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INTRODUCTION

Informal Definition:

— Structured manual review of code to identify
security vulnerabilities

— Primary efforts are focused on static analysis

— Runtime analysis 1s relied upon primarily for
verification purposes
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INTRODUCTION

Toolset:
— IDA 1s the best tool available for binary static
analysis

— ctags & cscope, sourcenav are good for source
code

— Softlce/OllyDbg on Microsoft and gdb on others
for runtime analysis/verification

— Vmware useful for testing vulnerabilities on
different target versions
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INTRODUCTION

Code Auditing Success Factors:
— API, OS, and machine background knowledge
— Pattern recognition
— Application understanding

— Leave no code unaudited
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INTRODUCTION

Background Knowledge:

— The more familiar you are with the machine, OS,
and API’s, the more successful audits will be too

— API, OS, and machine quirks and pitfalls (we will
see some of these)

— External entities, special handling (/dev files,
named pipes, etc.), signals/events, etc.
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INTRODUCTION

Pattern Recognition:
— Code constructs
— Dangerous use of API’s
— Flawed logic
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INTRODUCTION

Functional Understanding:
— Complements pattern recognition
— Identifying where code can be influenced

— Utilization of available documentation (RFC’s,
protocol specs, product-specific docs)
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INTRODUCTION

Completeness:

— Thoroughness 1s important because the vast
majority of code 1s usually ok

— When you make assumptions about how
something works, you either miss bugs or assume
something is a bug when it 1s not
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CODE SURVEY

It 1s impossible to cover all interesting code 1n a
speech, but here are some big hitters.

— API Based Bugs
— External Resource Interactions
— Programming Construct Errors
— State Mechanics
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CODE SURVEY

API Based Bugs — based on misuse of API’s
provided by the OS or application.

— Dangerous string or formatting functions: e.g.,

sprintf(), strcpy(), strcat(), printf(), syslog()...

— Dangerous implicit behavior: e.g., Allocators that
round

— Cumbersome/Complicated API reference contents:
¢.g., threading, IPC
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CODE SURVEY

API Based Bug Example 1:

char blah[260], buf[256];
sprintf(blah, “%s”, “BLAH”);
recv(socket, buf, 256, 0);
strncat(blah, buf, 256);
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CODE SURVEY

API Based Bug Example 2:

int allocator(struct memory *h, int length){
while(h->next != 0)
h = h->next;

h->next = calloc(length + 4, 1);

return h->next + 4;
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CODE SURVEY

External Resource Interactions — bugs where the
application interacts dangerously with other entities.

— Privilege escalation through RPC/COM/Pipes and other
forms of [PC

— Executing external programs via system() - metacharacters

— Executing external programs via execve()/CreateProcess() -
polluting the environment, fd leaks, etc.

— File iteraction: doubledots, special files (/dev/, LPTO,
ADS's, etc.)
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CODE SURVEY

External Resource Interactions Example 1:

HANDLE GetRequestedFile(LPCSTR requestedFile)

d
if(strstr(requestedFile, “..”))

return INVALID HANDLE VALUE;

if(strcmp(requestedFile, “.config”) == 0)
return INVALID HANDLE VALUE;

return CreateFile(requestedFile, GENERIC READ,
FILE SHARE READ, NULL, OPEN EXISTING, 0, NULL);
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CODE SURVEY

External Resource Interactions Example 2:

char *ProfileDirectory = “c:\profiles”;

BOOL LoadProfile(LPCSTR UserName) {
HANDLE hFile; char buff MAX PATH];

if(strlen(UserName) > MAX PATH - strlen(ProfileDirectory) — 12) return FALSE;
snprintf(buf, sizeof(buf), “%s\prof %s.txt”, ProfileDirectory, UserName);
hFile = CreateFile(buf, GENERIC READ, 0, NULL, OPEN_ EXISTING, 0, NULL);

if(hFile == INVALID HANDLE VALUE) return FALSE;
// ... load profile data ...

b
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CODE SURVEY

Programming Construct Errors — the bugs are the
result of bad programming constructs.
— Integer signedness
— Integer boundaries

— Checks that are logically wrong or susceptible to
integer problems

— Loops that have bad boundaries

— Unchecked variables
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CODE SURVEY

Programming Construct Error Example 1:

static int CAB read record(CAB_FILE struct *cfs, BYTE *dst) {
BYTE tmp = 0;
int count = 0;

do {
count++;
cfs->CAB_fgetc(cfs, &tmp);
if(dst) {
*dst++ = tmp;
b

} while(tmp);

Return count;
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CODE SURVEY

Programming Construct Error Examples 2 & 3:

#define MAXSTRLEN 100

char tmp[256];
char smallbuff MAXSTRLEN+1];

recv(socket, tmp, 256, 0));
if(MAXSTRLEN < 1 + tmp[0])
memcpy(smallbuf, tmp+1, MAXSTRLEN);

else
memcpy(smallbuf, tmp+1, tmp[0]);
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CODE SURVEY

Programming Construct Error Example 4:

» LOOP:
mov edx, [esi+198] ;current offset into large output buffer
mov ecX, [esi+190] ;ptr to start of small user controlled data
dec edx

mov [esi+198], edx

mov eax, edx

mov edx, [esi+1A0] ;current index
mov cl, [ecx, edx]

mov [eax], cl

mov edx, [esi+1A0] ;current index
mov eax, [esi+18C] ;small un-trusted table
mov eax, [eax+edx*4]
cmp eax, FF
mov [esi+1A0], eax ;current index
—— ja LOOP
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CODE SURVEY

Programming Construct Error Example 5:

void bad fn(char *input) { switch(c) {
char buf[256], *ptr, *end, c; case ‘\\’:
ptr = buf; ¢ = *input++;
end = &buf]sizeof(buf)-1]; if(!c) return;
*ptr++ = ¢;
while(ptr !=end) { break;
¢ = *mput++; case ‘\n’:
if(!c) *ptr++ = \r’;
return; ptr++ = “\n’;
break;
if(isalpha(c)) { default:
*ptr++ = ¢; *ptr++ = c;
continue; break; }
} }+// end while()
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CODE SURVEY

State Mechanics — these bugs are where the
program 1s left 1n an inconsistent state.

