
Attacks on Anonymity Systems:
The Theory

Roger Dingledine
http://freehaven.net/

Len Sassaman
http://anonymizer.com/

 One talk, two slots

 Attacks on Anonymity Systems: The Theory

 Attacks on Anonymity Systems: The Practice

 We focus on high-latency systems (remailers)

 Part one: outline

 Adversaries and threat models

 Walkthrough of the Mixminion design process

 Design choices, economic issues

 Many people need anonymity

 Individuals are tracked and profiled daily
 Imagine your dossier in twenty years
 (If that doesn’t scare you, think of your kids)

 Political dissidents in oppressive countries

 Governments want to do operations secretly

 Corporations vulnerable to traffic analysis:
 VPNs, encryption don’t block corporate espionage

 Hide users with users

 Anonymity systems use messages to hide
messages (the more noise, the more
anonymous something in that noise is)

 Senders are consumers of anonymity, and
providers of the cover traffic that creates
anonymity for others

 Users might be better off on crowded
systems, even if those systems have weaker
anonymity
 designs

 Strong anonymity requires
distributed trust

 An anonymity system can’t be just for one
entity

 (even a large corporation or government)

 You must carry traffic for others to protect
yourself

 But those others don’t want to trust their
traffic to just one entity either

 Adversary characteristics

 External (wires) or Internal (participants)

 Passive or Active

 Local or Global

 Static or Adaptive

 Some sample adversaries

 Global passive adversary: watches all links

 Rogue operator: runs one or a handful of
nodes

 External attacker: can inject/modify some
traffic

 Mixminion threat model

 All three:

 Global passive adversary -- can observe everything
 Owns some of the nodes
 Can inject, modify, delete some traffic

 We are not real-time, packet-based, or steganographic

 Direct Forwarder

 1A B
M, to B M

 But: an observer of Alice can just read M and
know it’s going to Bob

 Add Encryption

 1A B
E(M, to B) M

 But: 1 still knows Alice sent M to Bob

 Multiple hops

 1A B
M

2
E ...(E (M,to B), to 2)21 2E ...(M,to B)

 Assume not all hops will collude and reveal A

 But: How do you know what the servers are?

 Statistics servers
 (aka directory servers)
 Mixmaster Latent-Hist Latent Uptime-Hist Uptime Options --
 winter 111032010010 :42 ++++++++++++ 100.0% PR O
 xganon 000000000000 :03 ++++++++++++ 100.0% PR
 green 00000000000? :09 +++++++++++0 97.8% 2 O
 lcs 151231221221 1:30 +++++++++7++ 97.8% M

 Have several servers to avoid single point of
failure

 They can send test messages and tell users
which nodes are up

 Direct Reply
 (Trying to hide A’s location)

 1B A
M,"alice" M

 "alice"=an4691@anon.penet.fi
 (A has told 1 her location.)

 Reply Blocks

 1A B
D(D(...(M)))

2
M,"bob" D(M),D("bob")

...

 "alice" = 1, E_1(2, ...E_n(A))

 Hard for B to get a reply block from A.

 Nymserver

 NSB A
E(E(...(M)))M,alice@nym.alias.net M, "alice"

...

 NS knows A’s reply block but not her location.

 Anonymized Reply

 NSB A
E(E(...(M)))E(E(...(M), to "NS")) M, "alice"

......

 NS doesn’t know A or B

 If you stop here you get type 1 (cypherpunk)
 remailers.

 Batching and Mixing

A
B

E(...M,B)

M

...

...
...

...

...

...

Mix

 But: Different-sized messages can still be distinguished.

 Fixed length messages:
repadding

3

1
M

M
...

2 3
...3

 Add random junk to the bottom to replace the
header you strip off

 Everything’s encrypted, so it looks ok.
 But: Replay attacks -- a given message always
decrypts the same way!

 Replay cache

 When a message comes in, hash it and add it
to the replay cache.
 If it’s already in the cache, drop it.

 But: you have to remember all the hashes
forever!

 Expiration dates

 Exp date is chosen randomly between 3 days
ago and 3 days from now.

 Each node checks exp date; if more than 7
days old, drop.

 Now adversary can’t tell when the message
was sent from its exp date; and servers can
forget hashes that are >7 days old.

 Flooding attack

 But you can flood a node so you know all but
one message in the batch.

1A B
E(...M,B) M

 Pooling

 Not all messages come out at each flush.
Keep a minimum number in the pool, always.

 Now it’s harder to target an individual
message.

 But: Trickle attack -- what if you’re the only
one who sends a message into the node in a
given interval?

 More broadly, what if you’re the only one
who sends a message into the whole
network, in that interval?

 Dummy messages

 Users sometimes send decoy messages
even if they have nothing to send.

 Hopefully there will be enough messages that
the adversary will be confused.

 Dummies go several hops and stop (hard to
decide convincing destinations).

 If you stop here, you get type 2 (Mixmaster)
remailers.

