
Guns and Butter:

Towards Formal Axioms of Input Validation

Robert J. Hansen ∗, Meredith L. Patterson†

{rjhansen, mlpatter}@cs.uiowa.edu
Department of Computer Science

The University of Iowa
Iowa City, Iowa

June 30, 2005

Abstract

Input validation has long been recognized as an essen-
tial part of a well–designed system, yet existing liter-
ature gives very little in the way of formal axioms for
input validation or guidance on how to put in practice
what few recommendations exist. We present basic
formal axioms for input validation and apply them
to sql, where we demonstrate enhanced resistance
to injection attacks.

1 The Importance of
Input Validation

A very large class of attacks against systems are re-
ally input validation attacks. Buffer overflows are
exploited by inputs which are larger than the mem-
ory space allotted for them. sql injection uses
carefully–manipulated inputs to trick servers into
running semi–arbitrary code using the server’s own
permissions. Many more exist; one need only read
comp.risks [1] to find them.

While the academic world is tempted to pin the

∗Mr. Hansen wishes to thank Professor Leon Tabak of Cor-
nell College and Professor Doug Jones of the University of Iowa
for assistance.

†Ms. Patterson wishes to thank David McNab, the author
of PyBison.

blame for this sorry state of affairs on an infrastruc-
ture built by developers who are, in general, woefully
lacking in knowledge of either the formal methods
of computer science or the recommendations of the
computer security community, a good portion of the
blame must rest on the academic treatment of the
subject. In our literature survey we found very little
information about formal axioms of input validation,
and of that, almost none featured examples to show
implementors how these best practices could be ap-
plied to their work.

2 Intended Audience

We hope that both theoreticians and implementors
will benefit from this paper. In order to accomo-
date both audiences, we have elaborated some things
which are self–evident to one group in the interests of
making it more comprehensible to the other. Wher-
ever possible, we use a uniform terminology: for in-
stance, while context–free grammars and pushdown
automata are equivalent and interchangeable, in this
paper we will primarily refer to pushdown automata.

1

3 Existing Practices

3.1 Real–World Practice

Existing real–world validation processes are largely
ad–hoc and/or taken from believed–authoritative ref-
erences. Unfortunately, many of these references
completely fail to address input validation. Those
that do tend to do so in little detail, advocate the use
of inferior mechanisms (largely regular expressions),
and give a false sense of tradeoffs between security
and convenience. This “guns or butter” mentality
seems endemic to the literature, as shown in the fol-
lowing quote from Welling [2]:

Be careful when making things more re-
strictive, though, because a validation func-
tion that rejects one percent of valid data
is far more annoying than one that allows
through ten percent of invalid data.

In our random survey of six commonly–available
texts, three said nothing of input validation; one re-
ferred to it but did not discuss it; and only two sug-
gested the use of regular expressions to validate user
input. Welling was one of the two, which should be
further indicative of the poor state of security aware-
ness: after all, bad advice is considerably worse than
none.

3.2 Academic Practice

Our academic literature survey yielded results not
much more impressive. Most of the existing literature
is concerned with handling errors after bad input has
occurred, not proactively ensuring bad input doesn’t
occur.

Furthermore, the problem of syntactically valid but
semantically malicious input is broadly considered in-
tractable. The literature which addresses this gener-
ally cites Beizer [3], a reading of which suggests the
author did not feel the field possessed the tools nec-
essary to address the problem:

Data validation is the first line of defense
against a hostile world. Good designers will
design their systems so that it doesn’t just

accept garbage—good testers will subject
their systems to the most creative garbage
possible. Input–tolerance testing is usu-
ally done at the system level . . . and con-
sequently, the tester is usually distinct from
the designer.

. . .
Every input to a system or routine can

be considered as if it were a string of charac-
ters. The system accepts valid strings and
rejects invalid ones. . . . There’s nothing we
can do about syntactically valid strings, all
of whose values are reasonable but just plain
wrong—that kind of garbage we have to ac-
cept.

We courteously disagree with the preceding. Data
validation is, indeed, the first line of defense; for that
reason, it is imperative that data validation be incor-
porated into a design, not a tacked–on feature tested
in an ad–hoc manner. Moreover, as we will demon-
strate in this paper, data validation can be subjected
to formal syntactic analysis which will trap many
kinds of malicious inputs.

