
Masibty
Stefano Zanero, Claudio Criscione

2Stefano Zanero – Claudio Criscione

Who's who

 Stefano Zanero
• Assistant Professor @ Politecnico di Milano

 Claudio Criscione
• Principal Consultant @ Secure Network
• Hopefully soon-to-be PhD student @ Politecnico di

Milano

3Stefano Zanero – Claudio Criscione

What is our speech all about?

It's about letting people in charge of web applications security sleep at night*

* terms and conditions apply. We do not take care of your partner snoring

4Stefano Zanero – Claudio Criscione

Web Applications security

 Difficult, IRW to
• Detect attacks
• Apply patches (without support from developers)
• Have the time to follow all those 2458 unitasker web applications

 In the meantime, you're likely going to get hacked by a pack of
Monkeys (which can successfully hack web application, as
scientifically demonstrated)

5Stefano Zanero – Claudio Criscione

Web application IDSs and IPSs (so far)

 Web Application Firewalls – a must?
• Patching is not always possible due to “obscure reasons”
• Application and infrastructure/security are different

departments
• You just have to do “something” for web application security,

and you have to do that yesterday
 Most WAF solutions suffer from the “Grep Dilemma”

• Should I really use something which is little more than a
complex Grep?

6Stefano Zanero – Claudio Criscione

Why signatures are bad

 Inherent issues with signature based systems!
• Application of blacklisting, and we all know blacklisting is intrinsically

flawed
• “Things that you do not hope for happen more frequently than things

that you do hope for” (Plauto, “Mostellaria”)
• You cannot enumerate all the possible attacks, and “generic

signatures” yadda yadda simply do not work nearly well enough

 Applying whitelisting (i.e. only allowing through what is supposed
to go through) would work, but it is a configuration nightmare

• List every parameter of every form on every page of every
application on every server

• And then we can discuss “change management”, folks...

 This is why WAFs require careful configuration and constant
updating

• And time and skills are scarce resources, as usual

7Stefano Zanero – Claudio Criscione

What are we trying to do?

• Recreate the “Old Lady at the Window” effect
 You know, the old lady spotting “strange things happening” and

dialing 9-1-1
• Which means...

 Learning what's normal: Whitelisting : Anomaly detection
 Block what's not: Intrusion prevention
 Without administrator intervention : Unsupervised learning
 With no (well, just a few) false positives
 With attacks in the learning set – because that's what happens in

the real world!

8Stefano Zanero – Claudio Criscione

So, what is Masibty?

• A web application IPS
 Anomaly based, and capable of doing unsupervised learning
 Able to work in the “real-world”
 Partly language-indipendant (Java reverse proxy) and partly

language dependant (PHP PoC)
 A flexible architecture where modules can be plugged into

9Stefano Zanero – Claudio Criscione

Basic ideas

• What are we going to learn?

• How are we going to learn it?

• How are we going to use it?

10Stefano Zanero – Claudio Criscione

What are we going to learn?

 We have a name for that
Entry Point

 URI
 Parameters
 Session
 The ubiquitous external

influence

11Stefano Zanero – Claudio Criscione

Finding structure in entry points

 The first challenge: how do we identify Entry Points?
 Online multimodel n-dimensional agglomerative approximate

clustering algorithm
• Which we had to design

 Multiple models to identify behaviors
• Parameters order, presence, type, names...

 We evaluate a distance between various queries on the same
“URL”

 We end up with an “identifier of homogeneous input parameters”,
which we assume is homogenous behaviour

12Stefano Zanero – Claudio Criscione

To clarify...

controller.php?
cmd=list_users&page=1

controller.php?
cmd=view_product&onWebsite=yes

controller.php?
cmd=view_product&pid=20&onWebsite=no&a
ccessible_mode=on

13Stefano Zanero – Claudio Criscione

How are we going to process the data?

14Stefano Zanero – Claudio Criscione

Anomaly and Trust

Anomaly
Reasoner{

Trust

Anomaly

Trust
Anomaly

Trust

Anomaly

Anomaly

15Stefano Zanero – Claudio Criscione

Parameter Anomaly

 For each parameter, we build a profile using various engines
• Order Engine
• Presence Engine
• Numbers Engine
• Aliens Engine
• Token Engine
• Distribution Engine
• Length Engine

 You can notice similarities with other models (like the ones
proposed by Vigna and others)

• We have improved some of their models or rebuilt them according to
our new requirements

16Stefano Zanero – Claudio Criscione

Content Engines

• Some of the engines take care of the “values” of the
Parameters
 Number engine: if we put a non-numerical value in an “almost

always” numerical attribute, we get an anomaly
 Token Engine: some parameters can only assume predefined

values. They're Tokens.
 Length Engine: parameters usually have a “similar” size
 Distribution Engine: we should be able to identify notable peaks

in the usage of a single character
 Alien Engine: most parameters won't accept EVERY printable

character

17Stefano Zanero – Claudio Criscione

Structural Engines

• Web applications often are “regular”, parameters are usually in the
same order
 Order Engine

• ...and you usually have the same parameters on the same Entry Point
 Presence Engine

• Most structural engines can be bypassed, but are very accurate
against many automated attacks!

