
Analyzing Complex Systems
The BlackBerry Case

FX of Phenoelit

Step 1

Getting the big picture

Why Big Picture?

� You might not know every aspect of the target
� WYSIWYG is an intuitive but poor choice
� WYSIWYG is probably where the focus of the defending

side was
� The bigger the picture (system), the more clearly

you need to identify the promising attack vectors
… unless your organization has a three letter acronym and

you got unlimited time on your hands

Why Big Picture? II
� You might not know what resources you will need
� Hardware
� Software
� Infrastructure & Accounts
� Tools

� Getting what you need might take time
� Trying to get it might have other consequences
� Can you afford to invest money? How much?
� Can you afford to cross legal lines?
� Can you afford your target to know it’s under attack?
� Do you care?

Big Picture I

� Before anything else, make sure you
identified all components in the game
� Don’t miss non-obvious components

Corp
Net

Big Picture II

� Abstraction of the big picture helps to
identify key areas to look at
� Split the picture into it’s major components

Internet

RSN
(RIM Secret

Network)

RIM UK

RIM Can

RIM Some

GSM

BES

Provider side
RIM Servers

BB Mgmt

Big Picture III

� Break down the primary components of the
system you are looking at:
� Handheld devices
� Mobile Network (i.e. GSM)
� RIM Network
� Internet based communication
� BlackBerry Enterprise Server
� BlackBerry Enterprise Server Connectors
� BlackBerry Management Tools

Big Picture IV
� Reclassify the key elements in common terms:

� Handheld devices
= Embedded system, proprietary hardware, RTOS, Java

� Mobile Network
= 2.5/3G GSM style infrastructure

� RIM Network
= unknown, likely IP based

� Internet based communication
= Proprietary IP based Protocols

� BlackBerry Enterprise Server and Connectors
= Windows based server software, closes source

� BlackBerry Management Tools
= Windows based client/server software

Big Picture V – Accessibility
� Accessibility of the components

� Handheld devices
Æ doable, $666 per device

� Mobile Network
Æ hard, illegal

� RIM Network
Æ doable, illegal

� Internet based communication
Æ doable, requires access to a working installation

� BlackBerry Enterprise Server and Connectors
Æ easy, see IDA

� BlackBerry Management Tools
Æ easy, see IDA

Big Picture VI – Impact
� Estimate the impact of a successful attack

� Handheld devices
Æ Information disclosure, potentially remote control of single user

� Mobile Network
Æ Redirection of communication endpoints

� RIM Network
Æ Full control over the infrastructure, being RIM

� Internet based communication
Æ Impersonation of RIM or BlackBerry Server, brute force attacks

� BlackBerry Enterprise Server and Connectors
Æ Code execution on host OS, owning of a centrally placed server
system in corporate networks

� BlackBerry Management Tools
Æ Modification of policies, sending messages to everyone, may be
installing software on handhelds (see Handheld devices)

BES Mgmt

Big Picture VII

Impact

E
as

e
of

 a
cc

es
s

easy

hard

little massive

Handheld

Mobile Network

RIM Network

IP Protocols

BES

Step 2

Getting the details right

Diving into Details

� When you got the big picture completed, the
details are what matters most
� The details decide:
� How hard it will be to find an attack
� What you need
� How feasible the attack is
� How (il)legal the attack is

Handheld devices
� Simulation environment available
� Developer SDK available
� Current version is for Java
� Old version is for C

� Obviously more interesting (no sandbox)
� Only available for US and Canadian developers

� Desktop Software available
� Third party code available
� What do the 3rd party products do?
� What does this tell you about the powers of the API?

Protocols

� How many communication channels are used?
� Who initiates the communication, who can?
� What underlying protocols are used (i.e. are they

connection oriented or connection-less)?
� How much encapsulation is used?
� Multiple levels of encapsulation indicate a tree structure

of code handling the payload.
� Flat protocols indicate a single massive protocol parser.

� How variable is the protocol design?

Server Software
� How is the software designed?
� User-land, Service or Kernel?
� Security Context and required privileges?

� What building blocks is the software made of?
� Which handle user input?
� How is the user input transformed before handled by this

component?
� Who developed the component?
� What coding style was used?
� What programming language was used?
� Where is the interesting stuff stored?

Things to look at for details:
� History

� How old is the component compared to the overall scenario?
� Where does this component come from? What did the first release

do, what does the latest?
� Was there any major rewrite?
� Check the press releases.

� Documentation
� What are the setup requirements in administration guides?
� What are the troubleshooting procedures recommended?
� What are the troubleshooting procedures people actually use?

Æ Take what you read in publications, press releases,
documentation and forums as a hint, not a fact!

Step 3

Work

Work…

!$@*#$
BlackBerry!

Plop
This

sucks!

Beer!

