
_BSD heap smashing

_05/14/2003

_BlackHat Briefings Europe

$ cd bullshit && ls -tr1

overview

algorithms detailed

sample exploitation techniques

real flaw exploitation

$ cd overview

_$ for file in `ls -tr`; do
> clear;
> echo $file;
> [-x $file] &&
> ./$file ||
> cat $file;
> read foo;
> done

memory_regions.txt

[+] brk region

 the break

 FreeBSD/i86 and NetBSD/i86: 0x0804????

 OpenBSD/i86: 0x0000????

 brk(2) and sbrk(2)

[+] mmap region

 mmap(2)

 FreeBSD/i86 and NetBSD/i86: 0x480E????

 OpenBSD/i86: 0x400D????

logical_layers.txt

[+] bottom layer

 handles memory pages

[+] top layer

 handles chunks, including:

 user chunks

 internal use chunks

pages_referencing.txt

[+] user pages reside in the brk region

[+] they are referenced in an array

 ptr2idx (page address) = array index

 MALLOC_NOT_MINE (0)

 MALLOC_FIRST (2), MALLOC_FOLLOW (3)

 MALLOC_FREE (1)

[+] these values may be overwritten and
 restored by the top layer

free_pages_handling.txt

[+] free pages are referenced in a doubly
 linked list

 struct pgfree {
 struct pgfree *next;
 struct pgfree *prev;
 void *page;
 void *end;
 size_t size;
 }

[+] static struct pgfree free_list;

[+] list elements are allocated with imalloc()

[+] the list is sorted

chunks_overview.txt

[+] three categories of chunks

 large chunks: > (malloc_pagesize/2)

 medium-sized chunks

 tiny chunks

[+] large chunks reside in dedicated
 pages

[+] other chunks are grouped in pages
 where each chunk has the same size
 (rounded up to a power of 2)

chunks_referencing.txt

[+] pages containing tiny and medium-sized
 chunks are referenced in linked lists

 struct pginfo {
 struct pginfo *next;
 void *page;
 u_short size;
 u_short shift;
 u_short free;
 u_short total;
 u_int bits[1];
 }

[+] the lists are sorted (page field)

[+] bits has in fact a variable length

bits_field.txt

[+] the appropriate bit is set to
 one if the associated chunk is
 free

[+] chunk number j is associated
 with the bit given by:

 bits[i] & (1<<n) where:

 i = j / (8 * sizeof(u_int))

 n = j % (8 * sizeof(u_int))

sample-i86.out

[+] i86: 32 bits, little endian

[+] no chunk allocated

 bits[0] |1|1|1|1|1|1|1|1| LSB
 |1|1|1|1|1|1|1|1|
 |1|1|1|1|1|1|1|1|
 |1|1|1|1|1|1|1|1| MSB

 bits[1] |1|1|1|1|1|1|1|1| LSB
 |1|1|1|1|1|1|1|1|
 |1|1|1|1|1|1|1|1|
 |1|1|1|1|1|1|1|1| MSB

sample-i86.out

[+] i86: 32 bits, little endian

[+] 1st chunk allocated

 bits[0] |1|1|1|1|1|1|1|0| LSB
 |1|1|1|1|1|1|1|1|
 |1|1|1|1|1|1|1|1|
 |1|1|1|1|1|1|1|1| MSB

 bits[1] |1|1|1|1|1|1|1|1| LSB
 |1|1|1|1|1|1|1|1|
 |1|1|1|1|1|1|1|1|
 |1|1|1|1|1|1|1|1| MSB

sample-i86.out

[+] i86: 32 bits, little endian

[+] 1st and 23rd chunks allocated

 bits[0] |1|1|1|1|1|1|1|0| LSB
 |1|1|1|1|1|1|1|1|
 |1|0|1|1|1|1|1|1|
 |1|1|1|1|1|1|1|1| MSB

 bits[1] |1|1|1|1|1|1|1|1| LSB
 |1|1|1|1|1|1|1|1|
 |1|1|1|1|1|1|1|1|
 |1|1|1|1|1|1|1|1| MSB

sample-i86.out

[+] i86: 32 bits, little endian

[+] 1st, 23rd and 42nd chunks allocated

 bits[0] |1|1|1|1|1|1|1|0| LSB
 |1|1|1|1|1|1|1|1|
 |1|0|1|1|1|1|1|1|
 |1|1|1|1|1|1|1|1| MSB

