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Abstract

A simple intrusion detection system (IDS) with respect to
perception of human experts is proposed. Its computational
framework is designed based on concepts of computational
theory of perceptions (CTP) and mass assignment theory
(MAT). CTP provides a computational framework of repre-
senting and handling perception using linguistic terms and
corresponding fuzzy sets. MAT provides that of represent-
ing and handling a bias consisting in between perception
and observed intrusions through the consistency manage-
ment between fuzzy sets and probability distributions. For
the knowledge construction of this IDS, only linguistic de-
scriptions extracted from organization policies and percep-
tion of human experts is expected. For the inference and
refinement of knowledge, Support Logic, a truth functional
logic for manipulating probability intervals, is used.

1 Introduction

Intrusion detection has been recognized as a new trend in
applied research of computer science. Tasks are performed
based on analysis of patterns that intrusion possesses. More
specifically, intrusion detections are most likely performed
by one, or a combination, of the following two types of pat-
tern recognition[1]:

1. Anomaly recognition; Recognition by the negation of
patterns of normal activities (i.e. anomaly).

2. Signature recognition: Recognition of patterns pos-
sessed by a certain intrusion of your interest.

There are some fundamental trade-offs between these two
types of intrusion detection. Anomaly detection is easier for
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obtaining samples, i.e. normal network activities. However,
this does not have a capability of identifying specific intru-
sions. This imposes further investigations on computer net-
works as some noticeable anomaly is detected. On the other
hand, signature detection specifically identifies the footprint
of intrusions. The drawback is that it is not capable of notic-
ing unknown (i.e. new) intrusions.

Recently, demands on security tools such as intrusion de-
tection systems (IDSs) are significantly increased due to the
exponential increase of malignant activities and shortage of
manpower for network administrations. It is mandatory that
network administrators respond quickly at all costs regard-
less of how shorthanded they are every time when some
damages are made on the computer networks.

Conventionally, knowledge-based or rule-based ap-
proaches are dominantly used for intrusion detection tasks.
However, knowledge constructions for intrusion detection,
especially for signature recognitions, are not easy because
of its high dimensionality and dependencies among them
from analytical aspects (i.e. the cause of base-fallacy prob-
lems [2]) and because of its massive variety and the appear-
ance of newly innovated intrusions with unusual rapidity.
In practice, collection of intrusion samples is more difficult
than that of normal activities in most of organizations.

We cannot expect a collection of ample samples of intru-
sions for the knowledge construction. However, we can still
count on perception of experts, i.e. network administrators.
In fact, successful intrusion detection tools such as snort
[7] simply use intrusion patterns directly specified based on
perceptions of experts (in regular expressions for snort). Al-
ternatively, many competent network administrators utilize
a simple network packet dumping tools such as tcpdump [8]
in conjunction with or independent from conventional IDSs.

In this paper, we propose a simple knowledge-based IDS
with respect to such perception of experts based on com-
putational theory of perception (CPT) [9] and mass assign-
ment theory (MAT) [3] (PIDS for short). The PIDS is de-
signed

1. to be a useful utility such as snort and tcpdump,
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Figure 1. Fuzzy Partitions

2. with a simple system architecture,

3. to take linguistic descriptions from experts by follow-
ing CTP,

4. with a powerful representation and inference by fol-
lowing the concept of Perceptual Information Process-
ing (PIP) [4] [5] (the work of my Ph.D. dissertation),
and

5. to be computationally efficient by using Support Logic
and its implementation within a logic programming
environment called Fuzzy Relational Inference Lan-
guage (FRIL) [3].

This IDS is intended to be a type of intrusion detection
agents incorporated within a framework of multi-agent in-
trusion systems called SPIDER [6].

2 Computational Model

By following CTP, perception is represented in terms of a
linguistic representation and fuzzy information granulation.
The inference is performed within the framework of fuzzy
logic underlying on MAT.

