

DTRACE BACKGROUND
What Is DTrace™?

*Dtrace was created by Sun Microsystems, Inc. and released under the Common Development and Distribution
License (CDDL), a free software license based on the Mozilla Public License (MPL).

DTrace Background

• Kernel-based dynamic tracing framework
• Created by Sun Microsystems
• First released with Solaris™ 10 operating System
• Now included with Apple OS X Leopard, QNX
• Soon to be included with FreeBSD (John Birrell)
• OpenBSD, NetBSD, Linux?

*Solaris™ is a trademark of Sun Microsystems, Inc. in the United States and/or other countries.

DTrace Overview

• DTrace is a framework for performance
observability and debugging in real time

• Tracing is made possible by thousands of
“probes” placed “on the fly” throughout the system

• Probes are points of instrumentation in the kernel
• When a program execution passes one of these

points, the probe that enabled it is said to have
fired

• DTrace can bind a set of actions to each probe

DTrace Architecture

Source: Solaris Dynamic Tracing Guide

The D Language

• D is an interpreted, block-structured language
• D syntax is a subset of C
• D programs are compiled into intermediate form
• Intermediate form is validated for safety when

your program is first examined by the DTrace
kernel software

• The DTrace execution environment handles any
runtime errors

The D Language

• D does not use control-flow constructs such as if
statements and loops

• D program clauses are written as single, straight-
line statement lists that trace an optional, fixed
amount of data

• D can conditionally trace data and modify control
flow using logical expressions called predicates

• A predicate is tested at probe firing before
executing any statements

DTrace Performance

• DTrace is dynamic: probes are enabled only
when you need them

• No code is present for inactive probes
• There is no performance degradation when you

are not using DTrace
• When the dtrace command exits, all probes are

disabled and instrumentation removed
• The system is returned to its original state

DTrace Uses

• DTrace takes the power of multiple tools and
unifies them with one programmatically
accessible interface

• DTrace has features similar to the following:
– truss: tracing system calls, user functions
– ptrace: tracing library calls
– prex/tnf*: tracing kernel functions
– lockstat: profiling the kernel
– gdb: access to kernel/user memory

DTrace Uses

• DTrace combines system performance statistics,
debugging information, and execution analysis
into one tight package

• A real “Swiss army knife” for reverse engineers
• DTrace probes can monitor every part of the

system, giving “the big picture” or zooming in for a
closer look

• Can debug “transient” processes that other
debuggers cannot

Creating DTrace Scripts

• Dozens of ready-to-use scripts are included with
Sun’s DTraceToolkit; they can be used as
templates

• These scripts provide functions such as syscalls
by process, reads and writes by process, file
access, stack size, CPU time, memory r/w and
statistics

• Complex problems can often be diagnosed by a
single “one-liner” DTrace script

Example: Syscall Count

1
2
3
3
4

4309
6899

• System calls count by application:
dtrace -n 'syscall:::entry{@[execname] = count();}'.

Matched 427 probes
Syslogd
DirectoryService
Finder
TextMate
Cupsd
Ruby
vmware-vmx

Example: File Open Snoop

#!/usr/sbin/dtrace -s

syscall::open*:entry {
 printf("%s %s\n",

 execname,
 copyinstr(arg0));

}

Example: File Snoop Output

vmware-vmx /dev/urandom
Finder /Library/Preferences/SystemConfiguration/com.apple.smb.server.plist
iChat /Library/Preferences/SystemConfiguration/com.apple.smb.server.plist
Microsoft Power /Library/Preferences/SystemConfiguration/com.apple.smb.server.plist
nmblookup /System/Library/PrivateFrameworks/ByteRange ... ByteRangeLocking
nmblookup /dev/dtracehelper
nmblookup /dev/urandom
nmblookup /dev/autofs_nowait
Nmblookup /System/Library/PrivateFrameworks/ByteRange... ByteRangeLocking

 DTrace Lingo

• Probes are points of instrumentation
• Providers are logically grouped sets of probes
• Examples of providers include syscall, lockstat,

fbt, io, mib
• Predicates allow actions to be taken only when

certain conditions are met
• Actions are taken when a probe fires

DTrace Syntax

Generic D Script

Probe: provider:module:function:name
Predicate: /some condition that needs to happen/

{
Action: action1;
 action2; (ex: printf();)

}

DTRACE AND REVERSE
ENGINEERING (RE)

How Can We Use DTrace?

