
March 2006 The Science of Code Auditing 1

THE SCIENCE OF CODE
AUDITING

Mark Dowd

Neel Mehta

Alex Wheeler

March 2006 The Science of Code Auditing 2

SUMMARY

1. Introduction

2. Code Survey – What to Audit

3. Methodology – How to Audit

4. Source & Binary Parallels

5. Questions

March 2006 The Science of Code Auditing 3

INTRODUCTION

Informal Definition:
– Structured manual review of code to identify

security vulnerabilities

– Primary efforts are focused on static analysis

– Runtime analysis is relied upon primarily for
verification purposes

March 2006 The Science of Code Auditing 4

INTRODUCTION

Toolset:

– IDA is the best tool available for binary static
analysis

– ctags & cscope, sourcenav are good for source
code

– SoftIce/OllyDbg on Microsoft and gdb on others
for runtime analysis/verification

– Vmware useful for testing vulnerabilities on
different target versions

March 2006 The Science of Code Auditing 5

INTRODUCTION

Code Auditing Success Factors:
– API, OS, and machine background knowledge

– Pattern recognition

– Application understanding

– Leave no code unaudited

March 2006 The Science of Code Auditing 6

INTRODUCTION

Background Knowledge:
– The more familiar you are with the machine, OS,

and API’s, the more successful audits will be too

– API, OS, and machine quirks and pitfalls (we will
see some of these)

– External entities, special handling (/dev files,
named pipes, etc.), signals/events, etc.

March 2006 The Science of Code Auditing 7

INTRODUCTION

Pattern Recognition:
– Code constructs

– Dangerous use of API’s

– Flawed logic

March 2006 The Science of Code Auditing 8

INTRODUCTION

Functional Understanding:
– Complements pattern recognition

– Identifying where code can be influenced

– Utilization of available documentation (RFC’s,
protocol specs, product-specific docs)

March 2006 The Science of Code Auditing 9

INTRODUCTION

Completeness:
– Thoroughness is important because the vast

majority of code is usually ok

– When you make assumptions about how
something works, you either miss bugs or assume
something is a bug when it is not

March 2006 The Science of Code Auditing 10

CODE SURVEY

It is impossible to cover all interesting code in a
speech, but here are some big hitters.

– API Based Bugs

– External Resource Interactions

– Programming Construct Errors

– State Mechanics

March 2006 The Science of Code Auditing 11

CODE SURVEY

API Based Bugs – based on misuse of API’s
provided by the OS or application.
– Dangerous string or formatting functions: e.g.,

sprintf(), strcpy(), strcat(), printf(), syslog()…

– Dangerous implicit behavior: e.g., Allocators that
round

– Cumbersome/Complicated API reference contents:
e.g., threading, IPC

March 2006 The Science of Code Auditing 12

CODE SURVEY

API Based Bug Example 1:

char blah[260], buf[256];

sprintf(blah, “%s”, “BLAH”);

recv(socket, buf, 256, 0);

strncat(blah, buf, 256);

March 2006 The Science of Code Auditing 13

CODE SURVEY

API Based Bug Example 2:

int allocator(struct memory *h, int length){
while(h->next != 0)

h = h->next;

h->next = calloc(length + 4, 1);

return h->next + 4;
}

March 2006 The Science of Code Auditing 14

CODE SURVEY

External Resource Interactions – bugs where the
application interacts dangerously with other entities.
– Privilege escalation through RPC/COM/Pipes and other

forms of IPC

– Executing external programs via system() - metacharacters

– Executing external programs via execve()/CreateProcess() -
polluting the environment, fd leaks, etc.

– File interaction: doubledots, special files (/dev/, LPT0,
ADS's, etc.)

