A Distributed Multi-Agent Intrusion Detection and Response Framework

Patrick Miller
patrick@spider.doriathproject.com
Overview
Goals

- Utilize new and existing sensors collaboratively to generate threat analysis.
- Increased classification rate
- Reduced false positives
Heterogeneity

- Harder to fool
 - Artificial immune systems

- Many heads are better than one
 - Diverse computational models are appropriate when both the data and patterns are widely different.
Related Works

- EMERALD
- Contego
- Tivoli
 - http://www.tivoli.com
- Ect.
Architecture

- BB
 - Storage & Collection
- BBM
 - Response System
- UI
 - Configuration Center
- IDA
 - Intrusion Detection Agents
Network Utilization

- Low communication between agents
 - Response
 - Reinforcement signal
- Run on a dedicated network
 - VPN
 - Physical
IDAs

- Intrusion Detection Agents
 - Distributed throughout network
 - Monitor diverse data sets

- Use heterogeneous soft-computing methods
 - Reply with diverse decisions
 - Incremental Machine Learning
Result Correlation

- Different computational models may generate different decision types.
 - Crisp
 - Probability
 - Probability Interval
 - Fuzzy Set
MAT

- Allows integration of various decision types
- Manages consistencies between a probability distribution and a fuzzy set
Team Decision Process

<table>
<thead>
<tr>
<th>IDA\Decisions</th>
<th>X1</th>
<th>..</th>
<th>Xi</th>
<th>...</th>
<th>Xn</th>
</tr>
</thead>
<tbody>
<tr>
<td>IDA1 (C):w1</td>
<td>0</td>
<td>..</td>
<td>1</td>
<td>..0..</td>
<td>0</td>
</tr>
<tr>
<td>IDA2 (P):w2</td>
<td>0.5</td>
<td>..</td>
<td>0.2</td>
<td>..0..</td>
<td>0.3</td>
</tr>
<tr>
<td>IDA3 (S):w3</td>
<td>()</td>
<td></td>
<td>(0.2,0.3)</td>
<td>...</td>
<td>(,)</td>
</tr>
<tr>
<td>IDA4 (F):w4</td>
<td>Mid</td>
<td></td>
<td>High</td>
<td>...</td>
<td>Low</td>
</tr>
<tr>
<td>...</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IDAm (..): wm</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

MAT (with controls on bias)

<table>
<thead>
<tr>
<th>Team: 1</th>
<th>P1</th>
<th>...</th>
<th>Pi</th>
<th>...</th>
<th>Pn</th>
</tr>
</thead>
</table>
Decision Support

- Response generated -> decision made.
- Response can be adjusted based on
 - Detection confidence
 - Attack type
- Responses configured by administrator
- Response to new attacks
 - Learning algorithm to make best guess
 - User defined defaults
Detection Methods
Signature Detection

• Useful for detecting
 – Well known attacks
 – Attacks which can be defined by regular expressions

• Quick filtering
 – Regular expressions
 • If-Else rules
 – Good for exception cases as well

• Decision most likely crisp
Anomaly Detection

• Pros
 – Zero-day attacks
 – Privilege abuse
 – Account hi-jacking

• Cons
 – Can be trained to accept malicious use
 – Memory intensive
Anomaly Detection

- Defined in linguistic terms.
 - Normal/strange/whoa!
 - Well suited for fuzzy logic

- Most likely decision output types.
 - Fuzzy, Probability
Event Classification

- Useful for
 - Determining a attack type
 - Detecting semi-known patterns of attack.
- Variety of methods
 - Self Organizing Maps
 - Rule-based systems
- Decision may be
 - Fuzzy, Probability
IDAs

- Single IDA can be a miniature multi-agent system.
 - Signature detection
 - Anomaly detector
 - Attack classifier
 - Decision Correlation
Classification Methods
Soft Computing

- **Computational models**
 - Fuzzy Logic
 - Decision Tree
 - Neural Network
 - Self Organizing Map
 - Genetic Algorithm

<table>
<thead>
<tr>
<th></th>
<th>Classification</th>
<th>Speed</th>
<th>Adaptability</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anomaly</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Good</td>
<td>Avg</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Best</td>
<td>Poor</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Avg</td>
<td>Good</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Avg</td>
<td>Best</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Poor</td>
<td>Good</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
ID3 Trees