3.3 Conclusions

We conclude from our survey the following:

1. Existing literature does not sufficiently address
input validation

2. Existing literature provides no useful axioms for
input validation

3. The state of the art, as far as implementation
goes, is regexp–based validation

In this paper we assume the first, address the sec-
ond, and demonstrate the insufficiency of the third
as we develop axioms of input validation and apply
them to sql.

2

4 Framework

4.1 Definitions and Observations

Our definitions and observations should be unsurpris-
ing to anyone with a background in theoretical com-
puter science, and for that reason we will eschew most
elaboration. Implementors may find Sipser [4] and/or
Fleck [5] useful when reading this section.

Definition 1 (Validity) A string S in a language
L is valid if and only if S can be generated from the
formal description of L.

Definition 2 (P–languages) A language L is a P–
language if and only if all strings generated by L ex-
hibit the property P .

Observation 1 (Validity of Sublanguages) All
strings in the P–language L′ derived from L are
valid P–strings in L, regardless of whether L is a
P–language.

This observation, while quite general, has practi-
cal consequences. By constructing a properly con-
strained sublanguage of an insecure language, we may
generate secure strings within that insecure language.

Definition 3 (M–set) The M–set of languages is
composed of all languages which require a mechanism
of minimum strength M for their generation.

Definition 4 (Syntactic Context) A syntactic
context for an input I in a string S is the maximum
extent in S to which I can change the syntactic
structure of S, up to an upper bound of S itself.

We will denote the syntactic context of S for a
given input I with the notation ΣS

I . Variables are
handled by observing that for any variable V defined
in its own syntactic context ΣT , any syntactic context
ΣS which references V will incorporate ΣT .

Definition 5 (Semantic Context) A semantic
context for an input I in a string S is the maximum
extent in which I can change the semantic meaning
of S, up to an upper bound of S itself.

We will denote the semantic context of S for a given
input I with the notation ΥS

I . Our discussion of ΥS
I

will be limited. Semantic analysis is beyond the scope
of this paper except as it can be facilitated via syn-
tactic analysis.

To the best of our knowledge, we are the first to
formally specify the meaning of syntactic and seman-
tic contexts, although many computer scientists have
for years had an intuitive and/or ad–hoc sense of the
same.

4.2 Input Validation Theorems

Our theorems pertaining to input validation should
be as unsurprising as our preceding definitions and
observations.

Theorem 1 (Minimum Validation Strength)
Given a language L which requires a minimally–
strong computational mechanism M to generate
strings ∈ L, a string S ∈ L must be validated using
a mechanism at least as strong as M .

Proof. Since validating a string against a language
is done by applying the production rules of the lan-
guage to create the string being validated, if it is pos-
sible to validate S using a mechanism weaker than M ,
then M is not the minimally–strong mechanism re-
quired to generate L’s productions. This contradicts
our statement that M is minimally–strong.

Observation 2 (Maximal Validation Strength)
A language L requiring a minimally–strong compu-
tational mechanism M should not be validated using
a mechanism stronger than M .

Hoglund and McGraw [6] note that “a complex
computational system is an engine for executing ma-
licious computer programs delivered in the form of
crafted input.” Their concern—the inevitable com-
promise, given enough time, of systems—informs our
observation. If we assume our systems will be com-
promised at some point, prudence requires that we
expose to our attackers the weakest mechanism pos-
sible. An attacker given access to a strong mechanism
has far more potential for mayhem than one using a
weaker mechanism.

3

Theorem 2 (Range of Validation) Given an in-
put I and a string S, validation must occur over at
least the range ΣS

I .

Proof. Since ΣS
I is defined as the greatest extent to

which I has the capability to influence the syntactic
meaning of S, validating less than ΣS

I may result in
failure to validate all the syntactic changes I may
introduce to S.

Validation of only I is sufficient in only those cases
where it can be proven ΣS

I = I.

Lemma 1 (Construction of Sublanguages)
Given pushdown automata G and H, where
H = 〈V, T,R, S ∈ V 〉, L(G) is a sublanguage of
L(H) if V (G) ⊆ V (H), T (G) ⊆ T (H), R(G) ⊆ R(H)
and S(G) = S(H).