March 2006 The Science of Code Auditing 15

CODE SURVEY
External Resource Interactions Example 1:

HANDLE GetRequestedFile(LPCSTR requestedFile)
{
 if(strstr(requestedFile, “..”))
 return INVALID_HANDLE_VALUE;

 if(strcmp(requestedFile, “.config”) == 0)
 return INVALID_HANDLE_VALUE;

 return CreateFile(requestedFile, GENERIC_READ,
 FILE_SHARE_READ, NULL, OPEN_EXISTING, 0, NULL);
}

March 2006 The Science of Code Auditing 16

CODE SURVEY
External Resource Interactions Example 2:

char *ProfileDirectory = “c:\profiles”;

BOOL LoadProfile(LPCSTR UserName) {
 HANDLE hFile; char buf[MAX_PATH];

 if(strlen(UserName) > MAX_PATH – strlen(ProfileDirectory) – 12) return FALSE;

 snprintf(buf, sizeof(buf), “%s\prof_%s.txt”, ProfileDirectory, UserName);

 hFile = CreateFile(buf, GENERIC_READ, 0, NULL, OPEN_EXISTING, 0, NULL);

 if(hFile == INVALID_HANDLE_VALUE) return FALSE;
 // ... load profile data ...
}

March 2006 The Science of Code Auditing 17

CODE SURVEY

Programming Construct Errors – the bugs are the
result of bad programming constructs.
– Integer signedness

– Integer boundaries

– Checks that are logically wrong or susceptible to
integer problems

– Loops that have bad boundaries

– Unchecked variables

March 2006 The Science of Code Auditing 18

CODE SURVEY
Programming Construct Error Example 1:

static int CAB_read_record(CAB_FILE__struct *cfs, BYTE *dst) {
BYTE tmp = 0;
int count = 0;

do {
count++;
cfs->CAB_fgetc(cfs, &tmp);
if(dst) {

*dst++ = tmp;
}

} while(tmp);
…
Return count;

}

March 2006 The Science of Code Auditing 19

CODE SURVEY
Programming Construct Error Examples 2 & 3:

#define MAXSTRLEN 100
…

char tmp[256];
char smallbuf[MAXSTRLEN+1];

recv(socket, tmp, 256, 0));

if(MAXSTRLEN < 1 + tmp[0])
memcpy(smallbuf, tmp+1, MAXSTRLEN);

else
memcpy(smallbuf, tmp+1, tmp[0]);

March 2006 The Science of Code Auditing 20

CODE SURVEY
Programming Construct Error Example 4:

 LOOP:
mov edx, [esi+198] ;current offset into large output buffer
mov ecx, [esi+190] ;ptr to start of small user controlled data
dec edx
mov [esi+198], edx
mov eax, edx
mov edx, [esi+1A0] ;current index
mov cl, [ecx, edx]
mov [eax], cl
mov edx, [esi+1A0] ;current index
mov eax, [esi+18C] ;small un-trusted table
mov eax, [eax+edx*4]
cmp eax, FF
mov [esi+1A0], eax ;current index
ja LOOP

March 2006 The Science of Code Auditing 21

CODE SURVEY

Programming Construct Error Example 5:
void bad_fn(char *input) {
 char buf[256], *ptr, *end, c;
 ptr = buf;
 end = &buf[sizeof(buf)-1];

 while(ptr != end) {
 c = *input++;
 if(!c)
 return;

 if(isalpha(c)) {
 *ptr++ = c;
 continue;

}

 switch(c) {
 case ‘\\’:
 c = *input++;
 if(!c) return;
 *ptr++ = c;
 break;
 case ‘\n’:
 *ptr++ = ‘\r’;
 *ptr++ = ‘\n’;
 break;
 default:
 *ptr++ = c;
 break; }
 }// end while()

March 2006 The Science of Code Auditing 22

CODE SURVEY

State Mechanics – these bugs are where the
program is left in an inconsistent state.
– Thread safety issues

– Async-safety issues (signals)

– Global variables left in an undesired state

March 2006 The Science of Code Auditing 23

CODE SURVEY
State Mechanics Bug Example 1:

From buffer_append_space(): // buffer is global
buffer->alloc += len + 32768;
if (buffer->alloc > 0xa00000)

fatal("buffer_append_space: alloc %u not
supported", buffer->alloc);
buffer->buf = xrealloc(buffer->buf, buffer->alloc);
goto restart;

/* Frees any memory used for the buffer. */
void buffer_free(Buffer *buffer) {
 memset(buffer->buf, 0, buffer->alloc);
 xfree(buffer->buf);
}

March 2006 The Science of Code Auditing 24

CODE SURVEY
State Mechanics Bug Example 2:
// global
request *head
void server_thread() {
 while(1) {
 if(request_available()) {
 get_request(head);
 CreateThread(NULL,0,
 processing_thread_entrypoint,
 NULL,0);
 } else
 wait_for_request();
 }
}

void processing_thread_entrypoint() {
 request *req;

