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rPurpose

 To lllustrate the limitations of automated
assessment tools.

 |dentify new areas of research.
e Give more insight to developers.



Automated Web Assessment - [heory

e Testing the web server.

 Crawling the web application.

» Classifying the resources gathered.
 Mapping the application.

 |dentifying attack points. (e.g. SQL, XSS)
 |dentifying authentication points.

* Performing the attacks.

e Looking for known vulnerabilities.



Automated Web Assessment - [heory

e Testing logic:
 Depends on HTTP response codes.
 Responses can be easily changed.
e e.g. all pages return 200 OK.

 Modern crawlers identify “error signatures”
first.

e e.g. Page Signatures (refer to my earlier talks on
advanced HTTP assessment techniques).
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e Send a request for a non-existent page.
 Record the response signature. (404 signature)

 Send a malformed HTTP request.
e 400/ 500 signature.
* Proceed with crawling by identifying

signatures from the responses, and not
looking at the response codes.



Elimination of ralse positi

Error signatures.

String comparision.

Regular expressions comparision.
Certain heuristic technigues.
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What IS a crawler, actually?

/

A functional HTTP client.
Must mimic the browser as far as possible.
Send HTTP requests.

Recelve the HTTP response.
Parse the HTTP response header.

Parse the HT TP response contents.
e Sift through the HTML.
* Recover from malformed HTML errors.




Ways to dereat crawlers

Are you really a browser?
Are you really a human sitting on a browser?
. Or are you a dog?

Crawlers have overcome lots of hurdles so
far...

..but even they have limits.

Humans and crawlers “use” the web
application in different ways.




Browsers vs. Crawlers

o Well formed HTTP request header:
e User-Agent string
« HTTP referrer
« Cookie handling and cookie replay.
e Easy.
 Many crawlers do this quite well.
 Forced HTTP compression.

* Not a lot of crawlers have gzip decoding.
 Not difficult at all.



Browsers vs. Crawlers

e Javascript interpretation.
o Difficult proposition for browsers.
* Not entirely impossible.
e Can cause loss of hair.



Humans vs. Crawlers

Attacking the WYSIWYG principle:

 Humans don’t click on clear pixels.

e Developers still believe HIDDEN fields are
secure!

Humans do not cause a lot of errors.
e ...crawlers do.

Visual recognition of an error situation:
e “Something’s not right here”.

Crawlers can fall all these tests.



Ways to bog down crawlers

 Random error responses, never the same
response each time.
 Will cause false positives in error identification.
o Keep altering the HTML structure.
* Use dictionary words.

e Custom error handlers.
e Most web servers allow this

 Make the crawler crawl through errors.



Ways to bog down crawlers

 Random hyperlinks.
 Links that lead to nowhere.
o Cause errors that generate more links.

 Throw up non-existent error conditions:
e e.g. SOQL Injection error messages.
 Browsable directory outputs.

e Throw up non-existent HTML forms.



PHP_GUARD

* A prototype crawler defeating mechanism.

e Causes the best of crawlers and assessment
tools to throw up useless reports.

e To illustrate the point that nothing Is as good
as manual analysis and testing.



PHP_GUARD

 Implemented as a set of PHP scripts.

e Easy to incorporate in any PHP driven
application.
o Concepts are not rocket science:

e can be ported to other platforms as well (e.qg.
ASP, ASP.NET, JSP, etc).

» Actively seeking collaborators!
« Publicly available soon.



PHP GUARD - Teatures

e Enforces strict session control.
e Uses PHP’s session management APIs.
* NO cookies - no pages.

 Forced HTTP compression:
e Coming soon!

« Random error generator.



PHP_GUARD - random error generator

o Varying HTTP response codes:
e 404, 302, 200

o Structurally different HTML all the time.
e Based on dictionary words.
e Contains hyperlinks galore!

 Includes error strings to catch regexp
matching.

e |Includes HTML authentication forms.



PHP_GUARD - error count limit

Error count limits set a threshold to the
maximum number of errors a web client Is
allowed to cause.

Per-session basis.
If count exceeds the threshold...
... you're blacklisted.

Ability to slow down responses.
e Crawl 1000 links took a whole day!




PHP_GUAR
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 /usr/local/apache/htdocs/php_guard
e index.html
 error_control.php
e set_session.php
e force_session.php
o clearpixel.php
o clearpixel.gif



PHP_GUARD Apache configuration

 httpd.conf

e ErrorDocument 404 /php_guard/error_control.php
* ErrorDocument 403 /php_guard/error_control.php
* ErrorDocument 500 /php_guard/error_control.php



I‘H'- GUARD - use within cl_,OOI cations

o Sample index.php file (starting point):

<?php
// initialize PHP_GUARD
include("php_guard/set_session.php™);

// include globals
include('include/global .php™);

// generate random clearpixel links
include("'php_guard/clearpixel .php');

?>



PHP_GUARD - use within applications

* Any other php file (not the starting point):

<?php
// initialize PHP_GUARD
include("php_guard/force_session.php™);



PHP GUARD - tests

 wget
* Paros
« NTO Insight



Closing Thoughnts
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* “You need to know what you are doing!”
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o0dies to follow

 New version of httprint coming out soon.

 NStools:
* Net-Square’s toolkit.

o Contributions to Sensepost’'s Wikto.
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