
Detection

of

SQL Injection and Cross-site Scripting Attacks

Introduction

In the last couple of years, attacks against the web application layer have gained
increasing important. This is because no matter how strong your firewall rulesets or how
diligent your patching mechanism, if your web application developers haven’t followed
secure coding practices, attackers will walk right into your systems through port 80. The
two main attack techniques that have been used widely are SQL Injection [ref 1] and
Cross Site Scripting [ref 2]. SQL Injection refers to the technique of inserting SQL meta-
characters and commands into input fields in order to manipulate the execution of the
back-end SQL queries. These are attacks primarily directed against the server. Cross Site
Scripting attacks work by embedding script tags in URLs and enticing unsuspecting users
to click on them, such that the javascript gets executed on the victim’s machine. These
attacks leverage the trust between the user and the server and the fact that there is no
input/output validation at the server-side to reject javascript characters.

This article discusses techniques to detect SQL Injection and cross-site scripting attacks
against your networks. There has been a lot of discussion on these two categories of web-
based attacks in terms of how to carry them out, their impact, and how to prevent these
attacks using better coding and design practices. However, there is not enough discussion
on how these attacks can be detected. We take the popular open-source IDS Snort, and
compose regular-expression based rules for detecting these attacks. Incidentally, the
default ruleset in Snort does contain signatures for detecting cross-site scripting, but these
can be evaded easily. Most of them can be evaded by using the hex-encoded values of
strings such as <script>.

We have written multiple rules for detecting the same attack depending upon the
organization’s level of paranoia. If you wish to detect any and every possible SQL
Injection attack, then you simply need to watch out for any occurrence of SQL meta-
character such as the single-quote, semi-colon or double-dash. Similarly, a paranoid way
of checking for CSS attacks would be to simply watch out for the angled brackets that
signify an HTML tag. But these signatures may result in a high number of false positives.
To avoid this, the signatures can be modified to be accurate, and still not yield too many
false positives.

Each of these signatures can be used with or without other verbs in a Snort signature
using the pcre keyword. These signatures can also be used with a utility like grep to go
through the web-server’s logs. But the caveat is that the user input is available in the web

server’s logs only if the application uses GET requests. Data about POST requests is not
available in the web server’s logs.

Regular Expressions for SQL Injection
An important point to keep in mind while choosing your regular expression(s) for
detecting SQL Injection attacks is that an attacker can inject SQL into input taken from a
form, as well as through the fields of a cookie. Your input validation logic should
consider any and every input that originates from the user – be it form fields or cookie
information. Also if you discover too many alerts coming in from a signature that looks
out for a single-quote or a semi-colon, it just might be that one or more of these
characters are valid inputs in cookies created by your web application. Therefore, you will
need to evaluate each of these signatures for your particular web application.

As mentioned earlier, a trivial regular expression to detect SQL injection attacks is to
watch out for SQL specific meta-characters such as the single-quote (‘) or the double-
dash (--). In order to detect these characters and their hex equivalents, the following
regular expression may be used:
Regex for detection of SQL meta-characters
/(\%27)|(\')|(\-\-)|(\%23)|(#)/ix

We first detect either the hex equivalent of the single-quote, or the single-quote or the
presence of the double-dash. These are SQL characters for MS SQL Server and Oracle,
which denote the beginning of a comment, and everything that follows is ignored.
Additionally, if you’re using MySQL, you need to check for presence of the ‘#’ or its hex-
equivalent. We do not need to check for the hex-equivalent of the double-dash, because it
is not an HTML meta-character and will not be encoded by the browser. Also, if an
attacker tries to manually modify the double-dash to its hex value of %2D (using a proxy
like Achilles), the SQL Injection attack fails.

This regular expression would be added into a new Snort rule as follows:
alert tcp $EXTERNAL_NET any -> $HTTP_SERVERS $HTTP_PORTS (msg:"NII
SQL Injection - Paranoid"; flow:to_server,established;uricontent:".pl";pcre:"/(\%27)|
(\')|(\-\-)|(%23)|(#)/i"; classtype:web-application-attack; sid:9099; rev:5;)

In this case, the uricontent keyword has the value “.pl”, because in our test environment,
the CGI scripts are written in Perl. Depending upon your particular application, this value
may be either “.php”, or “.asp”, or “.jsp”, etc. From this point onwards, we do not show
the Snort rule, but only the regular expressions that are to be used for creating these rules.

In the regular expression, we detect the double-dash because there may be situations
where SQL injection is possible even without the single-quote [ref 3]. Take for instance,
an SQL query, which has the where clause containing only numeric values. Something
like:
select value1, value2, num_value3 from database where
num_value3=some_user_supplied_number

In this case, the attacker may execute an additional SQL query, by supplying an input
like:
3; insert values into some_other_table

Finally, pcre modifiers ‘i’ and ‘x’ are used in order to match without case sensitivity and
to ignore whitespaces respectively.

