
An Analysis of Application Testing 
Methodologies, Their Effectiveness & The 

Corporate Illusion of Security 

David Bonvillain 
Neel Mehta 

Jon Miller 
Alex Wheeler 



 Introduction 
 Application Vulnerability Classes 
 Testing Methodologies & Solutions Analysis 

 Examples 
 Strengths  
 Challenges 
 Use Cases 

 Solutions 
 Conclusions 



 Most organizations are implementing application 
security initiatives 

 Wide variety of solutions and methodologies 
available – Many claim to ‘find all the problems’ 
  Application vulnerability scanning  
  Static code analysis  
  3rd party penetration testing & app assessments 
  Binary Analysis 
  Fuzzing 
  etc.  

 Which solutions find which issues? What are their 
strengths & weaknesses? What is the best 
methodology for different applications? 

 General lack of knowledge & understanding… 



 Reason for faults/vulnerabilities = the 
reason any testing solution isn’t perfect 
  (some are nowhere close) 

 Organizations have chosen a blind 
approach of “I’ll fix it if it’s a known 
issue or something in the LHF category of 
vulnerabilities” 

 From a software builders perspective…no 
company has ever gone out of business 
due to a security issue in their product 
  Issues can cause less sales – ISS Witty Worm 
  Issues can also increase niche business space 



0 

1 

2 

3 

4 

5 

6 

7 

8 

?



On a long enough timeline the survival rate of anything drops to zero… 

Can we develop software without bugs? 
 -> Is it worth it to develop secure software? 
 -> Is it profitable to develop securely? 
 -> Does secure code affect the bottom line? 
 -> No company has gone out of business by  
writing insecure code 

Let’s examine using our version of the Fight Club formula for applications 

The number of applications in the field = A 
The probable rate of failure (active exploits) = B 
The average cost of business loss & developing and deploying a patch = C 

[A*B*C=X] 
If X is less than the cost of the additional Q&A, coder training and 3rd party 

security audits, it financially makes more sense to distribute insecure 
code. 



Operational & Platform Vulnerabilities 

Information 
Disclosure 

OS Buffer 
Overflows / 

Missing Patches 

Service 
Configurations 

Error Handling 

Implementation Vulnerabilities 

Code Injection 

Command 
Execution 

Information 
Gathering 

Error Handling 

Design Vulnerabilities 

Logic Flaws Authorization Authentication 



Manual 

Automated 

vs. 



HAL: “Let me put it this 
way, Mr. Amor. The 9000 
series is the most reliable 
computer ever made. No 
9000 computer has ever 
made a mistake or distorted 
information. We are all, by 
any practical definition of 
the words, foolproof and 
incapable of error.” 
2001: A Space Odyssey 



Static 
(Off-
Line) 

Dynamic 
(Runtime) 

vs 



Automated Dynamic 
  e.g., Fuzz Testing, Vulnerability Scanning 

Automated Static 
  e.g., Source/Binary Code Scanning 

Manual Dynamic 
  e.g., Parameter Tampering and Social Engineering 

Manual Static 
  e.g., Source/Binary Code Auditing 





Programmatic Analysis of a Runtime Target for Security 
Issues 

Common Components: 
  Trigger: inputs to invoke security issue conditions 
  Indicator: anomaly evidencing security issue 
  Runtime Engine: controls the firing of triggers and observing 

of indicators 

Triggers 
Running  
TARGET 

Input 

Indicators Output 



  Fuzz Testing – Noting defects by observing 
failures generated by programmatically 
submitting arbitrary data to program inputs. 

  Vulnerability Scanning – programmatically 
submitting transactions from a data set of 
inputs and outputs mapped to known issues. 

  Application Scanning – A combination of 
both approaches, where inputs are fuzzed with 
data for known classes of issues. 