 Passive subpoena attack

 Eve can record messages for later subpoena
 She can also recognize her own messages,
which helps with flooding attacks

 Fix: Link encryption with ephemeral keys
 (rekeyed every message / few minutes)

 Active subpoena attack

 Mallory can still record messages from the
node she runs, and arrive later with a
subpoena.

 Fix: Periodic key rotation

 Partition attack on client
knowledge (1)

 Adversary can distinguish between clients
that use static node lists and clients that
frequently update from the directory servers.

 Fix: Clients must all use the same algorithm
for updating from the directory servers.
Directory servers must be part of the spec!

 Partition attack on client
knowledge (2)

 Directory servers can be out of sync; evil
directory servers can give out rigged subsets
to trace clients.

 Fix: DSs must successively sign directory
bundles; a threshold of servers is assumed
good.

 What do users do if the DSs can’t agree?

 Partition attack on message
expiration date

 Delaying a message a few days will push its
exp date to one end of the valid window -- so
they won’t be uniformly distributed.

 Fix: No expiration dates. Keep all hashes until
key rotates.

 Tagging attack on headers

 Mixmaster headers have a hash to
integrity-check the fields for that hop. But it
doesn’t check the rest of the header.

 So we can flip some bits later in the header,
and if we own the node later in the path that
corresponds to the header we just broke, we
can recognize the message.

 We must make the hash cover the entire header.

 Tagging attack on payload

 Flip some bits in the payload, and try to
recognize altered messages when they’re
delivered.

 Fix: Make the hash cover the payload too.

 Still using Cypherpunk replies

 No replay detection, no batching, messages
change length at each hop, etc.

 Fix: Do all this stuff for replies too.

 Since we want to encrypt replies at each hop,
use a cryptosystem where decrypt is as
strong as
 encrypt.

 But you can’t write a reply
block without knowing the
payload!

 Since the author of the reply block can’t
guess the right hashes for the payload, we’ve
reintroduced the payload tagging attack.

 Actually, that’s ok. Since we’re encrypting at
each hop, only the recipient can recognize
the tag.

 But forward messages and
replies must now be
distinguishable

 Forward messages need hashes, and replies
can’t have them.

 Assuming replies are rare relative to
forwards, replies are easy to track.

 We support three delivery types

 Forward messages, only Alice is anonymous

 Direct replies, only Bob is anonymous

 Anonymized reply messages where Alice and
Bob are anonymous

 (Parties that get anonymity must run our
software.)

 Messages have two headers
and a payload

 Divide the path into two legs, one for each
header

 For forward messages, Alice chooses both legs
 For direct replies, Alice can use the reply block

directly

 For anonymized replies, Alice chooses the first leg
and uses Bob’s reply block for the second.

 Legs are connected by the
Crossover Point

 One of the hops in the first header is marked
as a crossover point

 At the crossover point, we decrypt the second
header with a hash of the payload, and then
swap the headers.

 Forward messages are
anonymous:

 If the second header or the payload are
tagged in the first leg, then the second
header is
 unrecoverable.

 If tagged in the second leg, we’ve already
gotten anonymity from the first.

 Replies are anonymous:

 The adversary can never recognize his tag.

 Multiple-message tagging
attacks

 If Alice sends multiple messages along the
same path, Mallory can tag some, recognize
the pattern at the crossover point, and follow
the rest.

 Only works if Mallory owns the crossover
point.

 Fix: Alice picks k crossover points
 (and hopes Mallory doesn’t own most of them)

 Nymservers out of single-use
reply blocks

 Work like pop/imap servers

 User anonymously sends a bunch of reply
blocks to receive the mail that’s waiting for
him.

 If you stop here, you get the
current Mixminion remailer design.

 Open problem: reputation on
the directory servers

 How do we let clients learn which nodes are
good, without:

 Letting the adversary do partitioning attacks
on clients

 Letting the adversary get more traffic by
behaving well

 Open problem: trickle attack on
directory servers

 Malicious nodes can hold a message and
release it later, when circumstances are
different.

 More broadly, we’re still in an arms race
against flooding and trickle attacks

 Open problem: long-term
intersection attack

 The fact that not all users are sending
messages all the time leaks information.

 By observing these patterns over time, we
can learn more and more confidently who is
sending mail, to whom, when, etc.

 Major unsolved problem in anonymity
systems.

 Topology options

 Cascades, free-route, restricted-route

 Synchronous vs asynchronous

 Recipient anonymity

 Reply onions / reply blocks

 Nymservers

 Rendezvous points

 Unobservability

 Running your own node -- plausible deniability

 Cover traffic

 An Economics of Anonymity

 Unlike encryption, it’s not enough for just one
person to want anonymity: the infrastructure must
participate

 Systems need cover traffic (many low-sensitivity
users) to attract the high-sensitivity users

 Most users do not value anonymity much
 Weak security (fast system) can mean more users
 which can mean stronger anonymity

 High-sensitivity agents have incentive to run nodes
 so they can be certain first node in their path is good
 to attract cover traffic for their messages

 There can be an optimal level of free-riding

 Up next...

 Which of these attacks do we see in practice?
How much damage do they do?