1 hour10 hours20 hours30 hours40 hours50 hours100 hours200 hours300 hours400 hours500 hours...

Step 4

Results: The Handheld

First things first: strip it !

7290 naked
(back view)

First things first: strip it more!

7290 naked
(front view)

Handhelds

� Used to be 386, turns out
it’s an ARM (C SDK fairly
useless since it’s for 386)
� Different RTOS Kernels,

some run KADAK AMX 4, others run RIM
proprietary code. Every model is different.
� Binary images with hardware near code
� Loadable modules as PE/COFF DLLs linked

against the RIMOS.EXE main binary

Handheld JVM

� Java Virtual Machine loaded as largest
binary module (jvm.dll)
� CDLC 1.1, MIDP 2.0
� Java Vendor is RIM

� Limited set of J2ME classes
� Reflection API missing /

� Device control via RIM classes
� Java applications are almost useless without

RIM class support

Code Signing
� Java Application signature
� To use RIM classes
� Signs a hash of the JVM binary (.jar)
� $100 to be paid by credit card
� Suspicion: Collection of a list of all platform binary’s

hashes in case they become malware
� News Flash: Stolen Credit Cards exist
� Replacing the class loader doesn’t work /

� Firmware image signature
� Checked in Loader (see your debugger ☺)
� Something is checked while device is loading /

It’s not a Siemens, but …
� Browser Issue when parsing

.jad Files:
long name for
MIDlet-Name or -Vendor
� Exception thrown by the dialog
� Uncaught, modal dialog left over
� Browser toast, everything

else still works
� Soft- or Hard-Reset don’t work

(solution: denial all power to the device)

� RIM says it’s fixed in 4.0.2

Other things not tried yet
� Find the JTAG connectors
� Bluetooth on BlackBerry
� JVM bugs
� Reversing Images
� Figuring out checksums
� Loader.exe should be able

to read memory contents
from the device as well
(credit: mark@vulndev.org)

Step 5

Results: The Protocols

Server Relay Protocol

� Encapsulation protocol inside IPv4
� Simple header
� Multiple string or integer payload chunks in TLV

(type, length, value) format

IP PayloadIPv4 Header

SRP Header SRP Chunk SRP Chunk SRP Chunk SRP
Term

Server Relay Protocol

Byte Meaning
1 Protocol Version

2 Function

3-6 Length of the entire message

Data
type

Byte Value/Meaning

String 1 0x53 / type identifier

2-5 / length of the string

6-x / content

Integer 1 0x49 / type identifier

2-5 / value

Header

Chunk Format

SRP Opcodes
� 01 - RETURN
� 02 - DISCONNECT
� 03 - RECEIVE
� 04 - STATUS
� 05 - SEND
� 06 - CONNECT
� 07 - REGISTER
� 08 - DATA
� 09 - PAUSE
� 0A - RESEND
� 13 - CANCEL

� 14 - STATUS_ACK
� 15 - SUBMITTED
� 18 - DATA_ACK
� 19 - RESUME
� 21 - STATE
� F0 - RESET
� F1 - INFO
� F2 - CONFIG
� FC - PING
� FD - PONG
� FE - SRP Error

Session Setup

1. Client Æ Server: System ID
2. Server Æ Client: Server challenge

� Server Random seed + Random value + Ctime
3. Client Æ Server: Client challenge

� Client Random seed + Random value + Service string
4. Server Æ Client: HMAC_SHA1 (Client challenge)

� Transformed SRP Key used for HMAC_SHA1
5. Client Æ Server: HMAC_SHA1 (Server challenge)
6. Server Æ Client: init request
7. Client Æ Server: init data

Successfully implemented a Server and a Client in Perl

Gateway Message Envelope

� Encapsulation protocol for messaging
� Routing Information of the message
� Source (Server Identifier or PIN)
� Destination (Server Identifier or PIN)
� Message ID

� Comparable to information in Email headers

IP PayloadIPv4 Header

SRP EncapsulationSRP Header

GME PayloadGME PayloadGME HeaderGME Header

Generic Message Encapsulation(?)

Field Format

Protocol version 1 byte

Source Type = 1 byte [0x10]
Length = 1 byte
Value

Destination Type = 1 byte [0x20]
Length = 1 byte
Value

Terminator 1byte = [0x00]

Message ID 4 byte

Application Identifier Type = 1 byte [0x50]
Length = 1 byte
Value

GME command 1 byte

Content length Variable length integer

Terminator 1byte = [0x00]

GME Format

Application Layer

� Application layer identifier in clear text
� CMIME = message
� CICAL = calendar updates
� ITADMIN = key updates, IT policies, etc.