Fuzz Testing 

Application 
Scanning 

Vulnerability 
Scanning 

Simple 

Involved 



False Positives 
 Runtime provides inherent benefits 

  Interpretation can still be an issue 

Reliability & Consistency 
 Programmatic approach ensures reliable and 

consistent application of tests (including 
mistakes), useful in developing baselines 

Resource Requirements 
 Scanning vs. Fuzz Testing 



Weak Assurance (Positive & Negative) 
 No Fault != No Flaw 
 Unknown level of unexercised code data 

permutations 

Unknown Level Coverage 
 Only code audit can provide a baseline for 

measurement 

Low Flexibility 
 Unexpected circumstances cannot be addressed 

without additional programming 



Fuzz Testing 
 Pre-production  
 Sparsely audited code base 
 Complex application input processing 
 Weak, immature, or informal SDLC 
 Large amount of observable indicators 
 Prior runs yield numerous significant results 



Application Scanning 
 Strongly typed flaw classes 
 Deterministic & observable behavior 
 Generally known input types 
 Prior runs yield numerous significant results 

Vulnerability Scanning 
 Deterministic & observable behavior 
 Known transaction sequences 
 Strong trigger to indicator mappings 



Fuzz Testing 
 Mature & widely deployed code base 
 Low fault observation accuracy or ability 
 Thoroughly audited code base 
 Prior runs yield no significant results 
 Largely unknown program inputs 



MS07-010  
 Default Enabled in Vista  
 Integer Overflow in Protection Engine  

Library PDF Parser affecting multiple 
products 

 Simple Issue with complex data flow 
 Discovered in Static Binary Analysis 

 Fuzz Testing would have needed multiple 
encoding support 

 Source Testing would have needed  



Application Scanning 
 Substantial variability around program inputs 
 Low visibility into issue indicators 
 Built with non-standard/custom technology 

Vulnerability Scanning 
 Highly customized services environment 
 Low confidence in response accuracy  





 An automatic static analysis tool discovers 
security issues in code (src/binary), when run 
with minimal or no user interaction. 

 Numerous commercial tools, open source 
tools, academic papers and work in the field 
of automated static analysis. 

 Administrations run a quick static analysis of 
their application at an appropriate point in 
the development lifecycle, and then respond 
to the results. 



 Evaluation procedure: 
 Select a legacy version of an application (closed-

src), containing known but private 
vulnerabilities. 

 Evaluate the coverage of the tool over known 
issues. 

 Less fair evaluation procedure: 
 Select a current version of a widely-deployed and 

scrutinized application with privately known 0day 
issues (Apache, Firefox 3.08, etc.) 

 Evaluate their competence, relative to the state 
of the art attacks these applications constantly 
face. 



 Informal flaw identification: 
 Antiquated pattern-matching solutions (context-

away or grep). 

 Formal verification methods: 
 Model-checking solutions. 
 Data-flow analysis solutions. 
 Abstract interpretation-derived solutions. 



Model Checking 

Pattern Matching 

Abstract Interp. 

Data Flow Analysis 

Simple 

Involved 



 Locating low-context flaws: 
$my_table = $req->getParameter(“unfiltered”); 
$db->query(“SELECT * FROM “,$my_table,”WHERE 

intent = “EXPOSE ALL MY DATA”); 
 Quite useful if you left assessing enormous 

volumes of terrible code. 

 Speed, human interaction: 
 Fast, little to no human interaction during scans 

 Integrates well with most development life-
cycles. 



 Tool-specific challenges: 
  -applications without source code, binaries 

without information to return to source 
  -no application support for your language 
  -SAT that are not tightly integrated with the 

build processes are at a disadvantage 
  -SAT applications that perform 'pseudo-

compilation' are dangerously deficient and 
vulnerable to asymmetries 

 High noise ratios : 
 Balancing false positives and negatives 
 An application that discovers 1 single serious 

security issue, and 10,000 non-issues is useful? 
 Tuning may help, we wish you luck. 



 Two extremely high level problems, neither 
simple for automated SAT: 
1) Developing and correctly expressing a set of 

security-critical invariants, which if disproven 
are issues. 
  It’s challenging to express high-level criteria or 

requirements as program invariants. 
  It is rarely easy to define all critical invariants for any 

sufficiently large application manually, let alone via 
automatic SAT. 

  Invariants are typically a large relatively static vendor-
provided list, woefully limited to issues they can 
confidently detect. 



