
Attacking Obfuscated Code
with IDA Pro

Chris Eagle

7/9/2004

2

Outline

• Introduction
• Operation
• Demos
• Summary

7/9/2004

3

First Order Of Business

• MOVE UP AND IN!
– There is plenty of room up front
– I can't increase the font size in IdaPro

7/9/2004

4

Background

• IDA Pro
– Interactive Disassembler Professional
– http://www.datarescue.com/idabase

• Premier disassembly tool for reverse
engineers
– Handles many families of assembly language

• Runs on Windows
– Linux in the works!

7/9/2004

5

What?

• ida-x86emu is a plugin for IDA Pro that
allows for emulated execution of x86
instruction set

• Written in C++
– Currently packaged as VC++ 6.0 project

• Available here:
– http://sourceforge.net/projects/ida-x86emu

7/9/2004

6

Why?

• Hand tracing assembly language is a pain in
the ass

• Anti-reverse engineering techniques attempt
to obfuscate code paths

• Allows automated unpacking/decrypting of
"protected" binaries
– UPX, burneye, shiva, tElock, ASPack, …

7/9/2004

7

Primary Motivation

• Getting at protected executables
– Most viruses/worms are protected in some way
– Often UPX, tElock, ASPack

• Challenge for static reverse engineering is
getting past the protection
– ida-x86emu allows you to "run" through the

decryption routine within IDA Pro

7/9/2004

8

Outline

• Introduction
• Operation
• Demos
• Summary

7/9/2004

9

IDA Pro

• Load the binary of interest
• IDA builds a database to characterize each

byte of the binary
• Performs detailed analysis of code

– Recognizes function boundaries and library
calls

– Recognizes data types for known library calls

7/9/2004

10

Obfuscated Code

• Challenging for IDA
• Usually only get sensible output for entry

point function
• Protected program appears as data rather

than code because it is obfuscated/encrypted
• Jumps into middle of instructions confuse

flow analysis

7/9/2004

11

The Plugin

• Two pieces
– User interface

• Windows-specific gui code
• Handles dialog boxes

– x86 emulator
• Platform independent
• Executes a single instruction at a time

– Reads from IDA database or user-supplied memory block

7/9/2004

12

Console

7/9/2004

13

Using It

• Alt-F8 brings it up
• eip initialized to cursor
• Step and go

– The plugin tells IDA to reorganize its code
display based on ACTUAL code paths

– Defeats jump into the middle of an instruction
type obfuscation

7/9/2004

14

Features

• Run to Cursor
– No breakpoints yet

• Plugin supplies its own stack
– Stack push places arguments on the stack
– Useful if you want to setup a function call

• Plugin supplies its own heap
– Redirect library functions to plugin provided

equivalents

7/9/2004

15

Limitations

• Slow
– Because of emulated execution and IDA

interactions
• Can't follow calls into dynamically linked

functions
• Can't follow system calls in statically linked

functions

7/9/2004

16

Emulator Memory

• Code and static data must be fetched from
IDA database

• Other references must be directed to either
stack or heap
– Every memory reference checked
– Could easily add Valgrind type analysis

7/9/2004

17

Memory Layout

• Emulation options allow you to specify
memory layout

7/9/2004

18

Emulated Stack

• Used by all stack operations in the program
– Stack contents displayed in main emulation

window
– Auto scrolls to most recent reference

• Allows pushing data onto stack outside of
program control
– Useful to setup and run individual functions

7/9/2004

19

Emulated Stack

Pushed right to left
per C convention

7/9/2004

20

Emulated Heap

• Simple linked list memory allocator
• Does not emulate any specific allocation

algorithm
– Specifically, no in-band control info

• Won't mimic heap overflow problems
• Can detect access outside allocated blocks

7/9/2004

21

Function Hooking
• Heap functions only at the moment
• Two methods

– Manual invocation of emulator equivalent
function

• Result in eax, actual call statement in code must be
"skipped"

– Automatic hooked invocation of emulator
equivalent function

• call statement redirected to emulated library
function

7/9/2004

22

Manual Function Hooking

• Required parameters, if any, taken from
stack

• Result into eax
• No change to eip

7/9/2004

23

Automatic Function Hooking

• Step through hooked call statement causes
emulator equivalent to be executed instead

7/9/2004

24

Windows Structured Exception
Handling (SEH)

• Work in progress
• tElock for example uses SEH as an anti-re

technique
• Point FS register at dummy Thread

Environment Block
• Few recognized exceptions

– Divide by zero, INT3, single step, Debug
registers

7/9/2004

25

SEH (continued)