18Stefano Zanero – Claudio Criscione

Client side attacks

• We now have a broad range of tools to identify attacks aimed at the
server

• But yet, during the coding of Masibty, we wondered

“Since we already see all of these server responses, why
don't we analyze those as well?”

19Stefano Zanero – Claudio Criscione

Anomaly Trees

 Build a representation of server responses
• Plant a (DOM) tree, save the environment!

 Once we have generated the tree, we can “learn” it
 If we see at some point in the future an unexpected branch on the

tree...

Stefano Zanero – Claudio Criscione

<HTML>
 <HEAD>
 <TITLE>
 <script>attack</script>
 </TITLE>
 <SCRIPT>JS</SCRIPT>
 </HEAD>
 <BODY>
 <DIV> TEST 123 </DIV>
 <DIV>
 <SCRIPT>JS</SCRIPT>
 </DIV>
 </BODY>
</HTML>

HTML

HEAD BODY

TITLE SCRIPT DIV DIV

SCRIPTSCRIPT

Anomaly Trees

21Stefano Zanero – Claudio Criscione

Growing trees in different shapes

 A trivial “difference” between
trees would be very false-
positive prone

• And would cause a lot of
issues on each update

 Templates : identify areas of
the tree were new branches
are more likely to happen.

Stefano Zanero – Claudio Criscione

<HTML>
 <HEAD>
 <TITLE></TITLE>
 <SCRIPT>JS</SCRIPT>
 </HEAD>
 <BODY>
 <DIV> TEST 123 </DIV>
 <DIV>
 <SCRIPT>JS</SCRIPT>
 </DIV>
 </BODY>
</HTML>

Building templates

23Stefano Zanero – Claudio Criscione

Parsing

 2 issues
• Are we looking at the SAME tree the user would see?
• We only care about JavaScript

 Gecko!
 We build the DOM tree as the browser would do it
 We can ask Gecko where the javascripts lie

• So we only have meaningful branches in the trees

24Stefano Zanero – Claudio Criscione

Oh no, more trees! SQL Anomaly

 Once we had Anomaly Tree algorithms working reliably on DOM
documents, it was “easy” to port them on SQL

 Each SQL query can be represented as a tree
• We can spot changes in the tree as we've done with the XSS

Reasoner

SELECT * FROM USERS WHERE NAME = 'USER' AND
(PASSWORD = 'PASS' AND ROLE > 0)

AND

AND =

= >

25Stefano Zanero – Claudio Criscione

SQL Trees

AND

AND =

= >

OR

= = --

SELECT * FROM USERS
WHERE NAME = 'USER'
AND (PASSWORD = 'PASS'
AND ROLE > 0)

SELECT * FROM USERS
WHERE NAME = ‘USER’
OR ‘1’=‘1’ -- AND
(PASSWORD = ‘PASS’ AND
ROLE > 0’)

26Stefano Zanero – Claudio Criscione

Can we avoid the webocalipse?

 Evaluating the performance of an IDS isn't an easy task
 We tested 7 “real” applications
 A simple methodology

• Install the application
• Use the application “through Masibty” as normal users would do
• Add some attacks during “learning”, either background noise like

worms or real, successful attacks to the application
• Switch to detection and repeat the tests

 Excellent (if not conclusive) results
• 84% detection rate with a modest 0.14% false positive rate
• Which gets to 93% DR if we take Badstore (yes, we've tested that one

too) out of the pool
• And gets to 100% DR, 0% FP if we remove the attacks from the

training set...
which is what everybody else does!

27Stefano Zanero – Claudio Criscione

How slow is it?

 Codebase is not optimized
• No really, it's just a PoC for now, blame Claudio :-)

 In our testing environment we got an average 4-50ms delta in
response times during the training phase and 1-20 ms during the
detection phase

 RAM and CPU usage were usually quite low – and it was running
in Eclipse!

 More testing is on its way

28Stefano Zanero – Claudio Criscione

How can I get it? and future works

 It is going to be released for testing
• And hopefully we'll have a paper on that sooner or later

 We're building a working GUI
 Next steps include

• Supervised learning addon
• New dedicated reasoners (JSON, Flash, Headers...)
• Some advanced agent based stuff

29Stefano Zanero – Claudio Criscione

Thank you!

Questions!?!?

stefano.zanero@polimi.it

c.criscione@securenetwork.it

	Pagina 1
	Pagina 2
	Pagina 3
	Pagina 4
	Pagina 5
	Pagina 6
	Pagina 7
	Pagina 8
	Pagina 9
	Pagina 10
	Pagina 11
	Pagina 12
	Pagina 13
	Pagina 14
	Pagina 15
	Pagina 16
	Pagina 17
	Pagina 18
	Pagina 19
	Pagina 20
	Pagina 21
	Pagina 22
	Pagina 23
	Pagina 24
	Pagina 25
	Pagina 26
	Pagina 27
	Pagina 28
	Pagina 29