� Email, calendar and others encrypted
� PIN messages in clear text
� Documented behavior, but very hard to find

Application Layer

Field Format

Encryption Type 1 byte

Key ID

Terminator 1 byte [0x00]

Session Key 32 Byte

Terminator 1 byte [0x00]

Message
identifier

1 byte [0x19]

Message

CMIME Format

Application Layer Payload
� AES or DES encryption
� Key ID in clear text
� Session Key encrypted with device

key
� Message compressed and

encrypted with session key
� Successfully implemented packet

dump message decryption script
with given key in Perl

SRP Header

GME Header

Encryption Type /
Key ID

Session Key

Message

A word about the crypto

� Crypto library is FIPS certified
� Phe-no-crypto-people
� Implementation looks good in the

disassembly
� No obvious key leak problems when

activating devices via USB
� Crypto may be re-Weis-ed (as in Rüdi)

Decoding Dumps
0000000: 0208 0000 0083 4900 0002 f953 I....S
000000c: 0000 006f 2010 0954 3636 3632 ...o ..T6662
0000018: 3334 3236 2008 3233 3233 3233 3426 .232323
0000024: 3233 0000 000c 3850 0543 4d49 23....8P.CMI
0000030: 4d45 0340 4a00 0230 2b47 2b62 ME.@J..0+G+b
000003c: 001f 5131 9943 34ba e60e f8e4 ..Q1.C4.....
0000048: 1b9e 94e5 62c7 38ac 91dc c88a b.8.....
0000054: ba93 6edf 1e32 6732 b800 19e7 ..n..2g2....
0000060: 1d40 d58b 0fbc eca3 0395 168c .@..........
000006c: ddb8 b66e 501a 1f08 9d5e 93b7 ...nP....^..
0000078: 3d07 475c 4115 6149 0000 0000 =.G\A.aI....
0000084: 4900 0000 0300 00 I......

MessageSRP KeyEncrypt HdrGME

Traffic analysis

� Traffic analysis based on header possible
� Sender PIN known
� Recipient PIN known
� Message content type known
� Timing known

� In combination with (il)legal interception of
SMTP email traffic
� Email address to PIN mapping

Protocol based attacks I
� SRP Session setup with someone else’s key and

SRP ID
� Legitimate key owner disconnected when modifying data

in the session startup
� New connection from either source results in the other

one begin dropped
ÎAfter 5 reconnects in less than a minute, the key is

locked out. No BlackBerry service until RIM resolves the
issue.

� RIM Authentication keys are not viewed as secrets
by most companies
� Slides and screenshots with keys can be found by your

favorite search engine

Protocol based attacks II

� SRP String Type length field
� Integer overflow leads to Access Violation when initially

decoding packets
� Negative value -5 causes infinite decoding loop
� Affects at least router and enterprise server

.text:0042B11B OR eax, edx
; EAX is length field (now in Host Byte Order) after \x53

.text:0042B11D LEA edi, [eax+ecx]
; ECX is current position pointer in packet

.text:0042B120 CMP edi, ebx
; position + length > overall_length ?

.text:0042B122 JG short loc_42B19F
; jump to failure handling code if position + length points
; past the packet

Spam anyone?
� PIN messages not encrypted
� Therefore, no crypto code needed

� SRP authentication key can be used to PIN
message anybody, not only your users
� Any legitimate or stolen SRP key can be used

� Simple Perl script sufficient to send messages to
any PIN
� Sequentially sending it to all PINs

from 00000000 to FFFFFFFF ?
� Spoofing sender might be possible

(no evidence that it is not) – turns out it is!

Step 666

Results: The Enterprise Server

BlackBerry Enterprise Server

� BES Architecture
� SQL Database
� The beauty of updates
� Code style and quality
� Interesting libraries
� Attachment Service Special

BES Architecture

Notes

Router Dispatcher

MDS

Alert
Attachment

Service

Notes /
Exchange /
GroupWise

Connector

MS SQL

Internet

RIM

Policy
Service

BB Mgmt Software

BES Accounts

User
Admin
Account

Server
Mgmt
Account

Service
Account

Exchange
MailStore
Admin

Exchange
RO Admin

Local
Admin

Logon as
Service

Logon
Locally

SQL Database
� MS SQL Server with user authentication
� No integrated authentication for Domino

� Tables for individual messages and mails
� Table with SRP Authentication Key
� The most important secret between the BES and RIM

stored in clear text
� Table with Device Keys
� Previous, current and new/pending key
� Can be used for traffic decryption

� Default account: SA / (no password)

The beauty of updates

� RIM updates the BES
� Service Packs
� HotFixes
� Release and fix notes tend to be extremely

entertaining
� Hackers should update BES
� SABRE BinDiff
� Free .pdb debug information files in some fixes.

Many thanks to RIM.

