
Attacks on uninitialized local variables

Halvar Flake – Head of Research
SABRE Security GmbH

halvar.flake@sabre-security.com

Black Hat Federal 2006

Attacks on uninitialized local variables

Introduction
Abusing memory-corruption issues in order to compromise
systems has a long history:

● Stack overflows abused since the 70's in various circles
● Public usage since the late 80's
● Heap overflows abused publically since around 2000,

probably exploited earlier without public documentation
● More complex issues (double-free()'s etc) published

since 2002

● Remediation focuses a lot on published exploit
techniques

● Various countermeasures (stack & heap canaries,
front/backlink checks) proposed & implemented

Attacks on uninitialized local variables

Introduction
Failure to initialize local variables is more common than
most people think.

● Hardly any public discussion of exploitation methods
● (correction: Since late 2005 there is a paper dealing with a specific instance under

http://www.felinemenace.org/mercy)

 Public discussion seems to imply that exploitation is
hard as the memory content of non-initialized memory
is random or hard to control

Key points of this presentation:

● The contents of uninitialized local variables on the stack
 cases well-defined by the program that is running
● An attacker can attempt to determine paths that allow

him to control these values
● Success in controlling the values will allow compromise

http://www.felinemenace.org/mercy

Attacks on uninitialized local variables

Warning
This talk is work-in-progress

● My first approach to the problem will be presented
● It was fairly useful in practice
● But it suffers from severe problems

● My second approach to the problem will be presented
● It is more accurate
● It still suffers from problems, but fewer

● The discussed ideas are far from perfect
● It is often surprising how much 'wiggle-room' the

complexity of the application leaves for an attacker
● Yes, there are quite a number of instances where non-

initialized variables are not controllable. In that case,
you will have to go fishing again

Attacks on uninitialized local variables

Some questions
How can we talk about a 'fish-class' or 'bug-class' in
general ?
● In many situations we do not have a large number of

specimen at hand
● Every instance of a bug-class is often subtly different
● Generic methods usually emerge when lots of different

fish of the same species have been caught and
prepared for consumption

Now we're looking at a new 'species of fish' – how do we
learn how to prepare it if we only have one ?

Can we 'breed' fish for practice ?

Attacks on uninitialized local variables

Problems
Artificially creating fish has to be done with care – if we do
it wrong, we will end up with different fish than what we
would find in the wild.

● Manually created sample applications will hardly ever

mirror complexity of real-world programs
● Creating sample apps with certain bugs is hard to do in

a manner that is unbiased
● Perhabs a better approach: Take an arbitrary function

that could exhibit such a problem in an arbitrary
application and introduce the flaw there. Then think
about exploitation methods

We might have 'created' a fairly realistic approximation of
the 'real thing', and can study how to make use of it.

Attacks on uninitialized local variables

Doesn't the compiler warn me ?
Compilers will warn programmers about the failure to
initialize local variables in many cases, but ...

● Compilers do not do interprocedural analysis
● Because of different compilation/linking situations,

interprocedural checking isn't practical in many build
situations

● If a pointer to a local variable is passed to a
subfunction, the compiler considers this local variable to
be initialized by the subfunction

Let's have two examples to clarify:

Attacks on uninitialized local variables

Compiler warns
The compiler will warn in a case like this:

#include <stdio.h>
#include <stdlib.h>

int main(int argc, char **argv)
{

int b;
printf(“%lx”, b);

}

Attacks on uninitialized local variables

Compiler doesn't warn
The compiler won't warn in a case like this:

#include <stdio.h>
#include <stdlib.h>

void take_ptr(int *bptr)
{

print(“%lx”, *bptr);
}

int main(int argc, char **argv)
{

int b;
take_ptr(&b);
print(“%lx”, b);

}

Attacks on uninitialized local variables

What is the scenario ?
We're looking at the following situation then:

● Application uses some sort of data structure on the
stack (including regular variables)

● Application calls a subfunction to initialize the data
structure or variable

● Attacker can somehow make that subfunction fail
● Application does not check for success of that

subfunction
● Further assumptions:

● Attacker has input to trigger the issue

Attacks on uninitialized local variables

Let's look at the stack ...