DTrace for RE

• DTrace is extremely versatile and has many
applications for RE

• It is very useful for understanding the way a
process works and interacts with the rest of the
system

• DTrace probes work in a manner very similar to
debugger “hooks”

• DTrace probes are useful because they can be
described generically and focused later

DTrace for RE

• Think of DTrace as a rapid development
framework for RE tasks and tools

• One of DTrace’s greatest assets is speed
• DTrace can instrument any process on the

system without starting or stopping it
• Complex operations can be understood with a

succinct one-line script
• You can refine your script as the process

continues to run

Helpful Features

DTrace gives us some valuable features for free:
• Control flow indicators
• Symbol resolution
• Call stack trace
• Function parameter values
• CPU register values
• Both in kernel space and user space!

Control Flow

 1 -> -[AIContentController finishSendContentObject:]
 1 -> -[AIAdium notificationCenter]
 1 <- -[AIAdium notificationCenter]
 1 -> -[AIContentController processAndSendContentObject:]
 1 -> -[AIContentController handleFileSendsForContentMessage:]
 1 <- -[AIContentController handleFileSendsForContentMessage:]
 1 -> -[AdiumOTREncryption willSendContentMessage:]
 1 -> policy_cb
 1 -> contactFromInfo
 1 -> -[AIAdium contactController]
 1 <- -[AIAdium contactController]
 1 -> accountFromAccountID

Symbol and Stack Trace

dyld`strcmp
 dyld`ImageLoaderMachO::findExportedSymbol(char
 dyld`ImageLoaderMachO::resolveUndefined(...
 dyld`ImageLoaderMachO::doBindLazySymbol(unsigned
 dyld`dyld::bindLazySymbol(mach_header const*, ...
 dyld`stub_binding_helper_interface2+0x15
 Ftpd`yylex+0x48
 Ftpd`yyparse+0x1d5
 ftpd`ftp_loop+0x7c
 ftpd`main+0xe46

Function Parameters

DTrace’s copyin* functions allow you to copy data
from the process space:

printf("arg0=%s", copyinstr(arg0))

Output:

 1 -> strcmp arg0=_isspecial_l

CPU Register Values

Uregs array allows access to reading CPU registers

printf(“EIP:%x”, uregs[R_EIP]);

Example:
EIP: 0xdeadbeef

EAX: 0xffffeae6
EBP: 0xdefacedd

ESP: 0x183f6000

Destructive Examples

#!/usr/sbin/dtrace -w -s
syscall::uname:entry { self->a = arg0; }

syscall::uname:return{
 copyoutstr(“Windows”, self->a, 257);
 copyoutstr(“PowerPC”, self->a+257, 257);
 copyoutstr(“2010.b17”, self->a+(257*2), 257);
 copyoutstr(“fud:2010-10-31”, self->a+(257*3), 257);
 copyoutstr(“PPC”, self->addr+(257*4), 257);
}

Adapted from: Jon Haslam, http://blogs.sun.com/jonh/date/20050321

Snooping

syscall::write: entry {

 self->a = arg0;
}

syscall::write: return {
 printf(“write: %s”,

 copyinstr(self->a);
}

Got Ideas?

Using DTrace:
• Monitor stack overflows
• Code coverage
• Fuzzer feedback
• Monitor heap overflows

DTrace vs. Debuggers

• Don’t think of DTrace as a DBG.
• User mode and kernel mode debuggers allow you

to control execution and inspect process
information

• DTrace can instrument both the kernel and user
land applications at the same time

• To trace execution, debuggers use instructions to
pause and resume execution

• DTrace carries out parallel actions in the kernel
when a probe is hit

DTrace vs. Debuggers

• Traditional debuggers also affect the target
process’s memory layout. DTrace doesn’t

• DTrace does not directly perform exception
handling

• DTrace can halt process and transfer control to
external debugger

• Currently DTrace is not susceptible to traditional
anti-debugging techniques (isdebuggerpresent())

• However, Apple has implemented probe blocking
with use of the PT_ATTACH_DENY

DTrace vs. Tracers

• Truss, ltrace, and strace operate one process at a
time, with no system-wide capability

• Truss reduces application performance
• Truss stops threads through procfs, records the

arguments for the system call, and then restarts
the thread

• Valgrind™ is limited to a single process and only
runs on Linux

• Ptrace is much more efficient at instruction level
tracing but it is crippled on OS X

*Valgrind is Open Source/Free Software and is freely available under the GNU General Public License.