2) Developing an interpretation of the application 
that lends itself to proving or disproving 
invariants. 
  Abstract interpretation is largely a purpose-driven 

approach, tailored to the invariants you’re looking to 
prove/disprove. 

  Abstract interpretation to prove a single invariant 
might be simple, but is quickly complicated by inter-
procedural analysis, undecidable data structures or 
storage mechanisms. 

 Model checking is limited to a crippling subset of 
operations in any modern application. 



 Timely, and sometimes resource-efficient 
detection of blatantly-simple flaws in 
enormous code bases. 

 As part of a dev lifecycle, quickly detecting 
regression or re-introduction of blatantly-
simple flaws. 

 For applications where the risk profile is 
limited to none, that do not warrant 
alternate forms of testing. 



 Obtaining strong assurance about the 
security of a critical application in the face 
of a skilled and motivated attacker. 

 Against a code base that has undergone any 
degree of more sophisticated review. 

 In the hands of a developer who cannot 
interpret or filter reports correctly. 
 Such as when deciding to remove code with 

memory leaks from PRNG’s. 





 Human-navigated application usage. 
 Generally focused on one of the following: 

 Manual fuzz-testing – discovering unanticipated 
implementation flaws. 

 Assurance validation. 
 Verifying implementation against specification. 

 Almost always aided by test tools. 
 Test cases come almost exclusively from the 

tester.  
 Critical background information provided by 

developers. 



Parameter 
tampering 

Assurance 
validation 

Common 
Criteria 

Simple 

Involved 



 Draws on the intuition of the tester (capacity 
for parallelism in thought). 

 Much of manual security testing is pattern 
recognition, an inherently subconscious 
process. 
  Innocuous, seemingly irrelevant inconsistencies 

often reveal large and severe underlying flaws. 

 Tests live implementations, so false positives 
are reduced. 

 Directly emulates the process of a malicious 
attack performed without source. 



 Can be time consuming for large and 
complex applications. 
 Application risk profile, relative to size of critical 

attack surface and complexity, must be favorable 
to justify in-depth testing. 

 Might include a steep learning curve. 
 Heavily dependent on the tester: 

 How orthogonal their security testing skillset and 
methodology is to the application’s vulnerability 
set. 

 Testing environment may not mirror 
production. 



 A highly experienced security researcher or 
consultant, properly scoped: 
 High risk applications, or high-risk portions of the 

attack surface for larger applications. 

 Especially critical to use manual dynamic 
testing in cases where: 
 Attackers are expected to be blindly attacking a 

high-risk application. 
 Results of test cases that fail cannot be easily 

identified through automated testing. 
 An application that is inherently risky will almost 

always require this form of testing (especially 
new and untested technologies). 



 Applications with limited or no feedback, or 
asynchronous feedback 

 The wrong tester, or the wrong application 
for the tester 

 Cases where the requirements of an 
assessment doesn’t match the expected risk 
profile for an application 



 SSH CRC32 Compensation Attack (CVE-2001-1044) 
– Discovered by Michal Zalewski: 

 From Bugtraq post Feb. 2001: 

 $ ssh -v -l `perl -e '{print "A"x88000}'` localhost   

 Remote, pre-authentication, default remote 
vulnerability in SSH.COM and OpenSSH daemons, at 
the peak of their usage. 

 Actual issue: 
  16-bit integer truncation deep in code designed to correct a 

less serious protocol weakness. 
  Extremely subtle for the time, and unlikely to be found by 

other methods. 





Human Review of a Non-Running Target for Security 
Issues 

Common Components: 
  Target documentation (architecture, implementation, 

configuration) 
 Offline toolset (code browser, disassembler, graphing tools) 



Source Code Audit Binary Code Audit 

Configuration Audit 



Strong Assurance Potential 
 Known data and code points allow baseline 

High Coverage Potential 
 Without resource considerations 

Flexibility 
 Adaptable skill & tool set 



Accuracy Issues 
  False positives: without verification step, many issues cannot 

be triggered 
 Missing: humans make mistakes 

High Resource Requirements 
  Skill-based methodology, with high demand 

High Error Factor 
  Same factors introducing flaws are also at work here 

Inconsistency 
  Same auditor may miss or hit the same flaw on different days. 