The above signature could be additionally expanded to detect the occurrence of the semi-
colon as well. However, the semi-colon has a tendency to occur as part of normal HTTP
traffic. In order to reduce the false positives from this, and also from any normal
occurrence of the single-quote and double-dash, the above signature could be modified to
first detect the occurrence of the = sign. User input will usually occur as a GET or a
POST request, where the input fields will be reflected as:
username=some_user_supplied_value&password=some_user_supplied_value

Therefore, the SQL injection attempt would result in user input being preceded by = sign
or its hex equivalent.

Modified regex for detection of SQL meta-characters
/(\%3D)|(=)[^\n]*(\%27)|(\')|(\-\-)|(\%3B)|(;)/i
Explanation:
This signature first looks out for the = sign or its hex equivalent (%3D). It then allows for
zero or more non-newline characters, and then it checks for the single-quote, or the
double-dash or the semi-colon.

The typical SQL injection attempt of course revolves around the use of the single quote to
manipulate the original query to always result in a true value. Most of the examples that
discuss this attack use the string 1’or’1’=’1. However, detection of this string can be
easily evaded by supplying a value such as 1’or2>1--. Thus the only part that is constant
in this is the initial alphanumeric value, followed by a single-quote, followed by the word
‘or’. The Boolean logic that comes after this may be varied to an extent where a generic
pattern is either very complex or does not cover all the variants. Thus these attacks can be
detected to a fair degree of accuracy by using the following regular expression:

Regex for typical SQL Injection attack
/\w*(\%27)|\’((\%6F)|o|(\%4F))((\%72)|r|(\%52))/ix
Explanation
\w* - zero or more alphanumeric or underscore characters
(\%27)|\’ – the ubiquitous single-quote or its hex equivalent
(\%6F)|o|(\%4F))((\%72)|r|(\%52) – the word ‘or’ with various combinations of its
upper and lower case hex equivalents.

The use of the ‘union’ SQL query is also common in SQL Injection attacks against a
variety of databases. If the earlier regular expression that just detects the single-quote or
other SQL metacharacters is resulting in too many false positives, you could further
modify the query to specifically check for the single-quote and the keyword ‘union’. This

can also be further extended to other SQL keywords such as ‘select’, ‘insert’, ‘update’,
‘delete’, etc.

Regex for detecting SQL Injection with the UNION keyword
/((\%27)|(\’))union/ix
(\%27)|(\’) – the single-quote and its hex equivalent
union – the keyword union

Similar expressions can be written for other SQL queries such as select, insert, update,
delete, drop, etc.

If by this stage, the attacker has discovered that the web application is vulnerable to SQL
injection, he will try to exploit it. If he realizes that the back-end database is on an MS
SQL server, he will typically try to execute one of the many dangerous stored and
extended stored procedures. These procedures start with the letters ‘sp’ or ‘xp’
respectively. Typically, he would try to execute the ‘xp_cmdshell’ extended procedure,
which allows the execution of Windows shell commands through the SQL Server. The
access rights with which these commands will be executed are those of the account with
which SQL Server is running – usually Local System. Alternatively, he may also try and
modify the registry using procedures such as xp_regread, xp_regwrite, etc.

Regex for detecting SQL Injection attacks on an MS SQL Server
/exec(\s|\+)+(s|x)p\w+/ix
Explanation:
exec – the keyword required to run the stored or extended procedure
(\s|\+)+ - one or more whitespaces or their HTTP encoded equivalents
(s|x)p – the letters ‘sp’ or ‘xp’ to identify stored or extended procedures respectively
\w+ - one or more alphanumeric or underscore characters to complete the name of the
procedure

Regular Expressions for CSS

When launching a cross-site scripting attack, or testing a website’s vulnerability to it, the
attacker may first issue a simple HTML formatting tag such as for bold, <i> for
italic or <u> for underline. Alternatively, he may try a trivial script tag such as
<script>alert(“OK”)</script>. This is likely because most of the printed and online
literature on CSS use this script as an example for determining if a site is vulnerable to
CSS. These attempts can be trivially detected. However, the advanced attacker may
attempt to camouflage the entire string by entering its Hex equivalents. So the <script>
tag would appear as %3C%73%63%72%69%70%74%3E. On the other hand, the attacker
may actually use a Web Application proxy like Achilles and reverse the browser’s
automatic conversion of special characters such as < to %3C and > to %3E. So the attack
URL will contain the angled brackets instead of their hex equivalents as would otherwise
normally occur. In all the regular expressions shown here, the qualified ‘i’ at the end
makes the matching of expressions case insensitive.

