THE SCIENCE OF CODE
AUDITING

Mark Dowd
Neel Mehta
Alex Wheeler

March 2006




SUMMARY

1. Introduction

2. Code Survey — What to Audit
3. Methodology — How to Audit
4. Source & Binary Parallels

5. Questions

March 2006 The Science of Code Auditing



INTRODUCTION

Informal Definition:

— Structured manual review of code to identify
security vulnerabilities

— Primary efforts are focused on static analysis

— Runtime analysis 1s relied upon primarily for
verification purposes

March 2006 The Science of Code Auditing




INTRODUCTION

Toolset:
— IDA 1s the best tool available for binary static
analysis

— ctags & cscope, sourcenav are good for source
code

— Softlce/OllyDbg on Microsoft and gdb on others
for runtime analysis/verification

— Vmware useful for testing vulnerabilities on
different target versions

March 2006 The Science of Code Auditing




INTRODUCTION

Code Auditing Success Factors:
— API, OS, and machine background knowledge
— Pattern recognition
— Application understanding

— Leave no code unaudited

March 2006 The Science of Code Auditing




INTRODUCTION

Background Knowledge:

— The more familiar you are with the machine, OS,
and API’s, the more successful audits will be too

— API, OS, and machine quirks and pitfalls (we will
see some of these)

— External entities, special handling (/dev files,
named pipes, etc.), signals/events, etc.

March 2006 The Science of Code Auditing




INTRODUCTION

Pattern Recognition:
— Code constructs
— Dangerous use of API’s
— Flawed logic

March 2006 The Science of Code Auditing




INTRODUCTION

Functional Understanding:
— Complements pattern recognition
— Identifying where code can be influenced

— Utilization of available documentation (RFC’s,
protocol specs, product-specific docs)

March 2006 The Science of Code Auditing




INTRODUCTION

Completeness:

— Thoroughness 1s important because the vast
majority of code 1s usually ok

— When you make assumptions about how
something works, you either miss bugs or assume
something is a bug when it 1s not

March 2006 The Science of Code Auditing




CODE SURVEY

It 1s impossible to cover all interesting code 1n a
speech, but here are some big hitters.

— API Based Bugs
— External Resource Interactions
— Programming Construct Errors
— State Mechanics

March 2006 The Science of Code Auditing 10



CODE SURVEY

API Based Bugs — based on misuse of API’s
provided by the OS or application.

— Dangerous string or formatting functions: e.g.,

sprintf(), strcpy(), strcat(), printf(), syslog()...

— Dangerous implicit behavior: e.g., Allocators that
round

— Cumbersome/Complicated API reference contents:
¢.g., threading, IPC

March 2006 The Science of Code Auditing 11



CODE SURVEY

API Based Bug Example 1:

char blah[260], buf[256];
sprintf(blah, “%s”, “BLAH”);
recv(socket, buf, 256, 0);
strncat(blah, buf, 256);

March 2006 The Science of Code Auditing



CODE SURVEY

API Based Bug Example 2:

int allocator(struct memory *h, int length){
while(h->next != 0)
h = h->next;

h->next = calloc(length + 4, 1);

return h->next + 4;

March 2006 The Science of Code Auditing




CODE SURVEY

External Resource Interactions — bugs where the
application interacts dangerously with other entities.

— Privilege escalation through RPC/COM/Pipes and other
forms of [PC

— Executing external programs via system() - metacharacters

— Executing external programs via execve()/CreateProcess() -
polluting the environment, fd leaks, etc.

— File iteraction: doubledots, special files (/dev/, LPTO,
ADS's, etc.)

March 2006 The Science of Code Auditing




CODE SURVEY

External Resource Interactions Example 1:

HANDLE GetRequestedFile(LPCSTR requestedFile)

d
if(strstr(requestedFile, “..”))

return INVALID HANDLE VALUE;

if(strcmp(requestedFile, “.config”) == 0)
return INVALID HANDLE VALUE;

return CreateFile(requestedFile, GENERIC READ,
FILE SHARE READ, NULL, OPEN EXISTING, 0, NULL);

March 2006 The Science of Code Auditing




CODE SURVEY

External Resource Interactions Example 2:

char *ProfileDirectory = “c:\profiles”;

