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Introduction
Abusing memory-corruption issues in order to compromise 
systems has a long history:

● Stack overflows abused since the 70's in various circles
● Public usage since the late 80's
● Heap overflows abused publically since around 2000,   

probably exploited earlier without public documentation
● More complex issues (double-free()'s etc) published 

since 2002

● Remediation focuses a lot on published exploit  
techniques

● Various countermeasures (stack & heap canaries,  
front/backlink checks) proposed & implemented 
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Introduction
Failure to initialize local variables is more common than 
most people think. 

● Hardly any public discussion of exploitation methods
● (correction: Since late 2005 there is a paper dealing with a specific instance under  

http://www.felinemenace.org/mercy )

 Public discussion seems to imply that exploitation is 
hard as the memory content of non-initialized memory 
is random or hard to control

Key points of this presentation:

● The contents of uninitialized local variables on the stack 
 cases well-defined by the program that is running
● An attacker can attempt to determine paths that allow 

him to control these values
● Success in controlling the values will allow compromise

http://www.felinemenace.org/mercy
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Warning
This talk is work-in-progress

● My first approach to the problem will be presented
●  It was fairly useful in practice
●  But it suffers from severe problems

● My second approach to the problem will be presented
●  It is more accurate
●  It still suffers from problems, but fewer

● The discussed ideas are far from perfect
● It is often surprising how much 'wiggle-room' the 

complexity of the application leaves for an attacker
● Yes, there are quite a number of instances where non-

initialized variables are not controllable. In that case, 
you will have to go fishing again
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Some questions
How can we talk about a 'fish-class' or 'bug-class' in 
general ? 
● In many situations we do not have a large number of  

specimen at hand
● Every instance of a bug-class is often subtly different
● Generic methods usually emerge when lots of different  

fish of the same species have been caught and 
prepared for consumption

Now we're looking at a new 'species of fish' – how do we 
learn how to prepare it if we only have one ?

Can we 'breed' fish for practice ?
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Problems
Artificially creating fish has to be done with care – if we do 
it wrong, we will end up with different fish than what we 
would find in the wild. 
 
● Manually created sample applications will hardly ever  

mirror complexity of real-world programs
● Creating sample apps with certain bugs is hard to do in 

a manner that is unbiased 
● Perhabs a better approach: Take an arbitrary function 

that could exhibit such a problem in an arbitrary 
application and introduce the flaw there. Then think 
about exploitation methods

We might have 'created' a fairly realistic approximation of 
the 'real thing', and can study how to make use of it.
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Doesn't the compiler warn me ?
Compilers will warn programmers about the failure to 
initialize local variables in many cases, but ...
 
● Compilers do not do interprocedural analysis 
● Because of different compilation/linking situations,  

interprocedural checking isn't practical in many build 
situations

● If a pointer to a local variable is passed to a 
subfunction, the compiler considers this local variable to 
be initialized by the subfunction  

Let's have two examples to clarify:
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Compiler warns
The compiler will warn in a case like this:

#include <stdio.h>
#include <stdlib.h>

int main( int argc, char **argv )
{

int b;
printf( “%lx”, b );

}
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Compiler doesn't warn
The compiler won't warn in a case like this:

#include <stdio.h>
#include <stdlib.h>

void take_ptr( int *bptr )
{

print( “%lx”, *bptr ); 
}

int main( int argc, char **argv )
{

int b;
take_ptr( &b );
print( “%lx”, b );

}
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What is the scenario ?
We're looking at the following situation then: 

● Application uses some sort of data structure on the 
stack (including regular variables)

● Application calls a subfunction to initialize the data 
structure or variable

● Attacker can somehow make that subfunction fail
● Application does not check for success of that  

subfunction
● Further assumptions:

●  Attacker has input to trigger the issue
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Let's look at the stack ...

Frame A
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Let's look at the stack ...

Frame A Frame A

Args

Frame B

Args

Frame C

Arguments

Frame D

Frame of D overlaps with 
parts of the B, C frames 

and with some arguments
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So what do we do ?
We need to “initialize” the stack variables ourselves to 
make use of them

● Identify which other program paths could access the 
memory that ends up being used 

● Choose one that allows attacker-supplied data to be 
written to those memory locations

● Craft input to exercise this program path
● Exercise the vulnerable program path without 

'clobbering' the data that we wrote again
● Have fun using pointers and data that we supplied
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Approach #1: Delta-Graphs
The following slides will explain my first attempt to deal 
with the problem. It has many severe flaws, but served well 
in a few situations.

The silly name comes from the fact that we are building 
graphs annotated with stack-delta's.
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Local vs. Global analysis

● Ideally, we should look at the program in it's entirety – 
consider the whole program

● Problem: The number of possible paths through the 
program is exponential in the number of functions

● Problem: Most algorithms in code analysis are O(n^2) 
or worse

● Cop-out: Instead of looking at the entire program, we 
only consider a small subset that might be interesting 
for us.

● Reason: We can always increase the scope of the 
analysis if we fail with the 'restricted' scope
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Local vs. Global analysis
Let's create some terminology:

● “Init Path” -- the path that we are going to use to write 
the data

● “Trigger Path” -- the path that is going to use the data

It is in our best interest if the “Init Path” is very close to the 
“Trigger Path”:

● We need to build input for the “Init Path”, which is time-
consuming

● If we take a drastically different path we increase the 
risk of accidentally clobbering our data again (more on 
this later)
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Local vs. Global analysis
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Local vs. Global analysis
We will work locally, but parametrized: Only “Init Paths” 
which diverge from the “Trigger Path” only on the last “n” 
steps will be considered.