Proof by Construction. For any string w in L(G)
∃ a production P (w) ∈ G. All variables, terminals
and rules used in P (w) are correspondingly in G.
S(P (w)) = S(G). V (P (w)) must necessarily exist
in V (G) which as a given exists in V (H). Similar
arguments exist for T,R, S. Thus, P (w) ∈ H and
w ∈ L(H). Consequently, since any arbitrary string
in L(G) is also a string in L(H), L(G) is a sublan-
guage of L(H).

Observation 3 (Mechanism Equivalence)
Any regular expression, finite–state automata or
context–free grammar can be trivially converted into
an equivalent pushdown automata, and thus fall
under Lemma 1.

5 Axiomatic Input Validation

The conventional wisdom for validating user inputs
is to use regular expressions to either filter out bad
input or only allow in good inputs. A schism exists
among developers over which is the correct (safe) way
to use regexp validation: whether it is better to use
regexps to only allow inputs known to be good or to
use them to forbid inputs known to be bad. With
respect to those engaged in such debate, we believe
this misses the more important point: for a major-
ity of input situations, regexps are computationally
insufficient for input validation.

The consequences of using insufficient mechanisms
are self–evident to computer scientists, but perhaps
not to implementors. Attempts to validate ΣS

I using
a mechanism weaker than M will often fail to recog-
nize invalid strings.

5.1 Guns or Butter

For instance, a regexp cannot be created which will
reliably match ambm; there will always be some string
ambn, m 6= n, which will pass this regular expres-
sion1. Attempting to massage regexps into handling
this language will inevitably lead to friction between
what the regexp can do, what developers think it can
do, and what users need it to do.

Those who say we must err on the side of safety
will say we must only admit as inputs those which
the regexp can verify as valid, and accept the false–
positive rate (and its concordant inconvenience) as a
necessary expense of security. Those who say we must
err on the side of convenience will say we must only
exclude those inputs which are known to be bad, and
accept the false–negative rate (and its concordant in-
security) as a necessary expense of convenience.

Curiously, neither side appears to recognize what
we consider to be self–evident: that whether an er-
ror is made on the side of safety or on the side of
convenience, it remains an error.

5.2 Guns and Butter

Shifting to a more appropriate tool—in our ambm

example, a pushdown automata—allows us to vali-
date inputs as good or bad with perfect accuracy. No
longer do we have to make the tradeoff between secu-
rity and convenience; we can have both guns and but-
ter. The mechanism involved is to create a subset of
the command language in which it is only possible to
generate secure strings. Lemma 1 gives us a mecha-
nism for generating subsets of context–free languages
and Observation 3 allows us to extend the lemma to
regular languages and finite–state automata.

1A note to implementors: regexps are not allowed to ref-
erence themselves. You can construct a Perl expression which
will match ambm through self–reference, but the addition of
self–reference keeps it from being a regexp.

4

The significance of these results should be suffi-
ciently obvious that further elaboration is unneces-
sary.

Implementors are again referred to Fleck and
Sipser for more complete discussions of computa-
tional mechanisms and their sufficiencies for given
tasks.

6 Applying Axioms to SQL

The Structured Query Language, sql, is an ansi/iso
standard language for interacting with databases.
Command strings are input to the database, wherein
the string is parsed according to the rules of a push-
down automata or equivalent.

sql is an extraordinarily complex language which
offers tremendous flexibility, a flexibility which can
be used against implementors as easily as implemen-
tors can use it against the problem domain. In this
section we will show how formal axioms of input vali-
dation can give improved resistance to a certain class
of attacks.

6.1 SQL Injection

sql injection is a class of attacks against software
connected to a database. An innocuous–looking
statement, such as "select rights from table
where username = I1 and password = I2", can be
subverted with carefully–chosen In values.

For instance, if I1 is "root" and I2 is the string
"’ or ’1’ = ’1", the final statement passed to the
database is "select rights from table where
username = ’root’ and password = ’’ or ’1’
= ’1’". This malicious and malformed boolean
expression will evaluate to true and root’s rights will
be granted.

The regexp–based solution to this is to restrict
what letters are allowed as input. However, this is
done against the wisdom of Theorems 1 and 2, which
say we need to validate against ΣS

I using a mecha-
nism at least as strong as that used to generate valid
command strings.

