“More fun with Graphs”

Halvar Flake — Blackhat Federal 2003

Outline for the talk

Structural Function Signatures
* Motivation
* Problems with the signature-based approach
* Heuristics for matching graphs
Applications

Loop detection in Binaries:
* Detecting simple loops
* Determining if a loop copies memory
« Estimating the number of iterations a loop
can take

Function Signatures (I)

What are function signatures ?

* Functions in disassemblies originally have no names, just
addresses

 Function signatures allow automatically retrieving names
for known functions

* Function signatures are mainly used to recognize statically
linked libc functions

* Massive aid in disassembling — who would want to spend
his time finding _malloc() or strcpy() manually ?

Function Signatures (1)

What else are function signatures good for ?

* Porting information in disassemblies to a new version
(e.g. porting info from an existing Disassembly of FW-1
to an updated version)

e Scanning binaries for known-to-be vulnerable libs (zlib ©)

* Finding functions under GPL 1n closed-source, commercial
applications

* Porting debug info which vendors accidentally left in an old
executable to new versions of the program

* Finding differences between two different releases of the
same file (Microsoft Security Patches ©)

Usual approach to signatures:

Pattern matching with wildcards

A’s FLIRT system

IDB_2 PAT
- IDB 2 SIG

e Fenris signature system

Function Signatures (11I)

Problems

Normal pattern matching is problematic

—> A few lines of code that change can lead to different
register allocation and thus to many changed locaitons

=> A few lines of code that change can lead to basic blocks
having different sizes and ending up in completely
different places (MS internal optimization)

A small change can produce two binaries which hardly
resemble each other

Solution ?

* Structural fingerprinting ?

- Function flowgraphs will stay the same,
regardless of register allocation or basic block
reordering

» Graph Isomorphisms (math-speak for finding out if
two graphs are the same) are computationally expensive
to compute

—> A simpler solution (using matching heuristics) can
yield usable results

> Comparing number of code blocks, number of links and
number.of subfunction calls

Example (I)

5 Nodes

TEEE 1490
pu=h ek
Moy el , de:TREELSTEINler 1 ockedIncrement
pUsh E=i
> push El:h:
Mo BSi, ECM
lea edi . [e=i+1Ch]
pUsh edi ; 1pAdderd
call ek : TEEE1ETEIrier lockedlneremend
cmp dword pir [esi+Z0R], O
jnz TESEAZEC 1 oc_TREEAZRC
— |_‘
TEEEACRLD 1
pUsh edi
call d=:758E137CIner] ockedDecrement
» 1es1l eaw, eaw
jnz shor1 TEEEAZDQ] oz TESEAZDO
|_*
TEEEAFCT -
push duord pir [esi+18h]
call ds:TEEE 15905e1Event
:I
TEEEASDIO .
push esi
call de: TS5 LFFEniertrilical Sactlion
push edi
’ call efw
push esi
call ds:TSE5 15300 eavelrilical Sectlion
jmp TESE14AB 1 oc_TEEEL4AR
— F—
TEEE LAk -
and duord pir [esi+24h], 0
pop edi
= e=i
pop ekt
reln

Example (1I)

6 Links

TEEE1480:

push eb

mo ek, ds:TEEE1STEIMier 1 ockedIrcrementi
push esi

pUsh edi

o esi, ecH

lea edi, [e=i+1Ch]

push edi ; 1pAdderd

call ek ; TLEELETEIMerlackedl norement
cmp dword pir [e=si+Z0R], 0

jnz TEESEAZEC 1oc_TEEEAZBC

TEEEAZRLC:

push edi

call d=:=TE5EE13TCInler] ockedlecrement
1e=si e, A

jnz shori TEEEATDO] oo TESEAZDD

TEBEAZCT -

call

push duord pir [esi+18h]
ds:YEEELE0CEe1Event

ToOEAZDO:
push esi

push edi
call ehn
push esi

Imp TESR14aB Toc_TEEE14AR

call de=TEEELZFErierCritical Seciion

call de:TEEEL200 eavelritlical Sectlian

TLEEL4AR -

and dword pir [esi+Z4h], O
pop edi

pop es1

PP ek

retln

Example (1II)

6 subcalls

1gnature: 5/6/6

TEEE 1490
pu=h ek
Moy el , de:TREELSTEINler 1 ockedIncrement
pUsh E=i
push El:h:
Mo BSi, ECM
lea edi . [e=i+1Ch]
pUsh edi ; 1pAdderd
> call ek : TEEE1ETEIrier lockedlneremend
cmp dword pir [esi+Z0R], O
jnz TESEAZEC 1 oc_TREEAZRC
— |_‘
TREEAZEL |
pUsh edi
’ call ds:TEEE1ST (I nier] ockedDecrement
1esl Edv, EAM
jnz shor1 TEEEAZDQ] oz TESEAZDO
|_*
TEEGAZCT ©
push duord pir [esi+18h]
call ds:TEEE 15905e1Event
rl
TEEEASDIO .
push esi
call de: TS5 LFFEniertrilical Sactlion
push edi
call ek
push esi
call ds:TSE5 15300 eavelrilical Sectlion
jmp TESE14AB 1 oc_TEEEL4AR

—
TEEE LAk -

and duord pir [esi+24h], 0
pap edi

=] esi

pop ekt

retn

Pro / Con

Advantages:
* Tolerant to basic block reordering
* Tolerant to differences in register assignments
« Will find all structural changes (e.g. an added if())
* Reasonably “sharp” for larger functions

Disadvantages:
* Will not find changes 1n constant values
* Will not find changes 1n buffer sizes
* No useful signature for very small functions can be

generated (1/0/0 will be the signature for every very
simple functino)