● We can start with small “n” (2, 3) and expand if we need
● In simpler cases we can actually see & understand 

everything
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A “stack-delta”-graph
We walk back the chain n steps (let's take 2 for now)

From this point onwards, we generate a callgraph of all 
functions.

Each edge in the graph represents a “call”

Each call has a 'stack delta', specifically the change to ESP 
done in this function before the call

We annotate each edge in the graph with that number
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A “stack-delta”-graph
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Calculating the distance
We now calculate the distance the stack variable 
we want to initialize has from ESP upon entry to our
chosen “START”:

   -56 
   -40 
   -36
   -04 
   -04 
=-140



Attacks on uninitialized local variables
 

A “reachability”-graph
We now start to explore all paths through the “stack-
delta”-graph. 

●  Explore graph in depth-first-search
● On each edge, keep track of the stack delta 

accumulated at this point
● Each time a function can be reached with a different 

stack delta, it receives a separate node in the graph
● Normally, this graph would be exponential in size to the 

“stack-delta”-graph
● We limit our search: If the accumulated delta is already 

lower than the distance we calculated, we stop
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A “reachability”-graph
The resulting graph gives us a number of functions which 
can have “overlapping” stack frames with our target 
variable.

This is nice and a good point to start, but the generated 
graph suffers from a severe problem:

● Problem: The graph has no sense of “order” -- if one of 
the calls on our “path” happens at the beginning of a 
function, this will lead to a large number of false 
positives

So for better results we will need a better graph
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Illustration of the problem
Order can end up being quite important.
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Approach #2 (I)
The first approach obviously abstracted too far. A second 
approach will have to stay closer to the assembly code. A 
short overview of what we're going to do then:

● Use the path that we already know how to exercise
● Take the flowgraphs of the functions in this path and 

'glue' them together in a sensible manner
● Inline all called functions into the resulting graph
● Annotate each basic block with the change it imposes 

on the stack pointer
● Create a 'reachgraph' – traverse the graph upwards 
● We get a graph that shows us basic blocks that might 

access our memory
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Approach #2 (II)
Illustration of what we are going to do:

● Decide on a path through the callgraph – we take the 
one we already use. It ends up just being a linked list:

● From each flowgraph, cut the nodes that will not lead to 
where we want to go

● Add edges from the “call” instructions to their call 
targets

● Resulting graph shows all possible paths to the target 
function using the sequence of functions from our 
original path

● Pretty output is not yet available, so back to VCG :-(
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Approach #2 (III)
The resulting graph is weakly ordered by stack-depth – 
nodes are “deeper” on the stack by being further away 
from the beginning of the graph.

Therefore nothing in this graph overlaps with our target 
stack-frame.

We now inline all subfunction calls in this graph several 
steps deep (if possible all the way).

The resulting graphs can be quite large.
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Approach #2 (III)
We associate each basic block with the change it imposes 
on the stack pointer

We then work similarly to the “reachgraph”: Traverse the 
graph upwards, accumulating the delta's on each step – if 
the delta ever drops below zero, we have a function that 
overlaps.
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The resulting graphs
We get 2 choices 'nearby', but also 2 more quite far 
removed.
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How about more results?
● We stuck directly to the path that we were already 

taking
● We only inlined 2 function layers deep
● Inlining more deeply will give us more liberty
● Allowing more variation along the path will give us more 

liberty: Instead of considering only paths that follow the 
calltree path that we recorded, we can consider all 
paths between two points

● Careful: The further we move away from paths that we 
exercise, the more prone we are to choosing logically 
inconsistent paths
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What's next ?
● The current algorithm only determines functions that 

have overlapping stack frames
●  The next improvement should be: Determining basic 

blocks that write to our variables
● Problem: We might end up with aliasing issues 
● What about research on uninitialized heap variables ?
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Other limitations ?
● Most of this was developed on embedded targets
● No handling of C++ indirection: All dynamic calls have 

to be resolved in the disassembly
●  No handling of external libraries – you will have to load 

all relevant DLLs into your IDB along with the 
application on windows

● All code x86-centric at the moment
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Tools used
● Datarescue's IDA Pro Disassembler as disassembly 

engine: http://www.datarescue.com/ida 
● SABRE BinNavi for graph visualisation & recording of 

program traces: 
http://www.sabre-security.com/products/BinNavi.html 

● IDAPython for scripting 
http://www.d-dome.net/idapython 

● A home-brew IDAPython library that provides more 
comfortable access to flowgraphs, inlining etc. 
http://www.sabre-security.com/x86_RE_lib.zip

● Warning: The above library is experimental code 
without documentation. Using or reading it can be 
detrimental to your health.

http://www.datarescue.com/ida
http://www.sabre-security.com/products/BinNavi.html
http://www.d-dome.net/idapython
http://www.sabre-security.com/x86_RE_lib.zip
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Questions ?
● I probably have at least as many questions that I can't 

answer yet as the audience
● Practical experience: This stuff works surprisingly well
● Being able to initialize program pointers directly 

bypasses heap / stack canaries