We do not know what the user will input, and as
such, predicting ΣS

I is problematic. However, using

the commonsense observation that ΣS ≤ S, we elect
to validate over the entire command string.

So far, we have not validated anything. If we were
to put the injected sql string through an sql parser,
it would parse correctly. This means it is valid in
a language sense; however, the injected sql is not
valid in a security sense. To validate it from a security
perspective requires us to define a sublanguage of sql
which only generates safe strings.

Fortunately, defining a safe subset of sql
for this case is very simple. We define, using
Lemma 1, our own sublanguage of sql wherein
the only production rules allowed are those which
generate the sequence "select rights from
table where username=’terminal-string’ and
password=’terminal-string’", where terminal–
string denotes a sequence of characters which
derives no keyword or other syntactic structure.

We take whatever command string C we create
from splicing together our command string and the
user input, then see if C can be validated against
our known-safe sublanguage, using a tool of sufficient
computational strength to produce all valid strings
in that sublanguage. In this case, since we know a
pushdown automata is enough to generate sql strings
and our known–good sublanguage generates valid sql
strings, we know a pushdown automata is sufficient
for our purpose. If C is a valid string in our sublan-
guage, the input is good. If it is not, the input is
bad.

By so doing, we are secure against sql injection
attacks.

7 Cautions and Criticisms

We have not introduced a silver bullet. We mention
this as a caution to those who are looking for a mirac-
ulous solution to the input–validation problem. This
is not that; look elsewhere.

Instead of putting the burden on programmers to
come up with regexps that validate input, we now
put the burden on programmers to come up with re-
stricted sublanguages that validate input. The pro-
grammer’s life is not made easier by our results. How-
ever, we believe that working towards an achievable

5

goal beats Sisyphean labor.
Bad sublanguages can be created which do not

meet the programmer’s security expectations. While
this can likely be ameliorated through expert systems
and ai techniques, in the main this problem is unde-
cidable.

The more complex the computational mechanisms
involved become, the easier it is to run into the lim-
its of computational decidability. We do not believe
these axioms to be a practical way, at this time, for
the validation of Turing–set inputs.

8 Source Code

We have implemented a (simple) Python webserver
and database environment which implements our
concept of sublanguage validation. It can be found
at [INSERT URL HERE].

9 Further Research

Further research into the axiomatics of input valida-
tion seems appropriate, given the simplicity of our
existing axioms.

The relationship between S, I, ΣS
I and ΥS

I is
poorly–defined, leading to our recommendation of
validating over the entirety of S. Interested par-
ties should contact us for information on our null
hypotheses in this matter.

Much work remains to be done in determining what
constitutes a properly–constrained sublanguage. It is
likely this will be extremely sensitive to context.

Research into ai techniques, expert systems
and/or other computer–aided constraint set gener-
ation methods may be fruitful.

Finally, since any program may be viewed as an
input given to a Universal Turing Machine, research
into input–validation techniques may give insights
into software verifiability. Obvious results, such as
the Halting Problem, can be easily rederived from
these input–validation axioms.

10 Concluding Remarks

It’s said the best defense against a punch is not to be
there when it lands. The same principle applies to
computer security: the best defense against malicious
inputs is to prevent them from being input.

We recommend the following practices to imple-
mentors who work with input validation:

1. Validate the entire context in which an input
appears, not the input itself

2. Validate the context using a mechanism strong
enough to parse the context

3. Stronger is not better; use the weakest mecha-
nism which will do the job

4. Use problem–specific sublanguages to validate
inputs

5. Eschew both “allow–everything” and “deny–
everything” heuristics except as last resorts. In
the event these heuristics become necessary, con-
sider it unambiguous proof of the failure of the
validation mechanism.

References

[1] comp.risks, a usenet newsgroup.

[2] Luke Welling and Laura Thomson, PHP and
MySQL Web Development. Sams Publishing,
2005.

[3] Boris Beizer, Software Testing Techniques. Van
Nostrand Reinhold, 1983.

[4] Michael Sipser, Introduction to the Theory of
Computation. PWS Publishing, 1997.

[5] Arthur Fleck, Formal Models of Computation.
World Scientific, 2001.

[6] Greg Hoglund and Gary McGraw, Exploiting
Software: How to Break Code. Addison–Wesley,
2004.

6