Frame A

Attacks on uninitialized local variables

Let's look at the stack ...

Frame A

Arguments

Attacks on uninitialized local variables

Let's look at the stack ...

Frame A

Arguments

Frame B

Attacks on uninitialized local variables

Let's look at the stack ...

Frame A

Arguments

Frame B

Arguments

Attacks on uninitialized local variables

Let's look at the stack ...

Frame A

Arguments

Frame B

Arguments

Frame C

Attacks on uninitialized local variables

Let's look at the stack ...

Frame A

Arguments

Frame B

Frame A

Args

Frame B

Args

Frame C

Attacks on uninitialized local variables

Let's look at the stack ...

Frame A Frame A

Args

Frame B

Args

Frame C

Attacks on uninitialized local variables

Let's look at the stack ...

Frame A Frame A

Args

Frame B

Args

Frame C

Arguments

Frame D

Frame of D overlaps with
parts of the B, C frames

and with some arguments

Attacks on uninitialized local variables

So what do we do ?
We need to “initialize” the stack variables ourselves to
make use of them

● Identify which other program paths could access the
memory that ends up being used

● Choose one that allows attacker-supplied data to be
written to those memory locations

● Craft input to exercise this program path
● Exercise the vulnerable program path without

'clobbering' the data that we wrote again
● Have fun using pointers and data that we supplied

Attacks on uninitialized local variables

Approach #1: Delta-Graphs
The following slides will explain my first attempt to deal
with the problem. It has many severe flaws, but served well
in a few situations.

The silly name comes from the fact that we are building
graphs annotated with stack-delta's.

Attacks on uninitialized local variables

Local vs. Global analysis

● Ideally, we should look at the program in it's entirety –
consider the whole program

● Problem: The number of possible paths through the
program is exponential in the number of functions

● Problem: Most algorithms in code analysis are O(n^2)
or worse

● Cop-out: Instead of looking at the entire program, we
only consider a small subset that might be interesting
for us.

● Reason: We can always increase the scope of the
analysis if we fail with the 'restricted' scope

Attacks on uninitialized local variables

Local vs. Global analysis
Let's create some terminology:

● “Init Path” -- the path that we are going to use to write
the data

● “Trigger Path” -- the path that is going to use the data

It is in our best interest if the “Init Path” is very close to the
“Trigger Path”:

● We need to build input for the “Init Path”, which is time-
consuming

● If we take a drastically different path we increase the
risk of accidentally clobbering our data again (more on
this later)

Attacks on uninitialized local variables

Local vs. Global analysis

Attacks on uninitialized local variables

Local vs. Global analysis
We will work locally, but parametrized: Only “Init Paths”
which diverge from the “Trigger Path” only on the last “n”
steps will be considered.

● We can start with small “n” (2, 3) and expand if we need
● In simpler cases we can actually see & understand

everything

Attacks on uninitialized local variables

A “stack-delta”-graph
We walk back the chain n steps (let's take 2 for now)

From this point onwards, we generate a callgraph of all
functions.

Each edge in the graph represents a “call”

Each call has a 'stack delta', specifically the change to ESP
done in this function before the call

We annotate each edge in the graph with that number

Attacks on uninitialized local variables

A “stack-delta”-graph

Attacks on uninitialized local variables

Calculating the distance
We now calculate the distance the stack variable
we want to initialize has from ESP upon entry to our
chosen “START”:

 -56
 -40
 -36
 -04
 -04
=-140

Attacks on uninitialized local variables

A “reachability”-graph
We now start to explore all paths through the “stack-
delta”-graph.

● Explore graph in depth-first-search
● On each edge, keep track of the stack delta

accumulated at this point
● Each time a function can be reached with a different

stack delta, it receives a separate node in the graph
● Normally, this graph would be exponential in size to the

“stack-delta”-graph
● We limit our search: If the accumulated delta is already

lower than the distance we calculated, we stop

Attacks on uninitialized local variables

A “reachability”-graph
The resulting graph gives us a number of functions which
can have “overlapping” stack frames with our target
variable.

