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1 Mass Assignment Theory (MAT)

Mass assignment theory (MAT) is introduced by J. F. Baldwin in order to
handle more semantics of data in the sense of unification operation in logic
programming. Then, it is applied for qualitative summarization of numerical
data by A. L. Ralescu as a replacement of statistic summarization measures
such as average and median.

1.1 Basics

The basic concepts of mass assignment theory (MAT) are as follows:

Definition 1 Let S be a sample space. A mass assignment (MA) mg associ-
ated to S is a function on the power set P(S) over an interval of real numbers
ms : P(S) — [0, 1] such that

ACS
Definition 2 A subset A of a sample space S is called a focal element if
ms(A) >0 (2)
Example 1 Let S = {a,b,c,...x}. Then a function m : P(S) — [0,1] defined
by
06 A=/{a,b}
m(A) =< 04 A={b,c}
0 otherwise
is a MA on S with focal elements {a,b} and {b,c}.

Comparing the above definition with that of basic probability assignment in
Dempster-Shafer theory, note that it is not required that

m(@) =0

The MA m is said to be complete if m(@) = 0 and incomplete if m (D) # 0.
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MAT departs from Dempster-Shafer theory of evidence in that it provides
a full calculus of mass assignments as opposed to only the combination rule
provided by Dempster-Shafer theory, and the calculus beyond the verification
role is enhanced. As a result, MAT furnish the calculus to handle impreci-
sion whereas Dempter-Shafer theory of evidence deals mainly with uncertainty
caused by lack of information from probability point of view.

1.2 Mass Assignment Theory and Probability

In MAT, there exists the following relation between a discrete probability dis-
tribution, e.g. a normalized histogram, associated to elements of a sample space
S and a given MA mg on S:

Given a discrete probability distribution P; on a sample space S, a MA m
on the power set P(S), and a probability distribution P4 for each A € P(S),
the following equation holds.

Pi(z)= Y Pa(z) -ms(A) (3)

ACS,zcA
For convenience, we call P 4 (x) a selection rule (denoted by Ralescu).

Example 2 Let P, y(a) = Papy(b) = 0.5 and Py, .3 (b) = Pgpey(c) = 0.5 be
selection rules in Example 1 above. Then using (3), we calculate the probabilities
of a, b, and c as:

Ps(a) = P{a,b} (a) X m({a, b}) =0.5x0.6=0.3

Ps(b) = Prapn(b) x m({a,b}) + Ppp,c1(b) x m({b,c})
= 0.5x06+05x04=0.5

Ps(c) = Pp,y(c) xm({b,c}) =0.5x0.4=0.2

The selection rules in Example 2 correspond to a uniform distribution hence
referred to as the least prejudged distribution(LPD). Alternatively, the selec-
tion rule which concentrates entire distribution on only one value in a focal
element, and called the most prejudged distribution(MPD), will yield a dif-
ferent probability distributions for example, in Example 2, the selection rules
Py,o51(a) = 1.0 and Py, 3)(b) = 0.0 are MPD because a has its entire distribu-
tion, and it makes the probability distribution different from the one with LPD
as follows (it is assumed that other selection rules remain the same):

Ps(a) = 0.6
Ps(b) = 0.2
Ps(c) =0.2

As it can be seen in above examples, different selection rules will yield different
overall distributions. This plays the key role of managing biases for Perceptual
Information Processing.
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1.3 Mass Assignment Theory and Fuzzy Sets

Using the representation theorem it can now be stated that a fuzzy set corre-
sponds to a special mass assignment. Indeed, let S be a universe of discourse,
S ={z1,...,2,}, and F a normal fuzzy set defined on S, Then

F=uxi/ps +x2/pe+...4 2p/tin

where without loss of generality we assume

l=m>p22...2 pn > finy1 =0 (4)
Then A=g !
i —pi ifA={z1... 20

my(4) = { 0 otherwise (5)

is a mass assignment (MA) on S with nested focal elements {z; ... zi}, i =1 ...n.
It is easy to show that

my(A) > 0if A= {z;...2;} (6)
and that .
me({xla"wwi}):l (7)

Example 3 Let S = {x1,22,23} and f be a fuzzy set defined as

Then
my({z1}) = 0.3
myg({z1,22}) = 0.2 (8)
my({z1,22,23}) = 0.5

is a MA. A fuzzy set £ based on this relation is computed as follows:

