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Who's who

 Stefano Zanero
• Assistant Professor @ Politecnico di Milano

 Claudio Criscione
• Principal Consultant @ Secure Network
• Hopefully soon-to-be PhD student @ Politecnico di 

Milano
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What is our speech all about?

It's about letting people in charge of web applications security sleep at night*

* terms and conditions apply. We do not take care of your partner snoring
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Web Applications security

 Difficult, IRW to
• Detect attacks
• Apply patches (without support from developers)
• Have the time to follow all those 2458 unitasker web applications

 In the meantime, you're likely going to get hacked by a pack of 
Monkeys (which can successfully hack web application, as 
scientifically demonstrated)
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Web application IDSs and IPSs (so far)

 Web Application Firewalls – a must?
• Patching is not always possible due to “obscure reasons”
• Application and infrastructure/security are different 

departments
• You just have to do “something” for web application security, 

and you have to do that yesterday
 Most WAF solutions suffer from the “Grep Dilemma”

• Should I really use something which is little more than a 
complex Grep?
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Why signatures are bad

 Inherent issues with signature based systems!
• Application of blacklisting, and we all know blacklisting is intrinsically 

flawed
• “Things that you do not hope for happen more frequently than things 

that you do hope for” (Plauto, “Mostellaria”)
• You cannot enumerate all the possible attacks, and “generic 

signatures” yadda yadda simply do not work nearly well enough

 Applying whitelisting (i.e. only allowing through what is supposed 
to go through) would work, but it is a configuration nightmare

• List every parameter of every form on every page of every 
application on every server

• And then we can discuss “change management”, folks...

 This is why WAFs require careful configuration and constant 
updating

• And time and skills are scarce resources, as usual
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What are we trying to do?

• Recreate the “Old Lady at the Window” effect
 You know, the old lady spotting “strange things happening” and 

dialing 9-1-1
• Which means...

 Learning what's normal: Whitelisting : Anomaly detection
 Block what's not: Intrusion prevention
 Without administrator intervention : Unsupervised learning
 With no (well, just a few) false positives
 With attacks in the learning set – because that's what happens in 

the real world!
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So, what is Masibty?

• A web application IPS
 Anomaly based, and capable of doing unsupervised learning
 Able to work in the “real-world”
 Partly language-indipendant (Java reverse proxy) and  partly 

language dependant (PHP PoC)
 A flexible architecture where modules can be plugged into
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Basic ideas

• What are we going to learn?

• How are we going to learn it?

• How are we going to use it?
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What are we going to learn?

   We have a name for that 
Entry Point

 URI
 Parameters
 Session
 The ubiquitous external 

influence
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Finding structure in entry points

 The first challenge: how do we identify Entry Points?
 Online multimodel n-dimensional agglomerative approximate 

clustering algorithm
• Which we had to design

 Multiple models to identify behaviors
• Parameters order, presence, type, names...

 We evaluate a distance between various queries on the same 
“URL”

 We end up with an “identifier of homogeneous input parameters”, 
which we assume is homogenous behaviour
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To clarify...

controller.php?
cmd=list_users&page=1

controller.php?
cmd=view_product&onWebsite=yes

controller.php?
cmd=view_product&pid=20&onWebsite=no&a
ccessible_mode=on
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How are we going to process the data?
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Anomaly and Trust

Anomaly
Reasoner{

Trust

Anomaly

Trust
Anomaly

Trust

Anomaly

Anomaly
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Parameter Anomaly

 For each parameter, we build a profile using various engines
• Order Engine
• Presence Engine
• Numbers Engine
• Aliens Engine
• Token Engine
• Distribution Engine
• Length Engine

 You can notice similarities with other models (like the ones 
proposed by Vigna and others) 

• We have improved some of their models or rebuilt them according to 
our new requirements
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Content Engines

• Some of the engines take care of the “values” of the 
Parameters
 Number engine: if we put a non-numerical value in an “almost 

always” numerical attribute, we get an anomaly
 Token Engine: some parameters can only assume predefined 

values. They're Tokens.
 Length Engine: parameters usually have a “similar” size
 Distribution Engine: we should be able to identify notable peaks 

in the usage of a single character
 Alien Engine: most parameters won't accept EVERY printable 

character
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Structural Engines

• Web applications often are “regular”, parameters are usually in the 
same order
 Order Engine

• ...and you usually have the same parameters on the same Entry Point
 Presence Engine

• Most structural engines can be bypassed, but are very accurate 
against many automated attacks!
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Client side attacks

• We now have a broad range of tools to identify attacks aimed at the 
server

• But yet, during the coding of Masibty, we wondered

“Since we already see all of these server responses, why 
don't we analyze those as well?”
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Anomaly Trees

 Build a representation of server responses
• Plant a (DOM) tree, save the environment!