2.1 Linguistic Description and Computational
Perception

According to CTP, human experts usually represents a
domain of values by some linguistic terms such as ’low’,
’medium’, and "high’. A granulation, the fuzzy information
granulation incorporated within CTP in particular, is deter-
mined by a set of such linguistic terms reflecting human’s
perception. Some examples of granulation for a set of inte-
ger Z can be given as follows (from a large granulation to a
small one):

e any value (granularity of 1 — the entire domain)

e small, medium, large (granularity of 3).

o very small, small, medium, large, very large (granular-
ity of 5).

e tiny, very small, small, medium, large, very large, extra
large (granularity of 7).

e 1,2, ... (granularity of |Z])

Please notice that the cardinality of such granulation ap-
proaches to that of the original domain as single granule
in this granulation becomes smaller.

For a vector space (i.e. a Cartesian product of domains
of values) X; x ... x X,,, the cardinality of granulation
of the entire vector space is determined by [], | ;| where
a granulation F; (i.e. a set of linguistic terms) for X is
obtained for1 < i < n.

Let a set of classes be C. Assume that each and every
instance z within this vector space belongstoaclassc € C
(i.e. x is ¢). Then a linguistic description of the class ¢
as a collection of IF-THEN rules with granulations of all
domains is given such that

IF 2z, isli;; AND... AND 2, isl,,; THEN z isc

IFzyisly; AND ... AND z,, isl,; THEN z is ¢

where z = (z1,...,%,) isan instance (i.e. a vector) and [;;
is a linguistic term in granulation F; where 1 < j < |F;|.

By providing granulations F; over X; V 1 < i < n, class
¢ can be represented (i.e. knowledge of ¢ can be acquired)
from human experts in linguistic descriptions.

Now we consider assigning fuzzy partitions, collections
of fuzzy sets defined over a domain which correspond to
linguistic terms describing granular shown in Figure 1, to
all granulations F; for the purpose of computations (i.e. in-
ferences and tuning). Formally, let

P ={<lij,pi; > | lij € F;

AMAXex; [pij(€)] = 1
A pij(e) =1V e € X}

be a fuzzy partition assigned to a granulation F; (note: P;
consists of normalized fuzzy sets). Then hypotheses of each
IF-THEN rule represents a single granule within the vector
space, and the entire rule represents a cluster of instances
of class ¢. Notice that this granule is a fuzzy granule, i.e.
a Cartesian product of fuzzy sets defined over dimensions
of the input vector space. Notice also that such a IF-THEN
rule does not allow a blend of instances belonging to differ-
ent classes at all. In other words, it is assumed that

Prob(z is c | /\a:i isli;) =1



To allow such a blend, the collection of IF-THEN rules
should be extended with a probability

pr = Prob(z is ¢y, | /\;z:z is1:5)

suchthat ), py = 1 where p;, is a normalized frequency of
instances belonging to class ¢, within a granule represented
by single IF-THEN rule. Consequently, such a collection is
given such that

IFz1isli1 AND ... AND z, isl,; THEN z iscis py

IF 2y isly; AND ... AND z,, is l,,; THEN z is c is p;

Such a probability may not be obtained as a crisp number
because the count of instances belonging to a fuzzy granule
may not necessarily be crisp. As a matter of fact, it is crisp
if all instances within a granule belong to the subspace rep-
resented as Cartesian product f1, x ... x f}. where flisa
crisp set such that ps(z) = 1V z € f! (aka. a-cutofa
fuzzy set f with a = 1). Formally, the consequence of the
above rule may have a fuzzy probability, a fuzzy set defined
over [0,1] (e.g., "z is 'DoS’ is "highly probable’). In sum-
mary, the probability p within a consequence of a IF-THEN
rule can be either one of the following:

1. Point probability: p € [0,1]

2. Support pair (i.e. an interval of probability): a pair of
lower bound p; and upper bound p,, of probability such

that p = (pl7pu) € [07 1] x [07 1]

3. Fuzzy probability: p = f, where f, is a fuzzy set char-
acterized by its membership function iy, : [0,1]
[0,1].

We are currently investigating whether there is the follow-
ing correlation between the probability p within a conse-
quence 'z is ¢ is p’ and the location of the blend of instances
within a granule (or not):