BOOL LoadProfile(LPCSTR UserName) {
HANDLE hFile; char buff MAX PATH];

if(strlen(UserName) > MAX PATH - strlen(ProfileDirectory) — 12) return FALSE;
snprintf(buf, sizeof(buf), “%s\prof %s.txt”, ProfileDirectory, UserName);
hFile = CreateFile(buf, GENERIC READ, 0, NULL, OPEN_ EXISTING, 0, NULL);

if(hFile == INVALID HANDLE VALUE) return FALSE;
// ... load profile data ...

b

March 2006 The Science of Code Auditing 16



CODE SURVEY

Programming Construct Errors — the bugs are the
result of bad programming constructs.
— Integer signedness
— Integer boundaries

— Checks that are logically wrong or susceptible to
integer problems

— Loops that have bad boundaries

— Unchecked variables

March 2006 The Science of Code Auditing




CODE SURVEY

Programming Construct Error Example 1:

static int CAB read record(CAB_FILE struct *cfs, BYTE *dst) {
BYTE tmp = 0;
int count = 0;

do {
count++;
cfs->CAB_fgetc(cfs, &tmp);
if(dst) {
*dst++ = tmp;
b

} while(tmp);

Return count;

March 2006 The Science of Code Auditing




CODE SURVEY

Programming Construct Error Examples 2 & 3:

#define MAXSTRLEN 100

char tmp[256];
char smallbuff MAXSTRLEN+1];

recv(socket, tmp, 256, 0));
if(MAXSTRLEN < 1 + tmp[0])
memcpy(smallbuf, tmp+1, MAXSTRLEN);

else
memcpy(smallbuf, tmp+1, tmp[0]);

March 2006 The Science of Code Auditing 19



CODE SURVEY

Programming Construct Error Example 4:

» LOOP:
mov edx, [esi+198] ;current offset into large output buffer
mov ecX, [esi+190] ;ptr to start of small user controlled data
dec edx

mov [esi+198], edx

mov eax, edx

mov edx, [esi+1A0] ;current index
mov cl, [ecx, edx]

mov [eax], cl

mov edx, [esi+1A0] ;current index
mov eax, [esi+18C] ;small un-trusted table
mov eax, [eax+edx*4]
cmp eax, FF
mov [esi+1A0], eax ;current index
—— ja LOOP

March 2006 The Science of Code Auditing 20



CODE SURVEY

Programming Construct Error Example 5:

void bad fn(char *input) { switch(c) {
char buf[256], *ptr, *end, c; case ‘\\’:
ptr = buf; ¢ = *input++;
end = &buf]sizeof(buf)-1]; if(!c) return;
*ptr++ = ¢;
while(ptr !=end) { break;
¢ = *mput++; case ‘\n’:
if(!c) *ptr++ = \r’;
return; ptr++ = “\n’;
break;
if(isalpha(c)) { default:
*ptr++ = ¢; *ptr++ = c;
continue; break; }
} }+// end while()

March 2006 The Science of Code Auditing pA |



CODE SURVEY

State Mechanics — these bugs are where the
program 1s left 1n an inconsistent state.

— Thread safety 1ssues
— Async-safety 1ssues (signals)
— Global variables left in an undesired state

March 2006 The Science of Code Auditing 22



CODE SURVEY

State Mechanics Bug Example 1:

From buffer append space(): // buffer is global
buffer->alloc += len + 32768;

if (buffer->alloc > 0xa00000)

fatal("buffer append space: alloc %u not
supported", buffer->alloc);

buffer->buf = xrealloc(buffer->buf, buffer->alloc);
goto restart;

/* Frees any memory used for the buffer. */

void buffer free(Buffer *buffer) {
memset(buffer->buf, 0, buffer->alloc);
xfree(buffer->buf);

March 2006 The Science of Code Auditing 23



CODE SURVEY

State Mechanics Bug Example 2:

// global void processing_thread entrypoint() {

request *head request *req;

VOICE1 .Slef\ier_thfead() { // find first unprocessed request
while(1) { for(req=head;req && !req-

if(request_available()) {

get request(head); >processed;req = req->next);

CreateThread(NULL,0, if(req) {
processing thread entrypoint, req->processed = 1;
} INULL»O)5 process_request(req);
else
wait for request(); } _
! ExitThread(0);
} b