Code style & quality
� Massive C++ code
� By-the-book pattern implementations
� Large classes
� STL
� Harder to reverse engineer

� Surprisingly good
� STL helps a lot
� “If in doubt, check again” approach

� A.k.a. select, select, select, recv
� But generally using signed integers,

although mostly correct

Interesting Libraries – reverse engineered

� Microsoft IStream classes
� Parsing of Microsoft Office documents

� Microsoft MSHTML4 engine
� Parsing of HTML documents

� MSXML SDK
� Installed, no idea what for.
� MSXML used for Sync server.

� Arizan parsing product
� Central parsing engine
� Parsing of PDF and Corel WordPerfect

Interesting Libraries – reverse engineered

� Zlib 1.2.1
� ZIP attachment handling is copy & paste

contrib/unzip.c (almost binary equal)
� Known bugs ☺

1.2.3 is current
� GraphicsMagick 1.1.3
� ImageMagick spin-off
� Fully linked, including debug code and …

open source Æ source audited

� …supported and compiled in file formats in
GraphicsMagick:
� ART, AVI, AVS, BMP, CGM, CMYK, CUR, CUT, DCM,

DCX, DIB, DPX, EMF, EPDF, EPI, EPS, EPS2, EPS3,
EPSF, EPSI, EPT, FAX, FIG, FITS, FPX, GIF, GPLT,
GRAY, HPGL, HTML, ICO, JBIG, JNG, JP2, JPC,
JPEG, MAN, MAT, MIFF, MONO, MNG, MPEG, M2V,
MPC, MSL, MTV, MVG, OTB, P7, PALM, PBM, PCD,
PCDS, PCL, PCX, PDB, PDF, PFA, PFB, PGM, PICON,
PICT, PIX, PNG, PNM, PPM, PS, PS2, PS3, PSD, PTIF,
PWP, RAD, RGB, RGBA, RLA, RLE, SCT, SFW, SGI,
SHTML, SUN, SVG, TGA, TIFF, TIM, TTF, TXT, UIL,
UYVY, VICAR, VIFF, WBMP, WMF, WPG, XBM, XCF,
XPM, XWD, YUV

Source audit: Use the Code Luke !

� GraphicsMagick ChangeLog:
� “coders/avi.c, bmp.c, and dib.c: applied security patch

from Cristy.”
� “coders/tiff.c (TIFFErrors): Prevent possible stack

overflow on error.”
� “coders/psd.c (ReadPSDImage): Fix stack overflow

vulnerability”
� “coders/tiff.c (ReadTIFFImage): Fix overflow while

computing colormap size.”
� Odd own format strings in arbitrary text fields of

any image format
� Expect image comment 100%tonne

to become 100C:\Windows\temp\bbaAA.tmponne

Reverse Engineering + Source results I

� Heap overflow in TIFF parser
� Integer overflow in image data memory

requirement allocation
� Allocation of small (0) memory block for image

data

Reverse Engineering + Source
results II

� Heap overflow in PNG parser
� #define PNG_USER_WIDTH_MAX 1000000L

does not prevent integer overflows
� Overflow in memory allocation counter
� Allocation of small (1MB) memory block for

image data decompression

More Open Source results

� Zlib museum in PNG parser
� Paying attention?

Version 1.2.1 used, inclusive decompression bug
� PNG image data is zip compressed
� Heap overflow when decompressing image data
� Your arbitrary BugTraq example works

� Interestingly enough, known libPNG bugs are fixed

BES Architecture Attack

NotesNotes

Router Dispatcher

MDS

Alert
Attachment

Service

Notes /
Exchange /
GroupWise

Connector

MS SQL

Internet

RIM

Policy
Service

(_x_)

O
btain

Keys

Key

BES Architecture must be

Notes

Router Dispatcher

MDS

Alert Notes /
Exchange /
GroupWise

Connector

MS SQL

Internet

RIM

Policy
Service

Attachment
Service

Separate Attachment Service issue

� Remote control
� TCP port 1999
� Unauthenticated XML
� Query
� Version
� Statistics
� Number of processes

� Set number of processes
� Recommended test values: 0, 20000

Step 7

Mopping up

Vendor communication

� Vendor and users of the system in question
can greatly profit from the analysis done
� Well planned analysis yields unique insights in

the architecture and the effectiveness of fixes
� RIM
� re-work of attachment image parsing

� RIM customers
� Moving BES and Database in separate DMZ
� Separation of the attachment service

Finalizing
� Print offensive T-Shirts
� Meet with everyone involved
� Get drunk
� Send greets to random

people, such as:

Phenoelit, 13354, Halvar Flake & SABRE Security, THC,
all@ph-neutral, hack.lu, Scusi, mark@vulndev.org, Frank

Rieger, the Eschschloraque Rümpschrümp, mac, t3c0,
trash, the darklab@darklab.org people

and Ian Robertson from RIM