 // find first unprocessed request

 for(req=head;req && !req-

 >processed;req = req->next);

 if(req) {

 req->processed = 1;

 process_request(req);

 }

 ExitThread(0);

}

March 2006 The Science of Code Auditing 25

METHODOLOGY

Induction
(Hunt)

Deduction
(Verify)

March 2006 The Science of Code Auditing 26

METHODOLOGY

Inductive Process
– Hunt

• annotating
• following x-refs
• reversing logic

Deductive Process
– Verify

• after static analysis fails to reveal dizz, rely on
runtime analysis for ultimate proof

March 2006 The Science of Code Auditing 27

METHODOLOGY

Hunt - Annotate Code:
– Annotation should occur in all phases, but is a

necessary 1st step

– Input vectors
• network

• files

• IPC

– Be mindful some vectors are indirect

March 2006 The Science of Code Auditing 28

METHODOLOGY

Hunt - Annotate Code Continued:
– Core input utility procedures

• crc, checksum, etc.

• byte ordering, data representations

• context specific processing

– Memory routines
• allocation and resizing

• free

• copy

March 2006 The Science of Code Auditing 29

METHODOLOGY

Hunt - Follow X-refs:
– Input vectors

– Utility procedures

– Memory procedures

– Dealing with external entities (creating processes,
file manipulation, pipes/rpc, etc.)

March 2006 The Science of Code Auditing 30

METHODOLOGY

Hunt - Follow X-refs Continued:
– Continue annotating

• wrapper functions

• arguments

• structures/classes

• local variables

– Example 1.0

March 2006 The Science of Code Auditing 31

METHODOLOGY

Repeat:
– Induction

• use newly applied knowledge of global structures from
other parts of the code

• allows analysis of input further from initialization,
generate additional annotation, hypothesize or resolve
indirection

• aids recognition of context specific processing (e.g., file
formats, network protocols, processing algorithms)

– Example 1.1

March 2006 The Science of Code Auditing 32

METHODOLOGY

Verify:
– Statically backtrace to eliminate false bugs and

identify the vulnerability context
• continue to annotate code
• tracing into code past potential bugs is also valuable

– Generate normal event to trigger code
• aids in resolving/verifying indirection
• if trigger fails systematically move break point back in

the call tree to reveal reason
• getting dizzed in this step motivates you to do more

thorough static analysis next time

March 2006 The Science of Code Auditing 33

METHODOLOGY

Verify Continued:
– Generate vulnerability event to trigger code

• usually best to do this w/ minimal effort

• same as before - if trigger fails systematically move
break point back in the call tree

• getting dizzed here is sometimes unavoidable 

– Example 1.2

March 2006 The Science of Code Auditing 34

SOURCE & BINARY PARALLELS

Source Code Advantages:
– Annotation

• developer notes, application knowledge

• very little time spent here, relative to binary audits

– Abstraction – high level logic is more apparent

– Locating version differences is trivial (although
SABRE Bindiff usually eliminates this advantage)

March 2006 The Science of Code Auditing 35

SOURCE & BINARY PARALLELS

Source Code Challenges:
– Some bugs are more subtle in source form

• machine specifics are only implied, e.g., sign
extensions and conversions

– Developers’ annotation carries implicit meaning,
which can be misleading

– If source code is public, often you need to find
subtle vulnerabilities

March 2006 The Science of Code Auditing 36

SOURCE & BINARY PARALLELS

Binary Code Advantages:
– You do all the code annotation, which can be more

powerful than developer annotation

– It is possible this code has been reviewed to a
lesser extent

March 2006 The Science of Code Auditing 37

SOURCE & BINARY PARALLELS

Binary Code Challenges:
– Binary audits require more time than source

• annotation, reversing program logic
• potentially need to overcome obfuscation (either

deliberately obfuscated code or code that is
difficult to understand due to compiler
optimization)

– Indirection can be annoying to resolve statically
– High-level design vulnerabilities can be hard to

understand

March 2006 The Science of Code Auditing 38

SOURCE & BINARY PARALLELS

Really no difference in basic methodology
– Binary generally requires more time

Interpreting binary as source
– Compiler-specific constructs

– Machine-specific constructs

– Annotation

– Indirection

March 2006 The Science of Code Auditing 39

Thank You

Questions?