This is nice and a good point to start, but the generated
graph suffers from a severe problem:

● Problem: The graph has no sense of “order” -- if one of
the calls on our “path” happens at the beginning of a
function, this will lead to a large number of false
positives

So for better results we will need a better graph

Attacks on uninitialized local variables

Illustration of the problem
Order can end up being quite important.

Attacks on uninitialized local variables

Approach #2 (I)
The first approach obviously abstracted too far. A second
approach will have to stay closer to the assembly code. A
short overview of what we're going to do then:

● Use the path that we already know how to exercise
● Take the flowgraphs of the functions in this path and

'glue' them together in a sensible manner
● Inline all called functions into the resulting graph
● Annotate each basic block with the change it imposes

on the stack pointer
● Create a 'reachgraph' – traverse the graph upwards
● We get a graph that shows us basic blocks that might

access our memory

Attacks on uninitialized local variables

Approach #2 (II)
Illustration of what we are going to do:

● Decide on a path through the callgraph – we take the
one we already use. It ends up just being a linked list:

● From each flowgraph, cut the nodes that will not lead to
where we want to go

● Add edges from the “call” instructions to their call
targets

● Resulting graph shows all possible paths to the target
function using the sequence of functions from our
original path

● Pretty output is not yet available, so back to VCG :-(

Attacks on uninitialized local variables

Approach #2 (III)
The resulting graph is weakly ordered by stack-depth –
nodes are “deeper” on the stack by being further away
from the beginning of the graph.

Therefore nothing in this graph overlaps with our target
stack-frame.

We now inline all subfunction calls in this graph several
steps deep (if possible all the way).

The resulting graphs can be quite large.

Attacks on uninitialized local variables

Approach #2 (III)
We associate each basic block with the change it imposes
on the stack pointer

We then work similarly to the “reachgraph”: Traverse the
graph upwards, accumulating the delta's on each step – if
the delta ever drops below zero, we have a function that
overlaps.

Attacks on uninitialized local variables

The resulting graphs
We get 2 choices 'nearby', but also 2 more quite far
removed.

Attacks on uninitialized local variables

How about more results?
● We stuck directly to the path that we were already

taking
● We only inlined 2 function layers deep
● Inlining more deeply will give us more liberty
● Allowing more variation along the path will give us more

liberty: Instead of considering only paths that follow the
calltree path that we recorded, we can consider all
paths between two points

● Careful: The further we move away from paths that we
exercise, the more prone we are to choosing logically
inconsistent paths

Attacks on uninitialized local variables

What's next ?
● The current algorithm only determines functions that

have overlapping stack frames
● The next improvement should be: Determining basic

blocks that write to our variables
● Problem: We might end up with aliasing issues
● What about research on uninitialized heap variables ?

Attacks on uninitialized local variables

Other limitations ?
● Most of this was developed on embedded targets
● No handling of C++ indirection: All dynamic calls have

to be resolved in the disassembly
● No handling of external libraries – you will have to load

all relevant DLLs into your IDB along with the
application on windows

● All code x86-centric at the moment

Attacks on uninitialized local variables

Tools used
● Datarescue's IDA Pro Disassembler as disassembly

engine: http://www.datarescue.com/ida
● SABRE BinNavi for graph visualisation & recording of

program traces:
http://www.sabre-security.com/products/BinNavi.html

● IDAPython for scripting
http://www.d-dome.net/idapython

● A home-brew IDAPython library that provides more
comfortable access to flowgraphs, inlining etc.
http://www.sabre-security.com/x86_RE_lib.zip

● Warning: The above library is experimental code
without documentation. Using or reading it can be
detrimental to your health.

http://www.datarescue.com/ida
http://www.sabre-security.com/products/BinNavi.html
http://www.d-dome.net/idapython
http://www.sabre-security.com/x86_RE_lib.zip

Attacks on uninitialized local variables

Questions ?
● I probably have at least as many questions that I can't

answer yet as the audience
● Practical experience: This stuff works surprisingly well
● Being able to initialize program pointers directly

bypasses heap / stack canaries