 bits[1] |1|1|1|1|1|1|1|1| LSB
 |1|1|1|1|1|1|0|1|
 |1|1|1|1|1|1|1|1|
 |1|1|1|1|1|1|1|1| MSB

sample-PPC.out

[+] PPC 7450: 32 bits, big endian

[+] no chunk allocated

 bits[0] |1|1|1|1|1|1|1|1| MSB
 |1|1|1|1|1|1|1|1|
 |1|1|1|1|1|1|1|1|
 |1|1|1|1|1|1|1|1| LSB

 bits[1] |1|1|1|1|1|1|1|1| MSB
 |1|1|1|1|1|1|1|1|
 |1|1|1|1|1|1|1|1|
 |1|1|1|1|1|1|1|1| LSB

sample-PPC.out

[+] PPC 7450: 32 bits, big endian

[+] 1st chunk allocated

 bits[0] |1|1|1|1|1|1|1|1| MSB
 |1|1|1|1|1|1|1|1|
 |1|1|1|1|1|1|1|1|
 |1|1|1|1|1|1|1|0| LSB

 bits[1] |1|1|1|1|1|1|1|1| MSB
 |1|1|1|1|1|1|1|1|
 |1|1|1|1|1|1|1|1|
 |1|1|1|1|1|1|1|1| LSB

sample-PPC.out

[+] PPC 7450: 32 bits, big endian

[+] 1st and 23rd chunk allocated

 bits[0] |1|1|1|1|1|1|1|1| MSB
 |1|0|1|1|1|1|1|1|
 |1|1|1|1|1|1|1|1|
 |1|1|1|1|1|1|1|0| LSB

 bits[1] |1|1|1|1|1|1|1|1| MSB
 |1|1|1|1|1|1|1|1|
 |1|1|1|1|1|1|1|1|
 |1|1|1|1|1|1|1|1| LSB

sample-PPC.out

[+] PPC 7450: 32 bits, big endian

[+] 1st, 23rd and 42nd chunk allocated

 bits[0] |1|1|1|1|1|1|1|1| MSB
 |1|0|1|1|1|1|1|1|
 |1|1|1|1|1|1|1|1|
 |1|1|1|1|1|1|1|0| LSB

 bits[1] |1|1|1|1|1|1|1|1| MSB
 |1|1|1|1|1|1|1|1|
 |1|1|1|1|1|1|0|1|
 |1|1|1|1|1|1|1|1| LSB

pginfo_location.txt

[+] tiny chunks pages: the pginfo is
 located at the beginning of the page

[+] medium-sized chunks pages: the
 pginfo is allocated through a call
 to imalloc()

[+] a chunk is medium-sized if the
 pginfo structure effective size is
 less than half the size of a chunk

pgfree_location.txt

[+] the px cache is defined as:
 static struct pgfree *px;

[+] it is set to the address of a ready
 to use pgfree structure sized chunk
 or to 0

[+] pgfree structures are allocated
 through a call to imalloc()

[+] when they become useless, they are
 freed through a call to ifree()

[+] one of them is most of the time kept
 in px

pages_directory.txt

[+] the pages directory is defined as:
 static struct pginfo **page_dir;

[+] it is split into two parts
 for i < malloc_pageshift:
 page_dir[i] -> (1<<i) bytes pginfos
 for i >= malloc_pageshift:
 page_dir[i] == MALLOC_FIRST or
 MALLOC_FOLLOW or
 MALLOC_FREE or
 MALLOC_NOT_MINE or
 address of a pginfo

[+] page_dir[0], page_dir[1], page_dir[2] and
 page_dir[3] are unused

pgdir_handling.txt

[+] page_dir is initially set to the address of one
 mmap()ed page

[+] it is extended whenever required, one page at a
 time

[+] it is accessed thanks to the ptr2idx macro,
 defined as:

 #define ptr2idx(i) \
 (((size_t)(i)>>malloc_pageshift)-malloc_origo)

[+] if ptr is the address of a tiny or medium-sized
 chunk, then page_dir[ptr2idx(ptr)] is the
 associated pginfo pointer (it is in the second
 part of page_dir)

$ cd ../algorithms\ \
detailed

_$ for file in `ls -tr`; do
> clear;
> echo $file;
> [-x $file] &&
> ./$file ||
> cat $file;
> read foo;
> done

malloc.txt

[+] concurrent call check
 if (malloc_active++) {
 wrtarning("recursive call.\n");
 malloc_active--;
 return 0;
 }

[+] call to imalloc() to do the real job
 if (malloc_sysv && !size)
 r = 0;
 else
 r = imalloc(size);