1. Point probability: All instances needs to be located at
flixoox fh.

2. Support pair: All instances needs to be located at ff% x
.x f& where0 < a < 1.

3. Fuzzy probability: instances are located within f1; x

This may be justified by the representation (decomposition)
theorem (f = UaE[O,l] a - f*) and MAT (ongoing work).
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Figure 2. Consistency Management via MAT

2.2 Consistent Uncertainty Management

MAT is introduced in order to handle more semantics of
data in the sense of unification operation in logic program-
ming. Feasibility of MAT as a basis for representing and
handling perception has been studied (i.e. PIP) and a short
text classification application has been successfully devel-
oped.

Let S be a sample space. Then a mass assignment (MA) mg
associated with .S is a function from the power set P(.S) to
an interval of real numbers such that mg : P(S) — [0, 1]
and > ,cgms(A) = 1. Asubset A C S'is called a focal
element for mass assignment mg if mg(A) > 0.

MAT provides the following correspondences among
probability distributions, mass assignment, and fuzzy sets:

1. MA and probability:
Ps(x)= ) Pa(a)-ms(4) @)

ACS,z€A

where Ps is a probability distribution on S, mg is a
mass assignment over S and P4 is a probability distri-
bution on A (often called a selection rule). The se-
lection rule represents bias (i.e. preference) on ele-
ments within A. The selection rule without any bias
is Py(z) = ﬁ (the least prejudged distribution).

2. MA and fuzzy sets: Let F' = z1/u1 + -+ + &/ un be
a fuzzy subset over S. We denote pu; = pr(z;) and
without loss of generality we assume

l=pm 22 pn 2 pnt1 =0

Then a MA with nested focal elements {z1,...,z;}
fori =1,...,n can be derived as

_ M — Hit1 |fA={(L'1,,.’L’t}
ms(4) = { 0 otherwise

()

Note that this can be rewritten by following the repre-
sentation theorem such that

_ Q; — Qi1 ifFaiZ{.’El,...,.’L'i}
ms(A) = { 0 otherwise

3)



Table 1. Example of Meet Operation: K (A4, B) = m(A) - m(B)

| miAmy || {}:03 | {a,c}:0.4 ] {a,b,c}:0.3 |

{a}:02 || 6:006 | {a}.008 | {a}.0.06
{a,b}:0.5 || {b}:0.15 | {a}:0.2 | {a,b}:0.15
{(b,ct:03 | {b}:0.09 | {c}:0.12 | {b,c}:0.00

Table 2. Example of Join Operation: K(A, B) = m(A) - m(B)

| mivme || {p}:03 | {a,c}:04 | {a,b,c}:03 ]
{a}:0.2 | {a,b}:0.06 | {a,c}:0.08 | {a,b,c}:0.06
{a,b}:0.5 || {a,b}:0.15 | {a,b,c}:0.2 | {a,b,c}:0.15
{b,c}:0.3 | {b,c}:0.09 | {a,b,c}:0.12 | {a,b,c}:0.09

3. Probability and fuzzy sets: The mapping between
fuzzy sets and probability distributions via a MA is ob-
tained from above two such that

n

Ps(zx) = Y Pal@r) - (i — pi1)
ik

(4)

There are operations within MAT defined in a way com-
patible to set operations such as complement (7), meet (A),
and join (V). Here, we define these operations in terms of a
function K (A4, B) such that K : P(S) x P(S) — [0, 1] sat-
isfying the following constraints inherited from properties
of mass assignment formerly defined:

1.3,

2. Yp
3. Y, pK(4,B)=1

K(A, B) = m(B)
K(A, B) = m(A)

4. K(A,B) = 0VAYB m(A) =0V m(B) =0

Then (general) definitions of these operations are given as
follows:

1. Meet: m; A mg : P(S) — [0, 1] such that

mi Ama(C)= Y K(A,B) (5)
C=ANB
2. Join: my V ms : P(S) — [0, 1] such that
myVmy(C)= Y K(A,B) (6)
C=AUB
3. Complement: m : P(S) ~ [0, 1] such that
m(A) =K(A,S—A)=m(A=S-A4) (7)