Iy p = 1
T2 me({z1}) = p1—p2=03=p2=0.7 9)
z3: mp({z1,22}) = po—pu3=02=p3=0.5

It can be seen that given a mass assignment with nested focal elements we obtain
a normal fuzzy set, i.e. a fuzzy set whose maximum membership value is 1.0,
with membership function related to the mass assignment by (5). Indeed, for
Example 3, if we start with the mass assignment defined by (8), we obtain the
membership function (9).
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1.4 Probability and Fuzzy Sets

Using the relation between mass assignments and fuzzy sets and mass assign-
ments and probabilities we can now obtain the mapping between probability
and a fuzzy set as shown in Figure 1. Let Ps(z)) be a probability of a sam-
ple space S, and Py, (z) be a selection rule for x) from the focal element
A;=m1...z5,4=1,...k of a mass assignment. Then

n

Py(xx) =) Pa(zx) - (i — piv1) (10)

i=k
We note that all focal elements are nested as they correspond to the level sets
(a-cuts) for u;Vi =1,...,n.

The main role of the selection rules is in maintaining consistency between a
fuzzy set and different probability distributions which satisfy (3). The selection
rules P4, can be tuned if the fuzzy set, (i.e. the membership values u;’s) is
always manually changed in order for Ps to remain the same. This feature is
important to determine the valid range of data for a given fuzzy set. Inconsis-
tency in the data set is detected by obtaining some invalid probability in(10).
Such results are obtained when the order of membership values assumed in (4)
is not maintained. From a different angle, this can also be used to determine
what is lacking in order to keep the consistency.

As follows from (10) and the previous discussion the selection rules can be
used to establish a many-to-many relationship between probability distributions
of data and its fuzzy set definitions. Selection rules can also be one way of
implementing user’s perception. In this case, selection rules are given arbitrarily.
Then either a fuzzy set for a given data set or an ideal data set biased by user’s
perception (i.e. selection rules) for a fuzzy set representing a concept can be
obtained by (10) (see Figure 1).

2 Operations of Mass Assignments

One of the attractive features of MAT is that operations of MA are defined
in a way compatible to set operations. They include the complement (7),
meet (A), and join (V). The complement is determined uniquely. However,
the join and meet operations are not determined uniquely because of possible
combinations of redistribution of mass over new focal elements determined by
taking either intersection (meet) or union (join) of original focal elements. The
general definitions of these operations are as follows:
Let
m = {Mz . m,}
and
be two mass assignments on universal set X. The meet m A n is a mass assign-
ment
mAn= {Lk : lk}
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where

Ly, =M;N Nj
and

k=Yl (11)
4,j ; Lij=Ly

Zlij =m; Vi (12)

J

Zlij = nj V] (13)

The join operation is defined in a similar way by equations (11), (12), and (13)
with the difference that
Ly = M; UN;
Equations (12) and (13) are referred to as the row and column constraints
respectively.
Example 4 illustrates the meet and the join of two mass assignments as
follows:

Example 4 Mass assignments my and mg with respect to universal set X = {a, b, c}
are given as follows:

mi({a}) = 0.2
mi({a,b}) = 0.5
my({b,c}) = 0.3

ma({b}) = 03
ma({a,c}) = 04
ma({a,b,c}) = 0.3

2.1 Complement

The complement of m;, my is defined as follows:

my(A) = my(A) for A € P(S) (14)
For our example, we obtain
mi({b,c}) = mi({b,c}) = ma({a}) = 0.2
mi({c}) = mi({c})) = m({a,b}) = 05
mi({a}) = mi({a}) = ma({bc}) = 03

Note that the focal elements of my are the complements of the focal elements
of my.
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2.2 Meet

The meet operation computes the intersection of two mass assignments, namely
m; and mgy. The name, meet, is brought from the operation for relational
database. Table 1 shows redistribution of mass over set intersections of each
focal element of m; with each focal element of mo under the constraints that
column and raw sums must be equal to the corresponding masses. Therefore,
the redistribution of mass assignments is not unique, and Table 1 shows one
way of generating such redistribution by multiplication.

The final form for the meet m; A mo is obtained by taking the sum of
redistributed mass whose focal element is identical as follows:

(m1 Amz)({a}) = 034
(m1 Amg)({b}) = 0.24
(m1Ama)({c}) = 0.12
(m1 Amsy)({a,b}) = 0.15
(m1 Amg)({b,c}) = 0.09
(m1 Am2)(@) = 0.06
An alternative redistribution of mass over the same set intersection, such that
masses are redistributed over the diagonal cells or those as near the diagonal
as possible is shown in Table 2 (called maximum algorithm): Meet mj A mao,
then, is obtained as follows:
(my Amg)({a}) = 04
(m1 Amg)({b}) = 0.1
(m1 Ama)({b,c}) = 0.3
(m1Ame)(@) = 0.2

2.3 Join

The join operation computes the union of two mass assignments m; and mg
and is obtained in a way similar to the meet operation. Like the meet operation
the join is inherited from the corresponding operations in relational database
models. Table 3 shows redistribution of mass over set union of each focal element
of m; with each focal element of ms under row and column constraints (as
previously described for the meet operation). Therefore, the redistribution of
mass assignments for the join is not unique either.