Manual Code Audit 
 Access to overlapping skilled resources for repeat 

engagements 
 Prior automated tests returned only minor findings 
 Largely non-standard/custom program inputs 



Configuration Review 
 Low risk of setting values changing in runtime (e.g., 

malware or backdoor) 
 Largely known data sources and formatings 
 Availability of job aids for reduction of effort (e.g., 

grep, work plans, or checklists) 



struct igmp_report  
{ 
 __u8 type; 
 __u8 resv1; 
 __be16 csum; 
 __be16 resv2; 
 __be16 ngrec; 
 struct igmpv3_grec grec[0]; 
};   



Generate_Report ( … ) 
 igmp_report *report = arg_0; 
 SLIST  *addrlist = arg_4; 
 unsigned short cnt; 
  

 for(addrlist = addrlist->nxt, cnt=0; report->nxt; cnt++); 

 report = malloc(cnt*sizeof(report->ngrec)
+sizeof(*report)); 

 for(addrlist = addrlist->nxt, cnt=0; report->nxt; cnt++) 
  memcpy(report->ngrec+cnt, addrlist, 4) 



  Statistics based on over 32,000 sites and 70,000 vulnerabilities 
of different degrees of severity 

  2 different data sources:  
  Automated vulnerability scanning testing results  
  Combination / Grey-Box Testing methodology:  

 Application vulnerability scanning coupled with manual analysis, manual 
search for vulnerabilities which cannot be detected by automated 
scanner, and source code analysis. 

WASC Statistics Project: Consolidated analysis of common vulnerabilities 
across a variety of web applications 

  3 data sets were obtained: 
  Overall statistics  
  Automated scanning statistics  
  Black and White-Box methods security assessment statistics  

o  Grey-Box testing was limited to interactive web applications 

(http://www.webappsec.org/projects/statistics/) 



Results:  
  Probability to detect high risk vulnerabilities using combined testing 

methodologies is 12.5 times higher than using automated scanning. 
  Over 7% of analyzed sites can be compromised automatically.  
  Using combined/grey-box methodologies high severity probability 

reaches 96.85%. 





 Recent Consulting Project Dataset 
 2 Representative Applications used – PHP and 

J2EE 
 Application testing methodologies analyzed 

across multiple vendor types 
 MSSP 
 Static Code Analysis Tools 
 Automated Dynamic Scanning  
 Consulting Vendors 

 Present vulnerabilities analyzed and then 
additional implanted across all vulnerability 
classes and ranges of severity 



Chart of solutions overall ability to identify vulnerabilities when 
compared as a whole 

-6.00 
94.00 

194.00 
294.00 
394.00 
494.00 
594.00 
694.00 

MSSP SAT Dynamic 
Automated 

Combination 

0 

50 

100 

150 

200 

250 

MSSP SAT Dynamic 
Automated 

Combination / 
Consulting 

PHP WebApp Weighted 
Score 

J2EE WebApp Weighted 
Score 



Solutions overall ability to find vulnerabilities within particular 
vulnerability class 

0% 

10% 

20% 

30% 

40% 

50% 

60% 

70% 

80% 

90% 

100% 

MSSP SAT Dynamic Automated Combination 



Chart for solutions ability to find high severity vulnerabilities across 
all classes 

0.00 

0.50 

1.00 

1.50 

2.00 

2.50 

3.00 

3.50 

4.00 

4.50 

5.00 

MSSP SAT Dynamic Automated Combination 



 You must determine risk to establish testing 
methodology. 

 Spending more on security than the overall 
liability is a waste of time, resources and 
money. 



