Defeating Automated Web
Assessment Tools

Saumil Shah
CEO, Net-Square
Author: “Web Hacking - Attacks and Defense”
BlackHat Briefings - Europe, Asia 2005



rPurpose

 To lllustrate the limitations of automated
assessment tools.

 |dentify new areas of research.
e Give more insight to developers.



Automated Web Assessment - [heory

e Testing the web server.

 Crawling the web application.

» Classifying the resources gathered.
 Mapping the application.

 |dentifying attack points. (e.g. SQL, XSS)
 |dentifying authentication points.

* Performing the attacks.

e Looking for known vulnerabilities.



Automated Web Assessment - [heory

e Testing logic:
 Depends on HTTP response codes.
 Responses can be easily changed.
e e.g. all pages return 200 OK.

 Modern crawlers identify “error signatures”
first.

e e.g. Page Signatures (refer to my earlier talks on
advanced HTTP assessment techniques).



Error J]U”C'[L S

e Send a request for a non-existent page.
 Record the response signature. (404 signature)

 Send a malformed HTTP request.
e 400/ 500 signature.
* Proceed with crawling by identifying

signatures from the responses, and not
looking at the response codes.



Elimination of ralse positi

Error signatures.

String comparision.

Regular expressions comparision.
Certain heuristic technigues.

(D
Vi



What IS a crawler, actually?

/

A functional HTTP client.
Must mimic the browser as far as possible.
Send HTTP requests.

Recelve the HTTP response.
Parse the HTTP response header.

Parse the HT TP response contents.
e Sift through the HTML.
* Recover from malformed HTML errors.




Ways to dereat crawlers

Are you really a browser?
Are you really a human sitting on a browser?
. Or are you a dog?

Crawlers have overcome lots of hurdles so
far...

..but even they have limits.

Humans and crawlers “use” the web
application in different ways.




Browsers vs. Crawlers

o Well formed HTTP request header:
e User-Agent string
« HTTP referrer
« Cookie handling and cookie replay.
e Easy.
 Many crawlers do this quite well.
 Forced HTTP compression.

* Not a lot of crawlers have gzip decoding.
 Not difficult at all.



Browsers vs. Crawlers

e Javascript interpretation.
o Difficult proposition for browsers.
* Not entirely impossible.
e Can cause loss of hair.



Humans vs. Crawlers

Attacking the WYSIWYG principle:

 Humans don’t click on clear pixels.

e Developers still believe HIDDEN fields are
secure!

Humans do not cause a lot of errors.
e ...crawlers do.

Visual recognition of an error situation:
e “Something’s not right here”.

Crawlers can fall all these tests.



Ways to bog down crawlers

 Random error responses, never the same
response each time.
 Will cause false positives in error identification.
o Keep altering the HTML structure.
* Use dictionary words.

e Custom error handlers.
e Most web servers allow this

 Make the crawler crawl through errors.



Ways to bog down crawlers

 Random hyperlinks.
 Links that lead to nowhere.
o Cause errors that generate more links.

 Throw up non-existent error conditions:
e e.g. SOQL Injection error messages.
 Browsable directory outputs.

e Throw up non-existent HTML forms.



PHP_GUARD

* A prototype crawler defeating mechanism.

e Causes the best of crawlers and assessment
tools to throw up useless reports.

e To illustrate the point that nothing Is as good
as manual analysis and testing.



PHP_GUARD

 Implemented as a set of PHP scripts.

e Easy to incorporate in any PHP driven
application.
o Concepts are not rocket science:

e can be ported to other platforms as well (e.qg.
ASP, ASP.NET, JSP, etc).

» Actively seeking collaborators!
« Publicly available soon.



PHP GUARD - Teatures

e Enforces strict session control.
e Uses PHP’s session management APIs.
* NO cookies - no pages.

 Forced HTTP compression:
e Coming soon!

« Random error generator.



PHP_GUARD - random error generator

o Varying HTTP response codes:
e 404, 302, 200

o Structurally different HTML all the time.
e Based on dictionary words.
e Contains hyperlinks galore!

 Includes error strings to catch regexp
matching.

e |Includes HTML authentication forms.



PHP_GUARD - error count limit

Error count limits set a threshold to the
maximum number of errors a web client Is
allowed to cause.

Per-session basis.
If count exceeds the threshold...
... you're blacklisted.

Ability to slow down responses.
e Crawl 1000 links took a whole day!




PHP_GUAR

L/ ).
(D
(_
(-

 /usr/local/apache/htdocs/php_guard
e index.html
 error_control.php
e set_session.php
e force_session.php
o clearpixel.php
o clearpixel.gif



PHP_GUARD Apache configuration

 httpd.conf

e ErrorDocument 404 /php_guard/error_control.php
* ErrorDocument 403 /php_guard/error_control.php
* ErrorDocument 500 /php_guard/error_control.php



I‘H'- GUARD - use within cl_,OOI cations

o Sample index.php file (starting point):

<?php
// initialize PHP_GUARD
include("php_guard/set_session.php™);

// include globals
include('include/global .php™);

// generate random clearpixel links
include("'php_guard/clearpixel .php');

?>



PHP_GUARD - use within applications

* Any other php file (not the starting point):

<?php
// initialize PHP_GUARD
include("php_guard/force_session.php™);



PHP GUARD - tests

 wget
* Paros
« NTO Insight



Closing Thoughnts

-~

* “You need to know what you are doing!”
 \Web Hacking: Attacks and Defense

Saumil Shah,
Shreeraj Shah,
Stuart McClure

Addison Wesley — 2002.

nmwmﬁmeumw# Stuart McClure

AANG

ATTACKS and DEFENSE

WiW’ﬂm
80,81, 88, 1080, 7000, 7001, 8000, 8000, 80BO, 80, 81, 88, 443, 7000, 7001, B0




o0dies to follow

 New version of httprint coming out soon.

 NStools:
* Net-Square’s toolkit.

o Contributions to Sensepost’'s Wikto.



saumil@net-square.com

http://net-square.com/

BlackHat Briefings - Europe, Asia 2005

v,

Fa's