[+] cleanup
 malloc_active--;

imalloc.txt

[+] if the chunk is tiny or medium-
 sized, call malloc_bytes() to
 allocate it

[+] otherwise, call malloc_pages()
 to allocate the proper number
 of pages

malloc_pages.txt

[+] round size up to a multiple of malloc_pagesize
[+] look for a sufficient number of adjacent free
 pages in free_list
[+] if there is a perfect match, remove the area
 from the list and mark its pgfree for freeing
[+] if the first match is too large, eat its first
 pages
[+] if there was no match, call map_pages() to
 request new pages in the brk region
[+] update the pages directory
[+] if a pgfree has been marked for freeing, and
 the px cache is empty, then it becomes the new
 px cache, otherwise, it is freed through a call
 to ifree()

malloc_bytes.txt

[+] make sure size is at least 16

[+] find j such that size is (1<<j)

[+] if page_dir[j] is 0, make a new (1<<j)
 bytes chunks page thanks to
 malloc_make_chunks():
 map one page with malloc_pages()
 tiny or medium-sized chunks?
 imalloc() a new pginfo if necessary
 initialize the pginfo fields
 update the pages directory

[+] choose the lowest address free chunk

[+] remove the pginfo from the list if
 necessary

free.txt

[+] malloc-style concurrent call check

[+] call to ifree() to perform the real
 job

 check the pointer is in the brk
 region

 if the associated page_dir entry
 is MALLOC_FIRST, call
 free_pages(), otherwise, call
 free_bytes()

free_pages.txt

[+] sanity checks: pointer to the beginning of a
 page whose entry in page_dir is MALLOC_FIRST

[+] mark the pages as free in the pages directory

[+] make sure the px cache is not empty

[+] insert the freed area in free_list, with two
 constraints:
 enforcing its sorting policy
 performing areas merges when possible
 if no merge is possible, the px cache is used

[+] possibly unmap pages in the brk region

[+] if two merges were performed, call ifree() to
 get rid of the pgfree of the highest of the
 three areas

free_bytes.txt

[+] sanity checks

 the pointer really points to the
 beginning of a chunk

 the chunk is not already free

[+] chunk is marked as free in the bits field

[+] if the page was full of allocated chunks,
 it is reinserted in the pages directory
 (this operation enforces the sorting policy
 of the pages directory)

realloc.txt

[+] the same memory area is used if:

 the chunk is a large chunk and the
 operation doesn't change the number
 of necessary pages

 the chunk is tiny or medium-sized
 and the operation doesn't change
 its effective size

[+] otherwise, a new chunk is allocated
 (imalloc()), data is copied with
 memcpy(), and the former chunk is freed
 (ifree())

$ cd ../sample\ \
> exploitation\ techniques

_$ for file in `ls -tr`; do
> clear;
> echo $file;
> [-x $file] &&
> ./$file ||
> cat $file;
> read foo;
> done

i86_parameters.txt

[+] pginfo structures: 16 bytes + bits field
 16 bytes tiny chunks: 48 bytes
 32 bytes tiny chunks: 32 bytes
 64 bytes medium-sized chunks: 24 bytes

[+] pgfree structures: 20 bytes

[+] page size: 4096 bytes
 2 2048 bytes chunks per page
 128 32 bytes chunks per page

main.c

#include <stdlib.h>
#include <stdio.h>
#include "vuln.c"

int main () {
 char buf[1024];

 while (1) {
 fgets (buf, sizeof(buf), stdin);
 if (*buf != '+' && *buf != '-')
 exit(42);
 vuln_inside (*buf, atoi (buf + 1));
 }

 return 0;
}

vuln-1.c

void vuln_inside (char op, unsigned int i) {
 char *p;

 if (op == '+') {
 p = malloc (i);
 gets(p);
 } else {
 free ((void *) i);
 }
}

expl-1.out

initial heap state

 32 |i|p|

 i: pginfo structure
 p: px cache

expl-1.out

allocation of a 32 bytes chunk

 32 |i|p|x|

 i: pginfo structure
 p: px cache
 x: allocated chunk

expl-1.out

allocation of a 2048 bytes chunk

 32 |i|p|x|i|
2048 |x|

 i: pginfo structure
 p: px cache
 x: allocated chunk

expl-1.out

freeing of the 32 bytes chunk

 32 |i|p| |i|
2048 |x|

 i: pginfo structure
 p: px cache
 x: allocated chunk

expl-1.out

reallocation and overflow of the 32
bytes chunk
 32 |i|p|x|o|
2048 |x|

 i: pginfo structure
 p: px cache
 x: allocated chunk
 o: overwritten structure

fake_pginfo.txt

[+] next allocated chunk at:
 page + n * (1 << shift)
 where n depends on bits

[+] size may matter if malloc_junk
 is set (not the default)