As you see, K for the complement is determined uniquely
(ie. K(A,S — A) = m(A)) in order to be consistent
with the original definition of MAT operations. Please
notice that this may be extended by selecting an appro-
priate K to classes of fuzzy complement such as Sugeno
class and Yager class. Please notice that results of meet
and join operations vary in the selection of K. Tables 1
and 2 shows examples of meet and join are shown with
K(A,B) = m(A) - m(B) (meet and join by multiplica-
tion). Please also notice that the operation of Combining
evidences from Dempster-Shafer theory of evidence can be
defined in terms of this meet operation such that

m1Ama(C) .
my @ ma(C) = { é_mlmj :]l:gfg

In addition, it is interesting to investigate further on correla-
tions between the selection of K and t-norm and t-conorm
(future work).
2.3 Inference

For inference that fuzzy sets are involved (e.g., the one
for PIDS), comparison of two fuzzy sets, say f and g, is
necessary. Such operation within Support Logic is called
Semantic Unification [3], denoted as m¢|m,, which re-
places the symbolic unification operation defined within
logic programming (e.g., PROLOG). Formally, Semantic
Unification can be defined as a function (P(S) — [0, 1]) x
(P(S) — [0,1]) —» ({t,u, f} — [0,1]), for given two
mass assignments m; and m, corresponding to fuzzy sets
f and g respectively, that determines a probability distribu-
tion over truth values, P(t), P(u) and P(f), such that

{ P(t): XpcaK(A, B)
P(

mg|m, u) : ZA;B?&@ K(A,B) (8)

f): ZAOB:(Z) K(A,B)



Table 3. Example of Semantic Unification: K (A4, B) = m(A) - m(B)

| myglmg [ {6}:03]{b,c}:0.5]{a,b,c}:01]{a,b,cd}:0.1]
{a}:0.3 7:0.09 f:0.15 u :0.03 v :0.03
{a,b}: 0.5 t:0.15 u:0.25 u : 0.05 u : 0.05
{a,b,c}:0.2| t:0.06 t:0.1 t:0.02 w:0.02

Table 3 shows an example. We then obtain a support pair
of the unification from the above probability distribution P
such that

(P, pu) = (P(1), P(t) + p(uw)) = (P(t),1 - P(f)) (9)

It is shown that there is a consistency between Support
Logic and Fuzzy Logic, particularly these for fuzzy control
(i.e. crisp input values).

For a single IF-THEN rule and an input vector z =
(x1 = v1,...,2, = v,), the inference is represented as

IF21is fi AND ... AND z, is f, THEN z iscis f,
T iS vy

T, 1S U,
ziscisp

where f;, 1 < i < n, are fuzzy sets associated with linguis-
tic terms and v;, 1 < ¢ < n, are input values (crisp values
or fuzzy values). The truth value of the consequence ’z is ¢
is p’ is determined as a support pair in Support Logic such
that

(plapu) = (H bi;, Hpui) (10)
i=1 i=1

where the ¢-th support pair is obtained by semantic unifi-
cation my, |m,,;, and my, and m,, are mass assignments
corresponding to fuzzy sets f; and v; (a singleton if it is a
crisp input) respectively. By following the concept of ex-
pected fuzzy set [3], the membership function of the fuzzy
probability p is computed from f,, and the support pair of
the truth value (p;, p,,) such that

oY) = pi-py, W)+ (1—pu)-1—py, () +(Pu—pr) (11)

In case of multiple rules deriving consequences for the
same class, results of these inferences need to be disjunc-
tively combined such that | J, p;. Alternatively, such a com-
bination can be viewed as a matter of aggregating decisions
made by multiple decision-making agents such as the de-
cision making model within SPIDER underlying MAT [6].
As a matter of fact, SPIDER decision making model is a
general framework subsuming the case of fuzzy set disjunc-
tion.