The following regular expression checks for attacks that may contain HTML opening tags
and closing tags <> with any text inside. It will catch attempts to use or <u> or
<script>. The regex is case-insensitive. We also need to check for the presence of the
angled brackets, as well as their hex equivalents. So the use of (%3C|<). To detect the
hex conversion of the entire string, we must check for presence of numbers as well as the
% sign in the user input. So the use of [a-z0-9%]. This may sometimes result in false-
positives, but most of the time will detect the actual attack.

Regex for simple CSS attack
/((\%3C)|<)((\%2F)|\/)*[a-z0-9\%]+((\%3E)|>)/i
Explanation:
((\%3C)|<) – check for opening angle bracket or hex equivalent
((\%2F)|\/)* - the forward slash for a closing tag or its hex equivalent
[a-z0-9\%]+ - check for alphanumeric string inside the tag, or hex representation of these
((\%3E)|>) – check for closing angle bracket or hex equivalent

Snort signature using PCRE:
alert tcp $EXTERNAL_NET any -> $HTTP_SERVERS $HTTP_PORTS (msg:"NII
Cross-site scripting attempt"; flow:to_server,established; pcre:"/((\%3C)|<)((\%2F)|\/)*
[a-z0-9\%]+((\%3E)|>)/i"; classtype:web-application-attack; sid:9000; rev:5;)

Cross-site scripting can also be accomplished by using the technique. The
existing default snort signature can be easily evaded. The one supplied below will be
much tougher to evade:

Regex for img src CSS attack
/((\%3C)|<)((\%69)|i|(\%49))((\%6D)|m|(\%4D))((\%67)|g|(\%47))[^\n]+((\%3E)|>)/i
Explanation:
(\%3C)|<) – opening angled bracket or hex equivalent
(\%69)|i|(\%49))((\%6D)|m|(\%4D))((\%67)|g|(\%47) – the letters ‘img’ in varying
combinations of ASCII, or upper or lower case hex equivalents
[^\n]+ - any character other than a new line following the) – closing angled bracket or hex equivalent

Paranoid regex for CSS attack
/((\%3C)|<)[^\n]+((\%3E)|>)/i
Explanation:
This signature simply looks for the opening HTML tag, and its hex equivalent, followed
by one or more characters other than the newline, followed by the closing tag or its hex
equivalent. This may end up giving a few false positives depending upon how your web
application and web server are structured, but it is guaranteed to catch anything that even
remotely resembles a cross-site scripting attack.

For an excellent reference on types of cross-site scripting attacks that will evade filters,
see http://www.securityfocus.com/archive/1/272037. However, the last of the cross-site
scripting signatures, which is the paranoid signature, will detect all these attacks.

Conclusion
In this article, we’ve presented different types of regular expression signatures that can be
used to detect SQL Injection and Cross Site Scripting attacks. Some of the signatures are
simple and paranoid, in that they will raise an alert even if there is a hint of an attack. But
there is also the possibility that these paranoid signatures may result in false positives. To
take care of this, we’ve then modified the simple signatures with additional pattern
checks so that they are more accurate. Due to this, there is a possibility that sophisticated
attacks may still pass through. We recommend that these signatures be taken as the
starting point of tuning your IDS or log analysis methods, for detecting these web
application layer attacks. After a few modifications, if you take into account the non-
malicious traffic that occurs as part of your normal web transactions, you should be able
to accurately detect these attacks.

References
1. SQL Injection http://www.spidynamics.com/papers/SQLInjectionWhitePaper.pdf
2. Cross Site Scripting FAQ http://www.cgisecurity.com/articles/xss-faq.shtml
3. Advanced SQL Injection

http://www.nextgenss.com/papers/advanced_sql_injection.pdf
4. The Snort IDS http://www.snort.org
5. Perl-compatible regular expressions (pcre) http://www.pcre.org
6. Web application proxy, Achilles http://achilles.mavensecurity.com
7. Secure Programming HOWTO, David Wheeler www.dwheeler.com
8. Threats and Countermeasures, MSDN, Microsoft http://msdn.microsoft.com

Authors:
K. K. Mookhey (cto at nii.co.in) is Founder-CTO of Network Intelligence India Pvt. Ltd.
(www.nii.co.in), which provides information security consulting services including
security audits, penetration testing, security design, application audits, and security
training. He has written a number of articles and whitepapers on information security, and
is also responsible for NII’s research initiatives.

Nilesh Burghate (nileshb at nii.co.in) is an Information Assurance Consultant with NII,
and his interests include penetration testing, IDS signature writing, intrusion analysis and
detection and forensics. The results from his team’s research efforts provide direct input
to NII’s Security Alerting service.