 Once we have generated the tree, we can “learn” it
 If we see at some point in the future an unexpected branch on the 

tree...
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<HTML>
 <HEAD>
  <TITLE>
  <script>attack</script>
 </TITLE>
  <SCRIPT>JS</SCRIPT>
 </HEAD>
 <BODY>
  <DIV> TEST 123 </DIV>
  <DIV>
   <SCRIPT>JS</SCRIPT>
  </DIV>
 </BODY>
</HTML>

HTML

HEAD BODY

TITLE SCRIPT DIV DIV

SCRIPTSCRIPT

Anomaly Trees
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Growing trees in different shapes

 A trivial “difference” between 
trees would be very false-
positive prone

• And would cause a lot of 
issues on each update

 Templates : identify areas of 
the tree were new branches 
are more likely to happen.
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<HTML>
 <HEAD>
  <TITLE></TITLE>
  <SCRIPT>JS</SCRIPT>
 </HEAD>
 <BODY>
  <DIV> TEST 123 </DIV>
  <DIV>
   <SCRIPT>JS</SCRIPT>
  </DIV>
 </BODY>
</HTML>

Building templates
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Parsing

 2 issues
• Are we looking at the SAME tree the user would see?
• We only care about JavaScript

 Gecko!
 We build the DOM tree as the browser would do it
 We can ask Gecko where the javascripts lie

• So we only have meaningful branches in the trees
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Oh no, more trees! SQL Anomaly

 Once we had Anomaly Tree algorithms working reliably on DOM 
documents, it was “easy” to port them on SQL

 Each SQL query can be represented as a tree
• We can spot changes in the tree as we've done with the XSS 

Reasoner

SELECT * FROM USERS WHERE NAME = 'USER' AND 
(PASSWORD = 'PASS'  AND ROLE > 0)

AND

AND =

= >
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SQL Trees

AND

AND =

= >

OR

= = --

SELECT * FROM USERS 
WHERE NAME = 'USER' 
AND ( PASSWORD = 'PASS'
AND ROLE  > 0)

SELECT * FROM USERS 
WHERE NAME = ‘USER’ 
OR ‘1’=‘1’ -- AND 
(PASSWORD = ‘PASS’ AND 
ROLE > 0’)
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Can we avoid the webocalipse?

 Evaluating the performance of an IDS isn't an easy task
 We tested 7 “real” applications
 A simple methodology

• Install the application
• Use the application “through Masibty” as normal users would do
• Add some attacks during “learning”, either background noise like 

worms or real, successful attacks to the application
• Switch to detection and repeat the tests

 Excellent (if not conclusive) results
• 84% detection rate with a modest 0.14% false positive rate
• Which gets to 93% DR if we take Badstore (yes, we've tested that one 

too) out of the pool
• And gets to 100% DR, 0% FP if we remove the attacks from the 

training set... 
which is what everybody else does!
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How slow is it?

 Codebase is not optimized
• No really, it's just a PoC for now, blame Claudio :-)

 In our testing environment we got an average 4-50ms delta in 
response times during the training phase and 1-20 ms during the 
detection phase

 RAM and CPU usage were usually quite low – and it was running 
in Eclipse!

 More testing is on its way
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How can I get it? and future works

 It is going to be released for testing
• And hopefully we'll have a paper on that sooner or later

 We're building a working GUI
 Next steps include

• Supervised learning addon
• New dedicated reasoners (JSON, Flash, Headers...)
• Some advanced agent based stuff
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Thank you!

Questions!?!?

stefano.zanero@polimi.it

c.criscione@securenetwork.it
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