Open Source Patches

Open Source Patches:

« Visible to everyone = Publicising the patched version
makes the bug (or bugclass) public

« Many people regularly read CVS updates like others
read the newspaper = Security-critical changes cannot
“sneak 1n”

e Many eyes make bugfixes thorough = Changes that
fix the “symptom” but not the root cause are rare

- Keeping bug information quiet after publication of
a patch 1s next to impossible

Closed Source Patches

Closed Source Patches:

* Vendors try to keep details of bugs silent
“No need to tell the hackers what 1s going on”

* Vendors underestimate impact of bugs:
“Malformed input leads to disclosure of
hexadecimal values from memory”
| Euphemism for format string bug |
“This problem can lead to a DoS-style-attack™
[Euphemism for remotely exploitable bug in
Ring-0 code]

* Vendors try to “piggyback” security patches onto
less interesting patches

Binary Diff Methodology

We can use these signatures to detect which changes a vendor
undertook with a security patch:

* (Generate all signatures for all functions in both files

« Find “Fixed Points”, e.g. functions whose signature
exists only once 1n both files (roughly of all funcs)

o Use the “fixed points” and a calltree to assign the
other of all signatures

* Functions that cannot be mapped are candidates that
might have changed

(Demonstration)

Questions ?

Loop detection

* Some vendors (MS) have started to have their code audited
for bugs
» The focus seems to have been on eliminating strcpy() and

other known dangerous library calls
e How .could the DCOM have slipped by ?

- Memory — copying loops (decoding etc) seem to have been
neglected

« “Loops ? That is so 1998 I” ©
« Loops are not all that obvious to spot in binaries

=.A.mechanism to spot loops in binaries is useful

Loop detection (1)

Can you spot the loops ?

[]

Dominator Trees

* Anode 4 1n a directed graph dominates a node B if all paths
from the entry to node B pass through node 4

B 1s dominated by Entry and
also by 4

Dominator Trees (1I)

* Anode 4 1n a directed graph dominates a node B if all paths
from the entry to node B pass through node 4

B 1s dominated by Entry but
not by 4

Loop detection (I1I)

 Dominator Trees can be used to detect loops 1n graphs
 [fanode 4 links to a node B, and 1f B dominates A4, the
link closes a loop 1n the graph

= All paths to 4 lead through B
=> A links down to B, and all paths to 4 must’ve run through
node B =» we have found a loop

We can easily build dominator trees from the functions in
the binary and thus quickly find loops

Loop detection (IV)

Can you spot the loops ?

[]

Loop detection (V)

Loop entry = green :'|—
e , ':LL I
Loop exit = red — =
| | ——
ﬁj —]

=l
[

Killing false positives

Not all loops are of interest for us

Loops that do not write to any memory are not interesting
Loops that just write well-defined variables are not interesting
Loops that write a statically defined number of bytes are not
terribly interesting

We want to eliminate all loops that do not write memory

We want to eliminate all loops that write to well-defined
variables

We want to eliminate all loops that write a statically defined
number. of bytes

Memory-Writing

 The examined code has been translated to the MCPU code
presented 1n the last talks

« All memory access 1s explicit, e.g. there 1s an explicit
instruction for storing memory

=> All'loops that do not store stuff into memory can be eliminated
by scanning for a “stm” instruction

Memory-Writing (1I)

. 2
004 0910e : str 0o, -—, 01
00409111 : strsu goilch), -, g2
00409114 : test g0z, g0z, £00
00409116 : br_z 409169cb), 00, -—-
L
00409118 : str oo, —— q00
0040911b: strox glochy, -, g0l
o040911e - cmp gll, 000000Z0, 00
00409121 : br_nz 40915etb), 00, -—-
I
¢ 9 : .
No “stm” instruction

=>» Not interesting

Variable-Writing

A write access occurs 1n our loop

If on every loop iteration, the location it writes to 1s the same,
1t 1s not a memory-copying loop

If the loop writes to a location like “register + offset” with

a hardcoded offset, it accesses a local variable or structure
member

All loops that do not write to multiple (and changing) locations
can be detected by doing data flow analysis on the memory
accesses and seeing 1f they can change in different loop
iterations

Variable-Writing (II)

p register t3c is written to = t3c is fp + 0x5DC - fp is
ite is not interesting !

Defined Iterations

A simple memcpy() with a static number of bytes to copy
1s not likely to be problematic

If 1t was, the program would be nonfunctional anyways 1f
it ever reached the relevant location

By eliminating all loops that iterate a predefined/static
number of times, we can eliminate all loops that copy
a static number of bytes

R Defined Iterations (II)

Togo9bvE str a0, -—-, glZ
Togodbia str ql7, -—=, 101
ToEn3b7h st 00o00000a, -, 10Z
ToEo3b7d: add g, 0000001c, glG
7oE53ba0: str 107, -, gql1
Jofo9bal: str ql?, ---, qly

1

g01 =102
t02 := 0x0A

T =» Static

number of
iterations

[terates g01 times

Summary

* We can automatically detect “interesting” loops, loops that
write a dynamically calculated amount of memory

We can scan multi-megabyte binaries and end up with a dozen
r so loops to manually inspect

- Copies memory

75855268 : ldm 7587744, -, g1 9 1terates an undeﬁned
756858a e : ldm 7587748, -, gOE .

15858741 str a0, -—-, 07 number of times
ToB58aT6 str gh1, -—=, gon . .
75858278 : shrl g1, 0zchby, g1 9 Number Of 1teratlons

comes from a global
variable

> 4 Interesting loop

Questions ?