DTrace Limitations

• The D language does not have conditionals or
loops

• The output of many functions is to stdout (i.e.,
stack(), unstack())

• Lack of loops and use of stdout means DTrace is
not ideal for processing data

• We can fix this

Reverse Engineering with Ruby
and DTrace

RE:Trace

RE:Trace

• RE:Trace combines Ruby with DTrace
• Ruby gives us the power of OOP, text processing,

iteration
• RE:Trace utilizes Ruby libdtrace bindings, written

by Chris Andrews
• Can be the glue which combines the power of

several existing Ruby RE frameworks (idarub,
librub, metasm, MSF3)

• RE:Trace is similar to programmatic debuggers
(pyDBG, knoxDBG, immDBG)

IdaRub

• Wraps IDA interface
• Ruby code is the client
• Server is IDA plugin
• Ruby glues it all together
• IdaRub was released by Spoonm at REcon 2006

ida.set_item_color(eip, 3000)

More info:
http://www.metasploit.com/users/spoonm/idarub/

RE:Trace and Exploit Dev

• Vulnerability analysis times of conventional
debuggers can be dramatically reduced with
RE:Trace

• DTrace probes allow you to track data input flow
throughout a process to understand where and
why memory corruption took place

• Methods that cause stack and heap corruption
can be pinpointed using IDARub to integrate
IDA’s static analysis features

RE:Trace and Code Coverage

• DTrace can “hook” every function in a process
• This makes it perfect for implementing a “code

coverage aware” fuzzer
• Code coverage is useful for understanding what

areas are being fuzzed
• Current RE code coverage monitors are mostly

block based (PaiMei)
• We can use IDA to obtain block information or

check code coverage at the function or instruction
level

MONITORING THE STACK
Writing a Stack Overflow Monitor

Stack Overflow Monitoring

Programmatic control at EIP overflow time allows
you to:

• Pinpoint the vulnerable function
• Reconstruct the function call trace
• Halt the process before damage occurs (HIDS)
• Dump and search process memory
• Send feedback to fuzzer
• Attach debugger

Overflow Detection in One
Probe

#/usr/sbin/dtrace -w -s

pid$target:::return
 / uregs[R_EIP] == 0x41414141 / {

 printf("Don’t tase me bro!!!");
 stop()

 ...
}

Cautionaries

A few issues to be aware of:
• DTrace drops probes by design
• Tune options, narrow trace scope to improve

performance
• Some libraries and functions behave badly
• Stack overflows can cause violations before

function return

First Approach

• Store RETURN value at function entry
• uregs[R_SP], NOT uregs[R_ESP]
• Compare EIP to saved RETURN value at function

return
• If different, there was an overflow

Simple enough, but false positives from:
• Tail call optimizations
• Functions without return probes

DTrace and Tail Calls

• Certain compiler optimizations mess with the
standard call/return control flow

• Tail calls are an example of such an optimization
• Two functions use the same stack frame, saves

resources, less instruction
• DTrace reports tail calls as a return then a call,

even though the return never happens
• EIP on return is not in the original calling function,

it is the entry to second
• Screws up simple stack monitor if not aware of it

New Approach

• Store RETURN value at function entry
• At function return, compare saved RETURN value

with CURRENT value
• Requires saving both the original return value and

its address in memory
• Fires when saved RETURN ! = current RETURN

and EIP = current RETURN

But Missing Return Probes???

