
Dynamic Detection and
Prevention of Race Conditions

in File Accesses

Eugene Tsyrklevich

eugene@securityarchitects.com

Outline

 What are race conditions?
 How can we prevent them?
 Implementation description
 Demonstration

What are Race Conditions?

 File race conditions occur when file
operations are not carried out atomically

 An operation/transaction is carried out
atomically when it executes without
being interrupted or does not execute at
all

Race Condition Example #1

 Victim Attacker

access(file, W_OK)
unlink(file)
link(file, /etc/passwd)

 open(file, O_TRUNC)

T
i

m
e

Race Condition Example #2

 Victim Attacker

stat(file) = ENOENT

link(file, /etc/passwd)

 open(file, O_TRUNC)

T
i

m
e

Other Race Conditions
 Other types of file race conditions:

 Directory operations (GNU fileutils)
 Setuid shell scripts (Early Unices)
 Temporary files (all Unix programs that use

temporary files? :-)

Why are RC dangerous?
 File race conditions are

 Still constantly being discovered
 Hard to find

 Race conditions can be used for
 Privilege elevation
 Denial of service

Related Work
 Various static analysis tools
 RaceGuard (Crispin Cowan, et al)

 Addresses /tmp stat races only
 Openwall Project (Solar Designer)

 Limits users from following untrusted
symbolic links created in certain directories

 Limits users from creating hard links to files
they don't have read and write access to

The Problem

Programmers assume that sequences
of file operations execute in isolation

Transactions
 Model filesystem activity in terms of

transactions
 access() + open() operation is a

pseudo-transaction
 Race conditions violate transaction

ACID (Atomicity, Consistency, Isolation,
and Durability) properties

Transactions (2)
 Race conditions in file accesses

primarily violate the isolation property
 Enforcing isolation in pseudo-

transactions requires
 detection
 prevention of race conditions

Detecting Race Conditions
 Mediate all file operations

 Look for explicit attacks
(Default allow policy)

Or
 Look for normal file activity

(Default deny policy)

Default Allow Policy
 Look for explicit attack patterns

REMOVE=UNLINK | RMDIR | RENAME
DENY(ACCESS, REMOVE)
DENY(CHDIR, REMOVE)
DENY(EXEC, REMOVE)

Default Deny Policy
 Look for normal file activity

OPEN_RW = OPEN_READ | OPEN_WRITE
RENAME = RENAME_TO | RENAME_FROM

PERMIT(OPEN_RW, OPEN_RW | ACCESS | UTIMES | CHDIR | EXEC |
UNLINK | READLINK | CHMOD | CHOWN | RENAME)
PERMIT(OPEN_CREAT, OPEN_RW | ACCESS | UTIMES | CHDIR | EXEC |
RENAME_FROM)
PERMIT(ACCESS, OPEN_RW | ACCESS | UTIMES | CHDIR |EXEC)
PERMIT(EXEC, OPEN_READ | EXEC)
PERMIT(CHDIR, OPEN_READ | CHDIR | ACCESS | READLINK)
PERMIT(RENAME_FROM, OPEN_RW | ACCESS | UNLINK | RENAME_FROM)
PERMIT(RENAME_TO, OPEN_RW)
PERMIT(CHMOD | CHOWN, OPEN_RW | ACCESS | CHMOD | CHOWN)
PERMIT(UTIMES, OPEN_RW | ACCESS | CHMOD | CHOWN)
PERMIT(READLINK, READLINK)

Preventing Race Conditions
 Transaction rollback
 User confirmation
 Locking out processes
 Killing processes
 Suspending processes

Transaction Rollback

 Pros
 Leaves system in a consistent state

 Cons
 Requires transaction support which few

operating systems provide

User prompting

 Pros
 Less intrusive

 Cons
 Difficult usability problem
 Not suitable for servers

Locking out processes

 Pros
 Guarantees race condition free

environment

 Cons
 Possible deadlocks
 Poor performance

Killing processes

 Pros
 Prevents any possible abuse

 Cons
 Subject to denial-of-service attacks

Suspending processes

 Pros
 The worst possible outcome (in case of a

false positive) is a process delay

 Cons
 Difficult to decide when to wake up a

sleeping process

Suspending Processes (2)
 Victim Attacker

access(file)
(starts new pseudo
transaction X) unlink(file)

link(file, /etc/passwd)
(interferes with
transaction X)
SUSPENDopen(file, O_TRUNC)

(ends transaction X,
starts transaction Y)

T
i

m
e

(wake up and
execute unlink())

Implementation
 OpenBSD kernel module
 Mediates filesystem calls + fork, exec

and exit
 Records all file operations in

a global hash table

Implementation (2)

 Load average is used to calculate
the timeout for
 suspending processes
 purging old hash entries

Implementation Example

T
i

m
e

access(file)

 Process Hash Table

pid: 1713; inode: 1281
operation: ACCESS

fork() = 791 pid: 791; inode: 1281
operation: ACCESS

unlink(file, inode 1281)
link(file, /etc/passwd)

+

SUSPEND

Microbenchmarks

03123Total CPU
Overhead (%)

86.213.385.69Race Protection
Kernel, ms

86.173.282.55Stock Kernel, ms
forkstatopenSystem Call

Compile Benchmark

1602Total CPU
Overhead (%)

43363436Race Protection
Kernel, sec

37363427Stock Kernel, sec

System
Time

User
Time

Real
Time

Results
 Used on several machines over a

period of three months
 No noticeable system overhead
 No false positives or false negatives

after the initial policy adjustment (i.e.
system training)

Demonstration
 Live Demo

Thank You
Source code is available at
www.secarch.com/people/eugene/

eugene@securityarchitects.com

