
“More fun with Graphs”

 Halvar Flake – Blackhat Federal 2003

Outline for the talk
Structural Function Signatures

• Motivation
• Problems with the signature-based approach
• Heuristics for matching graphs
• Applications

Loop detection in Binaries:
• Detecting simple loops
• Determining if a loop copies memory
• Estimating the number of iterations a loop

can take

Function Signatures (I)
What are function signatures ?

• Functions in disassemblies originally have no names, just
addresses

• Function signatures allow automatically retrieving names
for known functions

• Function signatures are mainly used to recognize statically
linked libc functions

• Massive aid in disassembling – who would want to spend
his time finding _malloc() or strcpy() manually ?

Function Signatures (II)
What else are function signatures good for ?

• Porting information in disassemblies to a new version
(e.g. porting info from an existing Disassembly of FW-1
to an updated version)

• Scanning binaries for known-to-be vulnerable libs (zlib ☺)
• Finding functions under GPL in closed-source, commercial

applications
• Porting debug info which vendors accidentally left in an old

executable to new versions of the program
• Finding differences between two different releases of the

same file (Microsoft Security Patches ☺)

Function Signatures (III)
Usual approach to signatures:

Pattern matching with wildcards

• IDA’s FLIRT system

- IDB_2_PAT
- IDB_2_SIG

• Fenris signature system

Problems

• Normal pattern matching is problematic

à A few lines of code that change can lead to different
register allocation and thus to many changed locaitons

à A few lines of code that change can lead to basic blocks
having different sizes and ending up in completely
different places (MS internal optimization)

• A small change can produce two binaries which hardly
resemble each other

Solution ?
• Structural fingerprinting ?

à Function flowgraphs will stay the same,
regardless of register allocation or basic block
reordering

• Graph Isomorphisms (math-speak for finding out if
two graphs are the same) are computationally expensive
to compute

à A simpler solution (using matching heuristics) can
yield usable results

à Comparing number of code blocks, number of links and
number of subfunction calls

Example (I)

5 Nodes

Example (II)

6 Links

Example (III)

6 subcalls

Signature: 5/6/6

Pro / Con
Advantages:

• Tolerant to basic block reordering
• Tolerant to differences in register assignments
• Will find all structural changes (e.g. an added if())
• Reasonably “sharp” for larger functions

Disadvantages:
• Will not find changes in constant values
• Will not find changes in buffer sizes
• No useful signature for very small functions can be

generated (1/0/0 will be the signature for every very
simple functino)

Open Source Patches
Open Source Patches:

• Visible to everyone à Publicising the patched version
makes the bug (or bugclass) public

• Many people regularly read CVS updates like others
read the newspaper à Security-critical changes cannot
“sneak in”

• Many eyes make bugfixes thorough à Changes that
fix the “symptom” but not the root cause are rare

à Keeping bug information quiet after publication of
a patch is next to impossible

Closed Source Patches
Closed Source Patches:

• Vendors try to keep details of bugs silent
“No need to tell the hackers what is going on”

• Vendors underestimate impact of bugs:
“Malformed input leads to disclosure of
hexadecimal values from memory”
[Euphemism for format string bug]
“This problem can lead to a DoS-style-attack”
[Euphemism for remotely exploitable bug in
Ring-0 code]

• Vendors try to “piggyback” security patches onto
less interesting patches

Binary Diff Methodology
We can use these signatures to detect which changes a vendor
undertook with a security patch:

• Generate all signatures for all functions in both files
• Find “Fixed Points”, e.g. functions whose signature

exists only once in both files (roughly _ of all funcs)
• Use the “fixed points” and a calltree to assign the

other _ of all signatures
• Functions that cannot be mapped are candidates that

might have changed

(Demonstration)

Questions ?

Loop detection

• Some vendors (MS) have started to have their code audited
for bugs

• The focus seems to have been on eliminating strcpy() and
other known dangerous library calls

• How could the DCOM have slipped by ?

à Memory – copying loops (decoding etc) seem to have been
neglected

• “Loops ? That is so 1998 !” ☺
• Loops are not all that obvious to spot in binaries

à A mechanism to spot loops in binaries is useful

Loop detection (II)
Can you spot the loops ?

Dominator Trees

• A node A in a directed graph dominates a node B if all paths
from the entry to node B pass through node A

B is dominated by Entry and
also by A

Dominator Trees (II)

• A node A in a directed graph dominates a node B if all paths
from the entry to node B pass through node A

B is dominated by Entry but
not by A

Loop detection (III)

• Dominator Trees can be used to detect loops in graphs
• If a node A links to a node B, and if B dominates A, the

link closes a loop in the graph

à All paths to A lead through B
à A links down to B, and all paths to A must’ve run through

node B è we have found a loop

We can easily build dominator trees from the functions in
the binary and thus quickly find loops

Loop detection (IV)
Can you spot the loops ?

Loop detection (V)
Loop entry = green
Loop exit = red

Killing false positives

• Not all loops are of interest for us
• Loops that do not write to any memory are not interesting
• Loops that just write well-defined variables are not interesting
• Loops that write a statically defined number of bytes are not

terribly interesting

à We want to eliminate all loops that do not write memory

à We want to eliminate all loops that write to well-defined
variables

à We want to eliminate all loops that write a statically defined
number of bytes

Memory-Writing

• The examined code has been translated to the MCPU code
presented in the last talks

• All memory access is explicit, e.g. there is an explicit
instruction for storing memory

à All loops that do not store stuff into memory can be eliminated
by scanning for a “stm” instruction

Memory-Writing (II)

No “stm” instruction

è Not interesting

Variable-Writing

• A write access occurs in our loop
• If on every loop iteration, the location it writes to is the same,

it is not a memory-copying loop
• If the loop writes to a location like “register + offset” with

a hardcoded offset, it accesses a local variable or structure
member

à All loops that do not write to multiple (and changing) locations
can be detected by doing data flow analysis on the memory
accesses and seeing if they can change in different loop
iterations

Variable-Writing (II)

Temp register t3c is written to à t3c is fp + 0x5DC à fp is
unchanged à the memory write is not interesting !

Defined Iterations

• A simple memcpy() with a static number of bytes to copy
is not likely to be problematic

• If it was, the program would be nonfunctional anyways if
it ever reached the relevant location

à By eliminating all loops that iterate a predefined/static
number of times, we can eliminate all loops that copy
a static number of bytes

Defined Iterations (II)

Iterates g01 times

g01 := t02
t02 := 0x0A

è Static
number of
iterations

Summary

• We can automatically detect “interesting” loops, loops that
write a dynamically calculated amount of memory

• We can scan multi-megabyte binaries and end up with a dozen
or so loops to manually inspect

à Copies memory
à iterates an undefined

number of times
à Number of iterations

comes from a global
variable

è Interesting loop

Questions ?