Still trouble with functions that “never return”
• Some functions misbehave
• DTrace does not like function jump tables

(dyld_stub_*)
• Entry probe but no exit probe

Determining Missing Returns

Using DTrace – l flag
• List entry/exit probes for all functions
• Find functions with entry but no exit probe
Using DTrace aggregates
• Run application
• Aggregate on function entries and exits
• Look for mismatches
Exclude these functions with predicates
• / probefunc ! = “everybodyJump” /

Stack Overflow Video

Advanced Tracing

Diving in deeper:
• Instruction-level tracing
• Code coverage with IDA Pro and IdaRub
• Profiling idle and GUI code
• Feedback to the fuzzer, smart/evolutionary

fuzzing
• Conditional tracing based on function parameters

(reaching vulnerable code paths)

CODE COVERAGE
Instruction Tracing

Code Coverage Approach

Approach
• Instruction-level tracing using DTrace
• Must properly scope tracing
• Use IdaRub to send commands to IDA
• IDA colors instructions and code blocks
• Can be done in real time, if you can keep up

Tracing Instructions

• The last field of a probe is the offset in the
function

• Entry = offset 0
• Leave blank for every instruction
• Must map static global addresses to function

offset addresses

Print address of every instruction:
pid$target:a.out:: { print(“%d”, uregs[R_EIP]); }

Tracing Instructions (cont.)

• DTrace to print instructions
• Ruby-Dtrace to combined DTrace with Ruby
• Idarub and rublib to combined Ruby with IDA

Tracing libraries
• When tracing libraries, must know memory layout

of program
• vmmap on OS X will tell you
• Use offset to map runtime library EIPs to

decompiled libraries

Code Coverage with DTrace

Capabilities:
• Associate fuzz runs with code hit
• Visualize code paths
• Record number of times blocks were hit
• Compare idle traces to other traces

Limitations:
• Instruction tracing can be slow for some

applications
• Again, tuning and limiting scope

Coverage Visualization

Runtime Call Graphs

MONITORING THE HEAP
Writing a Heap Overflow Monitor

Hackin’ the Heap with RE:Trace

• The heap has become “the” major attack vector replacing
stack-based buffer overflows

• Relatively common unlink() write4 primitives are no longer
as “easy” to exploit on many platforms

• See Aitel and Waisman’s excellent “Debugging with ID”
presentation for more details

• As they point out, the key to the “new breed” of heap
exploit is understanding the heap layout and allocation
patterns

• ImmDBG can help you with this on Win32, and Gerrado
Richarte’s heap tracer can help you with visualization and
double free() on Solaris and Linux

Hackin’ the Heap with RE:Trace

• Many Different ways to use DTrace for heap
exploits

• Standard double free(), double malloc(), Leak
Detection

• Heap Visualization (Directed
Graphs/OpenGL/Instruments)

• Pesky off by one errors
• Spot app specific function pointers to overwrite
• Find heap overflows/corruptions that might not be

immediately dereferenced

OS X Heap Exploits

• ktrace = Bonds on the Pirates
• DTrace = Bonds on the Giants
• Older techniques such as overwriting

initial_malloc_zones function pointers are dead
• You now have to overwrite app specific data
• DTrace already hooks functions to understand

heap layout and allocation patterns (what, where,
when)

• A slew of Heap Tools for OS X (vmmap,
MallocScribble, MallocCheckHeap, leaks)

• DTrace is extensible and *quick* to use

Heap Visualization

Directed Graph of Heap Allocation Sizes:

RE:Trace Heap Smasher()

Refresher:
• When you malloc() on OS X, you are actually

calling the scalable zone allocator, which breaks
allocations into different zones by size:

Adapted from: OS X Internals A System Approach

RE:Trace Heap Smasher()

• In our heap smash detector, we must keep track
of four different “heaps”

• We do this by hooking malloc() calls and storing
them to ruby hashes with the pointer as the key
and the size allocated as the value

• We break the hashes into tiny, small, large, and
huge by allocation size

• We then hook all allocations and determine if the
pointer falls in the range of the previous
allocations. We can adjust the heap as memory is
free()’d or realloc’d()

RE:Trace Heap Smasher()

• By hooking C functions (strncpy, memcpy,
memmove, etc.) we can determine if they are
over-allocating to locations in the heap by looking
at the arguments and comparing to our heap
records

pid$target::strncpy:entry {
 self->sizer = arg2;
 printf("copyentry:dst=0x%p|src=0x%p;size=%i", arg0, arg1, arg2);
 self->sizer = 0;
}

RE:Trace Heap Smasher()

• We can check to see if the allocation happens in
a range we know about (check the hash).