For the defuzzification of the (combined) result, there are
following options:

1. Use of SPIDER decision making model: Both defuzzi-
fication and the combination of inference results may
be handled in an integrated manner as the SPIDER de-
cision making model takes various types of decisions:
(point) probabilities, support pairs and fuzzy probabil-
ities.

2. Centroid method dominantly used for fuzzy control.

3. a-cut of p: ARGMAX,, (y)=a vye[o,1][P] gives the
necessitated support pair. Optionally, the mid point can
be taken as the defuzzification for a point probability.

2.4 Refinement of Perception

As PIDS is in use, collections of inputs and their cor-
responding results can be obtained and summarized as fre-
guency histograms. As mentioned earlier, there is a con-
sistency between probability distributions (i.e. normalized
frequency histograms) and fuzzy sets within partitions of
granulations corresponding to linguistic terms used in IF-
THEN rules (see Figure 2). Then, as a result of studying
on PIP [4], the following consistency management schemes
in terms of MA, a corresponding fuzzy set (FS), a corre-
sponding probability distribution (PD) and a prior probabil-
ity representing a bias (selection rules; SR for short) have
been developed:

1. Point Mapping Determines a correspondence between
FS and PD with a fixed SR (bias).

2. Band Mapping Determines a family of FS (PD) for a
fixed PD (FS) by tuning parameters of SR in various
ways.

3. Bidirectional Associative Memory Model [5].

Here a simplified model of PIP is proposed by parame-
terizing fuzzy sets within a fuzzy partition such that u(z) =
fia,b,c,q)(x) satisfying the following

1. a < b < ¢ < d(point, interval, triangular or trape-
zoidal)

2. ¢; = ajpr and d; = by V1 < i < n partition — 4
(constraints of fuzzy partition)



Figure 3. Example of SPIDER Architecture

3. u(a) = p(d) = 0 (i.e. support) and u(z) = 1Vz €
[b, ] (i.e. core) (normalized)

4. p(x) = &2z € (a,b), p(z) = 22Vz € (c,d)
(linearly interpolated)

With this parameterization, a granulation (i.e. a fuzzy par-
tition) consists of a sequence of fuzzy (i.e. u(z) < 1) and
core (u(x) = 1) partitions. Considering the corresponding
probability distributions, any probabilities (i.e. normalized
frequencies) within the core partitions need to be higher and
crispier than those within the fuzzy partitions. More for-
mally, Consider a MA m and a constant ¢, representing the
number of a-cuts within the corresponding fuzzy set, such
that
b—a . d—c 1

5 et (i—1) p ) 5 (12)
V 1 < i < ¢. Then parameters b and ¢ are adjusted subject
to

m(A; = [b—(i—1)-

Vo € AiVy € Aip1 — A, P(z) > P(y) (13)

This approach guarantees simple shapes of fuzzy sets
consistent with jagged histograms (i.e. the elasticity of
fuzzy sets) and is advantageous in aspects of computation
and overfitting (further analysis follows).

3 System Architecture and Implementation

SPIDER architecture consisting of multiple autonomous
agents such as intrusion detection agents (IDAs), a black-
board agent (BB) and a blackboard manager agent (BBM)
is currently used (Figure 3). For sensors to generate inputs,
we currently study on tcpdump to extract network packets
(TCP) and word frequencies of E-mail body (EMAIL). Here
are the current configurations of PIDS:

1. Single-class, single-rule IDAs with the tcpdump sensor
for real use and KDDCup99 data set (40+ features) for
testing.

2. Single-class, two-rule (one representing class signa-
tures and the other representing anomaly) IDAs with

the tcpdump sensor for real use and KDDCup99 data
set (40+ features) for testing.

3. BB and BBM for aggregating decisions.
4. FRIL (for inference) and C++ (for integration).

Currently, we obtain the best results of over 95% of accu-
racy and below 10% of fallout (i.e. false alarms).

4 Summary and Future Works

A simple knowledge-based intrusion detection system,
PIDS, is introduced. In addition to analytical studies men-
tioned formerly, the optimized identification of input vec-
tor space and a hardware implementation is currently being
planned. In particular, the single input rule module (SIRM)
architecture is being investigated as the simplest case.
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