• Emulated program must have setup an
exception handler

• Emulator creates SEH data structures,
pushes them on the stack and jumps to user
defined exception handler

7/9/2004

26

Outline

• Introduction
• Operation
• Demos
• Summary

7/9/2004

27

UPX Demo

• One of the most common obfuscators
• Reversible using UPX itself
• UPX corruptors exist that break UPX's

reversing capability
• Simple unpacking loop, no tricks
• No problem for the plugin
• Doesn't rebuild import table yet

7/9/2004

28

ASPack Demo

• ASPack requires
– LoadLibrary, GetProcAddress

• Used to retrieve VirtualAlloc and VirtualFree

• Currently emulator mimics VirtualAlloc
and VirtualFree

• Skip LoadLibrary and GetProcAddress calls
• Hook VirtualAlloc and VirtualFree calls

7/9/2004

29

tElock Demo

• Sets up Windows exception handlers, then
generates exceptions to jump into handlers

• Grab some memory for TEB and point FS
register at it
– Execute a malloc or manually push a bunch of

data
• Enable Windows SEH in plugin and

execute code

7/9/2004

30

Burneye Demo

• Early ELF protector by Team TESO
• Embeds the entire protected ELF binary

within a protective unwrapper
– Offers layers of obfuscation/encryption

• Once decrypted, the protected binary can be
dumped out of the IDA database
– Plugin provides a dump block to file capability

7/9/2004

31

Shiva Demo

• Shiva is a binary protector
– Similar goals to Burneye

• Multilevel encryption protects binary
• Polymorphic stage 1 decryptor
• Embedded key recovery functions for last

stage decryption

7/9/2004

32

7/9/2004

33

Shiva Key Recovery

• Shiva contains 5 different types of
encrypted blocks

• Each block gets its own key
– Blocks of same type share the same key

• In this case we need to recover 5 keys in
order to decrypt all of the types of blocks

7/9/2004

34

Key Obfuscation

• Shiva contains a key reconstruction function
for each type of crypt block

• Block decryption sequence
– Identify block type (0-IV)
– Call appropriate key reconstruction function
– Decrypt block
– Clear the key

7/9/2004

35

Key Construction

• Functions are obfuscated
– Similar to layer 1 decrypt
– Differ from one binary to the next
– Resistant to script-based recovery

• But
– They are easy to locate
– A table points to the start of each function

7/9/2004

36

Key Extraction

• The plugin can be used to run the functions
and collect the keys!

• Setup desired parameters on the stack
– Pointer parameters need to point to valid

memory blocks
• Grab memory on stack
• Manually invoke malloc

• Point eip at the function and step

7/9/2004

37

Using the Keys

• With 5 keys in hand it is possible to decrypt
all of the crypt blocks

• The plugin can be used to invoke Shiva's
decryption function
– Setup the stack

• Pointer to the block
• Pointer to the key

– Step through the decryption function

7/9/2004

38

Outline

• Introduction
• Operation
• Demos
• Summary

7/9/2004

39

To Do

• Breakpoints
• More library calls
• Better memory displays
• Memory use reporting
• Improved exception handling

7/9/2004

40

Summary

• Acts as something of a "universal"
decryption script for protected binaries

• Dramatically reduces time to reverse
protected binaries

• Emulator code can be used independently of
gui code to create automated unwrappers
– Combine with ELF or PE parser

• Suggestions welcome

7/9/2004

41

Questions?

• Thanks for coming
• Contact info:

– Chris Eagle
–

7/9/2004

42

References
• Armouring the ELF: Binary encryption on the UNIX

platform, grugq & scut,
http://www.phrack.org/phrack/58/p58-0x05

• Shiva: Advances in ELF Runtime Binary Encryption,
Clowes & Mehta, Black Hat USA 2003,
http://www.blackhat.com/presentations/bh-usa-03/bh-us-
03-mehta/bh-us-03-mehta.pdf

• Strike/Counter Strike: Reverse Engineering Shiva, Eagle,
Black Hat Federal 2003,
http://www.blackhat.com/presentations/bh-federal-03/bh-
federal-03-eagle/bh-fed-03-eagle.pdf

7/9/2004

43

References

• Shiva-0.96, Clowes & Mehta,
http://www.blackhat.com/presentations/bh-usa-03/bh-us-
03-mehta/bh-us-03-shiva-0.96.tar

• Burneye-1.0.1, scut, http://teso.scene.at/releases/burneye-
1.0.1-src.tar.bz2

• IDA Pro, Data Rescue,
http://www.datarescue.com/idabase/

• The Ultimate Packer for eXecutables
http://upx.sourceforge.net/