• If it does, we know the size allocation, and we
can tell if a smash will occur

• Compared to our stack smash detector, we need
very few probes. A few dozen probes will hook all
the functions we need

• We can attach to a live process on and off without
disturbing it

RE:Trace Heap Smasher()

• We also keep a hash with the stack frame, which
is called the original malloc()

• When an overflow is detected, we know:

– Who allocated it (stack frame)
– Who used it (function hook)
– Where the overflowed memory is
– How large the overflow was
– We can find out if its ever free()’d

RE:Trace Heap Smasher() Video

RE:Trace Heap Smasher()

Future additions:
• Graphviz/OpenGL Graphs
• There is a new version of Firefox which has probes in the

JavaScript library
• This would give us functionality similar to Alexander

Soitorov’s HeapLib (Heap Fung Shui) for heap
manipulation generically

• Safari/DTrace should follow soon
• You tell me?

DTRACE DEFENSE
Using DTrace Defensively

Basic HIDS with DTrace

• Using Dtrace, you can profile your applications
basic behavior

• You should then be able to trace for anomalies
with predicates

• This is great for hacking up something to protect a
custom application (monitor for return-to-libc)

• Easy to create a rails interface for monitoring with
Ruby-DTrace

Basic HIDS with DTrace

• Problem: “I want to use QuickTime, but it’s got a
#@#$@# of holes”

• Solution: Make a DTrace script to call stop() when
weird stuff happens

• QuickTime probably never needs to call /bin/sh or
mprotect() on the stack to make it writable
(Houston we have a problem)

*QuickTime® is a registered trademark of Apple Inc. in the United States and/or other countries.

Basic HIDS with DTrace

#!/usr/sbin/dtrace -q -s

proc:::exec
 /execname == "QuickTime Player" &&
 args[0] == "/bin/sh"/
{

printf("\n%s Has been p0wned! It tried
to spawned %s\n”, execname, args[0])
}

HIDS Video

DTrace and Rootkits

• Check out Archim’s paper “B.D.S.M the Solaris
10 Way,” from the CCC Conference
• He created the SInAr rootkit for Solaris 10
• Describes a method for hiding a rootkit from
DTrace
• Only works on SPARC
• DTrace FBT (kernel) provider can spy on all
active kernel modules
• Should have the ability to detect rootkits, which
don’t explicitly hide from DTrace (SInAr is the only
one I could find)
• Expect more on this in the future

DTrace for Malware Analysis

• Very easy to hack up a script to analyze MalWare
• Example: Leopard DNS Changer (OSX.RSPlug.A)
• Why the heck is my video codec calling…

/usr/sbin/scutil
add ServerAddresses * $s1 $s2
set State:/Network/Service/$PSID/DNS

• You can monitor file I/O and syscalls with just two lines
• Scripts to do this now included with OS X by default
• Malware not hiding from DTrace yet
• BUT Apple made that a feature (yayyy!)

Hiding from DTrace

• In Jan. Core DTrace developer Adam Leventhal
discovered that Apple crippled DTrace for Leopard

• On OSX Your application can set the
“PT_ATTACH_DENY” flag to hide from DTrace just like
you can for GDB

• Leventhal used timing attacks to figure out they are hiding
iTunes™ and QuickTime from DTrace

• Very easy to patch in memory or with kext
• Landon Fuller released a kext to do this

http://landonf.bikemonkey.org/code/macosx/Leopard_PT_DENY_ATTACH.20080122.html

Conclusion

DTrace can:
• Collect an unprecedented range of data
• Collect very specific measurements
• Scope can be very broad or very precise

Applied to Reverse Engineering:
• Allows researchers to pinpoint specific situation (overflows)
• Or to understand general behavior (heap growth)

Future Work

• Automated feedback and integration with fuzzers
• Kernel tracing
• Improved overflow monitoring
• Heap manipulation libraries (think a cross-

platform, cross-browser implementation of
Soitorov’s HeapLib)

• Utilizing application-specific probes (probes for JS
in browsers, MySQL probes, ...)

Your own ideas!

Thank You!

Tiller Beauchamp
SAIC
Tiller.L.Beauchamp@SAIC.com

David Weston
SAIC
David.G.Weston@saic.com

See the RE:Trace framework for implementation:

http://re-tracer.blogspot.com/

Questions?