 Risk = 
  Threat x Vulnerability x Impact 
  Asset Value x Threat 
  Confidentiality x Integrity x Availability x (Threat x 

Vulnerability) 
  Probability x Damage Potential (Microsoft) 

 Seriously? 
 How are these ideas defined? 
 How do I rank CIA? 
 Great idea, stupid implementation 

E=MC Retarded 



The only risk that matters is financial… 

 Intro… 
  Microsoft  
  Understand (Asset / Threat / Vulnerability / Attack / 

Countermeasure) 
  DREAD Ranking 

  Damage Potential 
  Reproducibility (only needs to happen once) 
  Exploitability  
  Affected Users 
  Discoverability 

 What about money??  
 That’s all I care about… 



 Business criticality / risk modeling 
 Exposure to attack 
 Business criticality 

  Effect to business 
  Effect to customers / reputation 
  Effect to personal information/exposure 
  Financial loss impact 



 Automated / Static / Dynamic / Manual 
 Questions to ask: 

1.  Maturity of your program 
2.  Skill level of personnel 
3.  Availability of skilled hours 
4.  Maturity of the application 
5.  Availability of code 
6.  Complexity of the application 

7.  Technology / language 
8.  Availability of test resources 
9.  Volume of users  
10.  Internal vs. external facing  
11.  Data sensitivity  
12.  Sensitive functionality  
13.  Regulatory requirements  



 Sweet… we answered those questions… now what? 
 Use common sense, there is no magic formula.. (at 

least we haven’t been able to figure out something 
perfect) 



www.humperdink.net 

Coming Soon: Form 
based calculator… 

Based on the ‘MSAMACTA’ 
formula outlined earlier, 
input variables on your 
application, and it will 
recommend the best 
testing methodology.  



Testing Solution Strengths Weaknesses Process Integration 

Automated  Testing – 
Dynamic Environment 
(Vulnerability 
Scanning) 

•  Quickly 
identifiesImplementati
on vulns 
•  Can identify 
Operational and 
Platform vulns 

•  Many false positives 
•  Most design vulns 
missed 
•  Noisy traffic for IDS 
systems 
•  Can impact resources 

During testing phase or 
within post-production 
deployment 
environment 

Automated / Manual – 
Dynamic Environment 
(Penetration Testing) 

•  Tests actual 
implementation 
• Finds issues from an 
attackers perspective 
•  Can find 
Implementation, 
Design and 
Operational vulns 

•  Can be slow 
•  Difficulty with some 
implementation 
vulnerabilities 
•  Testing can impact 
production 

During testing phase or 
within post-production 
deployment 
environment 

Threat Modeling •  Quickly identifies 
Design vulnerabilities 
•  Can be implemented 
early in dev cycle 

•  Ineffective for 
Implementation and 
Operational vulns 
•  High personnel 
impact 

Requirements analysis 
and security design 
phases of the SDLC 



Testing Solution Strengths Weaknesses Process Integration 

Manual Testing – 
Static Environment 
(Manual Code Review) 

• Detailed remediation 
info 
•  Some methods can 
quickly identify LHF 
issues 
•  Able to provide 
deeper analysis to 
show impact 

•  Comprehensive 
approach can be time 
consuming 
• Can require high 
personnel involvement 

During the coding 
phases of the SDLC or 
as a component of a 
comprehensive 
blended assessment 

Automated Analysis - 
Static Environment 
(Static Source Code 
Review Tools) 

• Quickly identifies 
pattern match 
vulnerabilities 
•  Often faster and 
cheaper then a manual 
review 

•  Few actionable 
results 
•  Cannot find Design 
vulns 
•  Cannot find certain 
classes of 
Implementation 
vulnerabilities 

During the coding 
phases of the SDLC or 
as a component of a 
comprehensive 
blended assessment 
approach 

Comprehensive 
Blended Assessment 
Methodology 

•  Efficiency 
• Accuracy 

•  Cost and duration QA & Post Production 



 There is no real ‘solution’ 
 No single ‘solution’ comprehensively 

identifies all critical application 
vulnerabilities or across all vulnerability 
classes. 

 A comprehensive program should include a 
blend of all of the various testing 
methodologies available. 

 Apply the appropriate testing methodology 
based on factors such as:  
  Application Risk Profile  
  Criticality 
  Timeframe  
  Availability of Resources 
  Budget 