[+] other fields do not matter

vuln-2.c

void vuln_inside (char op, unsigned int i) {
 int j;
 char *p;

 if (op == '+') {
 p = malloc (i);
 j = fread (p, 1, i, stdin);
 p[j] = 0;
 } else {
 free ((void *) i);
 }
}

expl-2.out

initial heap state

 32 |i|p|

 i: pginfo structure
 p: px cache

expl-2.out

allocation of a 32 bytes chunk

 32 |i|p|x|

 i: pginfo structure
 p: px cache

expl-2.out

allocation of two 2048 bytes chunks

 32 |i|p|x|i|
2048 |x|x| (page is complete)

 i: pginfo structure
 p: px cache
 x: allocated chunk

expl-2.out

leakage of some 32 bytes chunks

 |<- 256 bytes ->|
 32 |i|p|x|i|x|x|x|x|x|
2048 |x|x| (page is complete)

 i: pginfo structure
 p: px cache
 x: allocated chunk

expl-2.out

allocation of a 2048 bytes chunk

 |<- 256 bytes ->|
 32 |i|p|x|i|x|x|x|x|x|i|
2048 |x|x| (page is complete)
2048 |x|
 i: pginfo structure
 p: px cache
 x: allocated chunk

expl-2.out

freeing of the first 2048 bytes
chunk
 |<- 256 bytes ->|
 32 |i|p|x|i|x|x|x|x|x|i|
2048 | |x|
2048 |x|
 i: pginfo structure
 p: px cache
 x: allocated chunk

expl-2.out

freeing of the appropriate 32 bytes
chunk
 |<- 256 bytes ->|
 32 |i|p| |i|x|x|x|x|x|i|
2048 | |x|
2048 |x|
 i: pginfo structure
 p: px cache
 x: allocated chunk

expl-2.out

reallocation and overflow of the 32
bytes chunk
 |<- 256 bytes ->|
 32 |i|p|x|o|x|x|x|x|x|i|
2048 | |x|
2048 |x|
 i: pginfo structure
 p: px cache
 x: allocated chunk
 o: partly overwritten structure

$ cd ../real \
> flaw\ exploitation

_$ for file in `ls -tr`; do
> clear;
> echo $file;
> [-x $file] &&
> ./$file ||
> cat $file;
> read foo;
> done

background.txt

[+] CVS flaw reported by Stefan Esser in a
 VulnWatch posting (20/01/03):

 http://archives.neohapsis.com/archives/
 vulnwatch/2003-q1/0028.html

[+] oversimplified main server loop:

 buf_read_line(buf_from_net, &cmd, NULL);
 call server_*(cmd + something);
 free(cmd);

vulnerability.txt

[+] adapted from serve_directory(char *arg):
 buf_read_line(buf_from_net, &repos, NULL);
 dirswitch(arg, repos);
 free(repos);

[+] flaw in dirswitch(char *dir, char *repos):
 if (dir_name != NULL)
 free(dir_name);
 dir_len = 80 + strlen(dir);
 if (dir_len > 0 && dir[dir_len-1] == '/') {
 if (alloc_pending(80 + dir_len))
 sprintf(pending_error_text, ...
 return;
 }
 dir_name=malloc(strlen(srv_tmp_dir)+dir_len+40);

CVS_buffers_handling.txt

[+] 4k buffers allocated 16 at a time:
 malloc(17 * 4k Ð 1)

[+] CVS keeps track of the available buffers
 for incoming data in a linked list of 16
 bytes structures allocated 16 at a time
 before the associated 4k buffers:
 malloc(16 * 16)

[+] buf_read_line uses these buffers to store
 incoming data, and allocates a new buffer
 to copy it when a '\n' is found, the
 buffers are then recycled

CVS_useful_functions.txt

[+] serve_noop() sends and frees the pending
 errors

[+] serve_set() sets a CVS variable value,
 variables are kept in a hash table using 32
 bytes structures

[+] serve_max_dotdot(char *arg) sets
 srv_tmp_dir to

 "/tmp/cvs????/d/d/d/d/d/d.../d",

 allocated with

 malloc(strlen(srv_tmp_dir)+2*atoi(arg)+10)