March 2006 The Science of Code Auditing 24



METHODOLOGY

Static
Observation > Theory
Pattern Hypothesis

Induction V V Deduction

(Hunt) | (Venily)
Theory Proof

March 2006 The Science of Code Auditing




METHODOLOGY

Inductive Process
— Hunt

e annotating
* following x-refs
e reversing logic

Deductive Process
— Verify
* after static analysis fails to reveal dizz, rely on
runtime analysis for ultimate proof

March 2006 The Science of Code Auditing 26



METHODOLOGY

Hunt - Annotate Code:

— Annotation should occur 1n all phases, but 1s a
necessary 15t step
— Input vectors

* network

e files
o [PC

— Be mindful some vectors are indirect

March 2006 The Science of Code Auditing




METHODOLOGY

Hunt - Annotate Code Continued:

— Core 1nput utility procedures
 crc, checksum, etc.
 byte ordering, data representations

 context specific processing

— Memory routines
« allocation and resizing

e free

* COpY

March 2006 The Science of Code Auditing




METHODOLOGY

Hunt - Follow X-refs:
— Input vectors
— Utility procedures
— Memory procedures

— Dealing with external entities (creating processes,
file manipulation, pipes/rpc, etc.)

March 2006 The Science of Code Auditing 29



METHODOLOGY

Hunt - Follow X-refs Continued:

— Continue annotating
e wrapper functions
e arguments
e structures/classes

* local variables

— Example 1.0

March 2006 The Science of Code Auditing




METHODOLOGY

Repeat:

— Induction

 use newly applied knowledge of global structures from
other parts of the code

* allows analysis of input further from nitialization,

generate additional annotation, hypothesize or resolve
indirection

« aids recognition of context specific processing (e.g., file
formats, network protocols, processing algorithms)

— Example 1.1

March 2006 The Science of Code Auditing




METHODOLOGY

Verity:
— Statically backtrace to eliminate false bugs and
identify the vulnerability context

e continue to annotate code
e tracing into code past potential bugs is also valuable

— Generate normal event to trigger code
e aids 1n resolving/verifying indirection
« if trigger fails systematically move break point back in
the call tree to reveal reason

 getting dizzed 1n this step motivates you to do more
thorough static analysis next time

March 2006 The Science of Code Auditing

RY



METHODOLOGY

Verity Continued:

— Generate vulnerability event to trigger code
» usually best to do this w/ minimal effort

» same as before - 1f trigger fails systematically move
break point back in the call tree

o getting dizzed here is sometimes unavoidable @

— Example 1.2

March 2006 The Science of Code Auditing RX)



SOURCE & BINARY PARALLELS

Source Code Advantages:

— Annotation
 developer notes, application knowledge

* very little time spent here, relative to binary audits
— Abstraction — high level logic 1s more apparent

— Locating version differences 1s trivial (although
SABRE Bindiff usually eliminates this advantage)

March 2006 The Science of Code Auditing 34



SOURCE & BINARY PARALLELS

Source Code Challenges:
— Some bugs are more subtle 1n source form

* machine specifics are only implied, e.g., sign
extensions and conversions

— Developers’ annotation carries implicit meaning,
which can be misleading

— If source code 1s public, often you need to find
subtle vulnerabilities

March 2006 The Science of Code Auditing 35



SOURCE & BINARY PARALLELS

Binary Code Advantages:

— You do all the code annotation, which can be more
powerful than developer annotation

— It 1s possible this code has been reviewed to a
lesser extent

March 2006 The Science of Code Auditing 36



SOURCE & BINARY PARALLELS

Binary Code Challenges:
— Binary audits require more time than source
e annotation, reversing program logic

» potentially need to overcome obfuscation (either
deliberately obfuscated code or code that 1s
difficult to understand due to compiler
optimization)

— Indirection can be annoying to resolve statically

— High-level design vulnerabilities can be hard to
understand

March 2006 The Science of Code Auditing




SOURCE & BINARY PARALLELS

Really no difference in basic methodology

— Binary generally requires more time

Interpreting binary as source
— Compiler-specific constructs
— Machine-specific constructs
— Annotation

— Indirection

March 2006 The Science of Code Auditing 38



Thank You

Questions?

March 2006 The Science of Code Auditing