Like for the meet, the join m; V mg is obtained by taking sum of redis-
tributed mass whose focal element is identical as follows:

(m1Vma)({a,b}) = 0.21
(m1 Vms)({a,c}) = 0.08
(m1 Vma)({b,c}) = 0.09
(m1 Vma)({a,b,c}) = 0.62
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Figure 1: Relation betweenData, Fuzzy Set, and MAT

Table 1: Meet Operation by Multiplication

| miAmy || {}:03 | {a,c}:04 ] {a,b,c}:03]

{a}:0.2 ¢ :0.06 {a}:0.08 {a}:0.06
{a,b}:0.5 || {b}:0.15

{a}:0.2 | {a,b}:0.15

{b,c}:0.3 | {b}:0.09

{c}:0.12 | {b,c}:0.09

Table 2: Alternate Meet Operation (Maximum Algorithm)

| miAmy | {8}:03 ] {a,c}:04 | {a,b,c}:0.3 |

{a}

:0.2 ¢:02 {a}:0.0

{a}:0.0

{a,b}:0.5 || {b}:0.1

{a}:04 {a,b}:0.0

{b,c}:03 | {b}:0.0 | {c}:0.0

{b,c}:0.3

Table 3: Join Operation by Multiplication

| mivme || {6}:03 | {a,c}:04 | {a,b,c}:03 ]
{a}:0.2 || {a,b}:0.06 | {a,c}:0.08 | {a,b,c}:0.06
{a,b}:0.5 || {a,b}:0.15 | {a,b,c}:0.2 | {a,b,c}:0.15
{b,c}:0.3 | {b,c}:0.09 | {a,b,c}:0.12 | {a,b,c}:0.09
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The maximum algorithm alternative redistribution of mass over the same
set union is shown in Table 4. In this case, the join mj; V ms is obtained as:

(m1 Vma)({a,b}) = 03
(m1 Vma)({a,b,c}) = 0.7

2.4 Properties of MAT Operations

It can be shown that the meet, union, and negation of mass assignment satisfy
De Morgan’s law such that

m1 Amy = g Vg (15)

The relations between mass assignments and fuzzy sets are consistent at the
level of operations. More precisely the multiplication version of meet and join
operations are equivalent to algebraic intersection and union fuzzy sets opera-
tions, and those given by maximum algorithm are equivalent to the standard
fuzzy set operations.

3 Semantic Unification

Semantic unification is used to compare two fuzzy sets. The result is given as
either a support pair, an interval of a probability, or a single valued probability
(it is within the interval, of course). FRIL, a logic programming language with
an extension of handling fuzzy sets as its terms, determines the truth value of
Hone closures containing fuzzy sets based on the semantic unification. Please
note that, unlike a symbolic unification, the semantic unification m between
fuzzy sets g and ¢’ is not symmetric, i.e.

Mgly # Myi|g (16)

3.1 Multiplication model

Let g and ¢’ be fuzzy sets defined on X. The mass assignment on the truth set
of g given g', conditional mass assignment, denoted by my|, defined over {t, f}
where t represents true and f represents false is determined such that

tr Yo my=eli-my (= ne)
m; (=ny) (17)
mj (=ny)

Mgl =4 W1 2op(m My)=uli-
I -

T(Li|Mj)=f"*
where
t if M CL; & M;#0
T(L;|M;) = f ifM;NL;i=0& M; #0
u otherwise
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and mass assignments corresponding to fuzzy sets g and g’ are defined as
mg = {Lz : lz}

and
mg = {M; : m;}

respectively. The support pair g|g' is given by
919’ = [ne, 7 + ny ] (18)

based on my|y .
Let, for example, fuzzy sets g and ¢’ be

9g=a/l+b/0.7+¢/0.2

and
g =a/0.2+b/1+¢/0.7+d/0.1

defined on X = {a, b, c,d, e} so that the corresponding mass assignments become
mg = {a}:0.3, {a,b}:0.5, {a,b,c}:0.2

and
my = {b}: 0.3, {b,¢}:0.5, {a,b,c}: 0.1, {a,b,¢,d} : 0.1

respectively. Using the tabular representation (used for meet and join) shown
in Table3.1, the conditional mass assignment is computed such that

t:0.33
mglg/ = f : 024
u:0.43

The support pair g|g' thus becomes

glg’ =[0.33,0.76]

