• Step 3: Page automatically submits pre-populated form data to a
site where victim has access.
– Remember: Javascript can automate posting forms.

• Step 4: Site authenticates request (with attacker’s form data) as
coming from the victim.

• Result: Attacker’s form data is accepted by server since it was
sent from legitimate user.

Demo of Attack

Obstacles for Attacker

• Needs to know victim’s server
– Knowing victim’s server is not hard in a targeted attack or a

commonly used server. Example: Famous banks, auction sites,
etc.

• Needs to get victim to browse to attacker’s site (pre-populated
form)
– Getting victim to load the attacker’s form isn’t hard. (Phishing is

often successful.)

• Needs victim to log into server
– Victim might already be logged into a site or might have automatic

log-in enabled.
• Examples: SSO, cookie, or Windows Integrated Authentication.
• Windows Integrated Authentication is very popular on intranets.

Easier for GET Operations

• RFC 2616 (HTTP 1.1) states, “…the GET and HEAD
methods SHOULD NOT have the significance of
taking an action other than retrieval.”

• In practice this is not followed. Many GET operations
perform operations that do things besides/in addition
to data retrieval.
– Example: http://server/DeleteMessage.asp?ID=1

• Even easier to attack than POST, because victim can
be attacked any place a URL is evaluated.
– Example: Picture in email.

Common Prevention Ideas

• Check HTTP Referer
– For privacy, Referer might not be present.
– Redirects on the site might allow for correct Referer even if only redirecting

to it’s own site.
• Example: http://server/redir.aspx?url=/delete.aspx?id=100

• Store state
– When user browses to the form, record state, check it when it is submitted.

• Examples: Server-side state or cookies (Attacker cannot set cookie for another
user on victim’s site without another security bug.)

– Still vulnerable! Attacker can force the victim’s browser to load the form
from the trusted site and then submit the form from the attacker’s site.
(State will be correctly set.)

• Hidden HTML form field storing state
– This works if done correctly.
– Let’s look at how to test for correctness.

Demo of Attack Detection

Pen-testing CSRF Validation
Fields

Test 1: Verify validation field is unique for
each user.
– Developers sometimes believe if the

validation field is only good for a few
minutes it’s good enough. Remember, an
attacker’s pre-populated HTML form could
use server-side code to grab a validation
field on the fly.

Pen-testing CSRF Validation
Fields

Test 2: Verify the validation field cannot be determined
by other users.

– If the attacker can create a correct value of the validation
field for another user, there is no value in the validation field.

– Validation field should also be unique for each site.
• Example: If a hosting company deploys a web site for

contoso.com and wingtiptoys.com, the validation field for user1
on one site should not work on the other. Especially bad if
accounts can have different owners.

• Even worse if problem present in commercial off the self
software.

Pen-testing CSRF Validation
Fields

Test 3: Verify the validation field is never
sent on the query string.
– This data could be leaked in places like the

HTTP Referer to the attacker.

• Also remember only data retrieval
should occur through GET requests.

Pen-testing CSRF Validation
Fields

Test 4: Verify request fails if validation
field is missing.
– Nulling out data often bypasses checks.

– Validation field may only be checked on
certain operations.

• Example: During threat modeling, a team only
planned to check validation field on database
updates. They also send mail as the user but
didn’t plan on checking there!

ASP.NET Built-in Solution

• ASP.NET 1.1 introduced the ViewStateUserKey property.

• ViewStateUserKey can be set with user specific information.

• Information used to create unique __VIEWSTATE field.

• ASP.NET automatically checks when page is submitted

• Almost painless for developers.

• Other languages like C++, PHP, Classic ASP, do not currently
have built-in support.

Impact on SOAP

• SOAP request are POSTs with XML contents

• Client should prevent cross-domain SOAP requests

• SOAP requests should be strictly validated so sending SOAP
XML as form data should fail.

• This generally means SOAP doesn’t have CSRF issues.

• However, SOAP 1.2 may allow it through both POST and
GET…

GET/POST Binding

• SOAP method can be called using an
HTTP GET or HTTP POST (normal
form payload – not XML payload).

• SOAP 1.2 spec includes GET binding

• WSDL 1.1 spec includes GET and
POST binding.

SOAP: HTTP GET Binding

• Usually takes 1 of 2 formats

• Format 1:
http://server/auction.asmx/bid?id=5089&value=1000

• Format 2:
http://server/auction.asmx?method=bid&id=8&value=10

Parameter ValueParameter Name

SOAP Method Name

SOAP Method Name

Parameter ValueParameter Name

SOAP: HTTP POST Binding

• Same data as HTTP GET except form data is
send in POST payload instead of query
string.

• Both POST and GET can often be disabled.
– Example: ASP.NET contains 2 properties HttpPost

and HttpGet to toggle this. Disabled by default.
– Often enabled for debugging, and mistakenly left

on.
– Sometimes only enabled for localhost. (Still

attackable but more difficult.)

Automated Testing

• Only interested in authenticated requests that perform actions besides
data retrieval.

• Testing normal HTML forms:
– Write code to find forms that are missing the known hidden validation forms.

• Example: __VIEWSTATE
– Existing functionality testing automation can be leveraged. Write code to

hook the onbeforesubmit event and modify data accordingly.
– Useful to have multiple accounts when testing.

• Testing SOAP GET/POST Binding
– Local access - investigate server config (example: web.config for

HttpGet/HttpPost setting)
– Local access – If config allows GET/POST, examine methods for non-

retrieval operations.
– Remote access – Visit WSDL and try forming HTTP GET/POST requests

based on information exposed. Success should return the same data as an
XML SOAP request.

Questions?

• Related attacks covered in
Hunting Security Bugs from
Microsoft Press -
http://www.microsoft.com/
MSPress/books/8485.asp.

• Pick up a copy. 

	MAIN MENU
	PREVIOUS MENU

	Search
	Next Document
	Next Result
	Previous Result
	Previous Document

	Print