— Thread safety 1ssues
— Async-safety 1ssues (signals)
— Global variables left in an undesired state
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CODE SURVEY

State Mechanics Bug Example 1:

From buffer append space(): // buffer is global
buffer->alloc += len + 32768;

if (buffer->alloc > 0xa00000)

fatal("buffer append space: alloc %u not
supported", buffer->alloc);

buffer->buf = xrealloc(buffer->buf, buffer->alloc);
goto restart;

/* Frees any memory used for the buffer. */

void buffer free(Buffer *buffer) {
memset(buffer->buf, 0, buffer->alloc);
xfree(buffer->buf);
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CODE SURVEY

State Mechanics Bug Example 2:

// global void processing_thread entrypoint() {

request *head request *req;

VOICE1 .Slef\ier_thfead() { // find first unprocessed request
while(1) { for(req=head;req && !req-

if(request_available()) {

get request(head); >processed;req = req->next);

CreateThread(NULL,0, if(req) {
processing thread entrypoint, req->processed = 1;
} INULL»O)5 process_request(req);
else
wait for request(); } _
! ExitThread(0);
} b
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METHODOLOGY

Static
Observation > Theory
Pattern Hypothesis

Induction V V Deduction

(Hunt) | (Venily)
Theory Proof
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METHODOLOGY

Inductive Process
— Hunt

e annotating
* following x-refs
e reversing logic

Deductive Process
— Verify
* after static analysis fails to reveal dizz, rely on
runtime analysis for ultimate proof
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METHODOLOGY

Hunt - Annotate Code:

— Annotation should occur 1n all phases, but 1s a
necessary 15t step
— Input vectors

* network

e files
o [PC

— Be mindful some vectors are indirect
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METHODOLOGY

Hunt - Annotate Code Continued:

— Core 1nput utility procedures
 crc, checksum, etc.
 byte ordering, data representations

 context specific processing

— Memory routines
« allocation and resizing

e free

* COpY
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METHODOLOGY

Hunt - Follow X-refs:
— Input vectors
— Utility procedures
— Memory procedures

— Dealing with external entities (creating processes,
file manipulation, pipes/rpc, etc.)
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METHODOLOGY

Hunt - Follow X-refs Continued:

— Continue annotating
e wrapper functions
e arguments
e structures/classes

* local variables

— Example 1.0
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METHODOLOGY

Repeat:

— Induction

 use newly applied knowledge of global structures from
other parts of the code

* allows analysis of input further from nitialization,

generate additional annotation, hypothesize or resolve
indirection

« aids recognition of context specific processing (e.g., file
formats, network protocols, processing algorithms)

— Example 1.1
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METHODOLOGY

Verity:
— Statically backtrace to eliminate false bugs and
identify the vulnerability context

e continue to annotate code
e tracing into code past potential bugs is also valuable

— Generate normal event to trigger code
e aids 1n resolving/verifying indirection
« if trigger fails systematically move break point back in
the call tree to reveal reason

 getting dizzed 1n this step motivates you to do more
thorough static analysis next time
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METHODOLOGY

Verity Continued:

— Generate vulnerability event to trigger code
» usually best to do this w/ minimal effort

» same as before - 1f trigger fails systematically move
break point back in the call tree

o getting dizzed here is sometimes unavoidable @

— Example 1.2
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SOURCE & BINARY PARALLELS

Source Code Advantages:

— Annotation
 developer notes, application knowledge

* very little time spent here, relative to binary audits
— Abstraction — high level logic 1s more apparent

— Locating version differences 1s trivial (although
SABRE Bindiff usually eliminates this advantage)
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SOURCE & BINARY PARALLELS

Source Code Challenges:
— Some bugs are more subtle 1n source form

* machine specifics are only implied, e.g., sign
extensions and conversions

— Developers’ annotation carries implicit meaning,
which can be misleading

— If source code 1s public, often you need to find
subtle vulnerabilities
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SOURCE & BINARY PARALLELS

Binary Code Advantages:

— You do all the code annotation, which can be more
powerful than developer annotation

— It 1s possible this code has been reviewed to a
lesser extent

March 2006 The Science of Code Auditing 36



SOURCE & BINARY PARALLELS

Binary Code Challenges:
— Binary audits require more time than source
e annotation, reversing program logic

» potentially need to overcome obfuscation (either
deliberately obfuscated code or code that 1s
difficult to understand due to compiler
optimization)

— Indirection can be annoying to resolve statically

— High-level design vulnerabilities can be hard to
understand
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SOURCE & BINARY PARALLELS

Really no difference in basic methodology

— Binary generally requires more time

Interpreting binary as source
— Compiler-specific constructs
— Machine-specific constructs
— Annotation

— Indirection
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Thank You

Questions?
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