3.2 Semantic Unification by Maximum Algorithm

There is an alternate computation of conditional mass assignment myg, such
that each mass in the tabular representation n;; is determined arbitrarily with
the constraints
Z Ni; = lz
J

and

E Nij; =My
i
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where my = {L; : l;} and my = {M; : m;}. One of results of the former
example using the alternate computation becomes
glg’ =1[0.1,0.7)

as shown in Table 3.2. Please note that this is identical to the maximum al-
gorithm used in mass assignment operations. Therefore, solutions are not de-
termined uniquely. Note also that an interpretation of the result can be given
based on the voting model as shown in page 79 of FRIL book. Each solution
corresponds to a unique voting pattern.

3.3 Point Value Semantic Unification

The results of semantic unification can be determined as a single value such that

_ Lin M|

The point probability is given by
P(glg") = Znij
2%
It is important to note that

P(glg") + P(glg") = 1.0

is held on point value semantic unification.
The result of point value semantic unification for the former example is

P(glg') = 0.53908

as shown in Table 3.3.

3.4 Possibilistic Support Pair

Possibilistic support pair can be defined in analogous to probabilistic support
pair such that

glg' = [r(glg"), (glg")] (20)
where the possibility measure is given as

OI=MAX(gNnyg')
and the necessity measure is given as
m(glg") = 1-TI(glg")
The possibilistic support pair for the former example becomes
glg’ =10.3,0.7]

as I(g|g’) = 0.7 and 7(g|g') = 0.3 (since II(gN g') = 0.7). This solution can be
identified as a solution of the maximum algorithm as shown in Table 3.4.
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Table 4: Alternative Join Operation by Maximum Algorithm

| miVmy || {b}:03 | {a,c}:04 | {a,b,c}:03]

{a}:0.2 | {a,b}:0.2 | {a,c}:0.0 | {a,b,c}:0.0
{a,b}:0.5 || {a,b}:0.1 | {a,b,c}:04 | {a,b,c}:0.0
{b,c}:03 | {b,c}:0.0 | {a,b,c}:0.0 | {a,b,c}:0.3

| L\M; [ {b}:03]{b,c}:05]{a,b,c}:0.1]{a,b,c,d}:0.1]
{a}:0.3 £:009 | f:0.15 u :0.03 u : 0.03
{a,b}:0.5 t:0.15 u:0.25 u :0.05 u : 0.05
{a,b,c}:0.2 | t:0.06 t:0.1 t:0.02 u :0.02
Table 5: Tabular Representation of m ),
| L\M; [ {v}:03]{b,c}:05]{a,b,c}:0.1]{a,b,c,d}:0.1]
{a}:0.3 f:03 f:0 w:0 u:0
{a,b}:0.5 t:0 u:0.5 w:0 u:0
{a,b,c}:0.2 t:0 t:0 t:0.1 u:0.1

Table 6: Tabular Representation of mg, by Maximum Algorithm

| L\M; [ {b}:03]{b,c}:05]{a,bc}:01]{a,b,c,d}:0.1]
{a}:0.3 f:0 f:0 u:0.01 w : 0.00075
{a,b}:0.5 t:0.15 | ©:0.125 | w»:0.03333 u :0.025
{a,b,c}:0.2 | t:0.06 t:0.1 t:0.02 u:0.015

Table 7: Tabular Representation of Point Value Semantic Unification

| L\M; [ {v}:03]{b,c}:05]{a,b,c}:0.1]{a,b,c,d}:0.1]
{a}:0.3 f:02 f:01 w:0 u:0
{a,b}:0.5 t:0.1 u:0.2 u:0.1 u:0.1

{a,b,c}:0.2 t:0 t:0.2 t:0 u:0

Table 8: Tabular Representation of Conditional Possibility Measure
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3.5 Semantic Unification and Index of Intersection

Both semantic unification and index of intersection are used to compare fuzzy
sets. There are similarities on their computations. At this moment, it is an
opened problem to find such relations. Unfortunately, the middle exclusion law
does not hold in fuzzy sets and because of this

II(glg") + II(glg") > 1.0
where
lgng'|
lg'|
and sigma-count cardinality is used in this case. On the other hand, we have
the middle exclusion law on the point value semantic unification.

I1(glg") = (21)