- Build decision tree to make evaluations
 - Use information gain, derived from entropy
- Binary or N-ary classifier
- Slow to train
- Fast to execute
- Does not support reinforcement learning
Self-Organizing Maps

- Build decision map based on input values
 - Correlates input to a map index indicating a classification type.
 - Updates map during train and execution.
 - Resulting map generated based on initial configuration values.
- Binary or N-ary classifier
- Moderately slow to train
- Moderate execution time
- Highly reinforceable
Fuzzy Logic

- Description
 - Expresses responses linguistically

- Strengths
 - Intuitive human interface
 - More human response, harder to detect

- Weaknesses
 - Response may be incorrectly interpreted
Genetic Algorithms

- **Description**
 - Simulate evolutionary process
 - Copy genes from both parents
 - Allow some random mutations
 - Test child for fitness
 - Use fitness to determine number of offspring

- **Strengths**
 - Highly scaleable
 - Determine optimal configurations
 - Useful for determining optimal initialization values

- **Weaknesses**
 - Can be very slow
Reinforcement Learning

- Rule updates
 - Internal decision process is self modifying based on live traffic data.
 - Varies with different computational models
- Trust bias
 - Used to weight the response from specific sensors with regard to past performance.
Trust Bias

- Rewards/penalty distributed among IDAs
 - Team adjusts trust of individual IDAs

- Adaptive IDAs
 - React to reward/penalty
 - Notify team of their improvement
 - Team may choose to readjust trust
Bias Distribution

<table>
<thead>
<tr>
<th>IDA\Decisions</th>
<th>X1</th>
<th>..</th>
<th>Xi</th>
<th>...</th>
<th>Xn</th>
</tr>
</thead>
<tbody>
<tr>
<td>IDA1 (C):w1</td>
<td>0</td>
<td>..0..</td>
<td>1</td>
<td>...0...</td>
<td>0</td>
</tr>
<tr>
<td>IDA2 (P):w2</td>
<td>0.5</td>
<td>..0..</td>
<td>..0.2..</td>
<td>..0..</td>
<td>0.3</td>
</tr>
<tr>
<td>IDA3 (S):w3</td>
<td>(,)</td>
<td>...</td>
<td>(0.2,0.3)</td>
<td>...</td>
<td>(,)</td>
</tr>
<tr>
<td>IDA4 (F):w4</td>
<td>Mid</td>
<td>...</td>
<td>High</td>
<td>...</td>
<td>Low</td>
</tr>
<tr>
<td>...</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IDAm (..):wm</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

MAT (with controls on bias)

<table>
<thead>
<tr>
<th>Team:</th>
<th>1</th>
<th>P1</th>
<th>...</th>
<th>Pi</th>
<th>...</th>
<th>Pn</th>
</tr>
</thead>
</table>
Incremental Machine Learning

- Detection and response systems adapt to changing environment.
 - Normal use changes over time
 - New variations of known attack types
 - Response type may change over time
Dynamic IDA Generation

Improve Accuracy

• If:
 – Low confidence decision
 – Anomalies are disproportionate to classified attacks

• Then:
 – Build new sensor
Dynamic IDA trimming

Improve Efficiency

- **If:**
 - IDA drops below a trust threshold
 - IDA uses too much processing time
 - determined by the administrator

- **Then:**
 - Refactor decision process
 - Remove IDA
Prototype

- Multiple SOMs
 - Each SOM has different initial values.
 - SOMs trained with a supervised data set
 - KDD Cup ’99 Data set
Results

- Current results available at
 - http://spider.doriathproject.com/results/
Experiment Conclusions

- Increase in accuracy
 - Decrease in false attacks
 - Decrease in false normals

- Increase in consistency
 - System reliability increases

- Increase in time
 - Multiple systems take longer to classify
 - Code not optimized for speed
Conclusions
Pros

- Increased effectiveness of attack detection and classification.
- Reduced false positives
- Increased ability to detect IDS avoidance methods.
- Able to integrate with existing devices
Cons

- Increased time to process inputs
- Requires dedicated systems
- Secondary network to secure communication
Current work

- **SPIDeR-NeST**
 - Live implementation
 - IP traffic
 - Firewall Logs
 - VP-Net
 - High bandwidth WAN
Contact Info

- Patrick Miller
 patrick@spider.doriathproject.com
- Atsushi Inoue
 atsushi.inoue@ewu.edu
- Web Site
 http://spider.doriathproject.com
References

