
Security Development Lifecycle for
Agile Development
Version 1.0
June 30, 2009

For the latest information, please see http://www.microsoft.com/sdl.

The information contained in this document represents the current view of Microsoft Corporation on
the issues discussed as of the date of publication. Because Microsoft must respond to changing
market conditions, it should not be interpreted to be a commitment on the part of Microsoft, and
Microsoft cannot guarantee the accuracy of any information presented after the date of publication.

This document is for informational purposes only. MICROSOFT MAKES NO WARRANTIES, EXPRESS OR
IMPLIED, IN THIS SUMMARY.

Complying with all applicable copyright laws is the responsibility of the user. Without limiting the
rights under copyright, no part of this document may be reproduced, stored in, or introduced into a
retrieval system, or transmitted in any form, by any means (electronic, mechanical, photocopying,
recording, or otherwise), or for any purpose, without the express written permission of Microsoft
Corporation.

Microsoft may have patents, patent applications, trademarks, copyrights, or other intellectual property
rights covering subject matter in this document. Except as expressly provided in any written license
agreement from Microsoft, the furnishing of this document does not give you any license to these
patents, trademarks, copyrights, or other intellectual property.

Unless otherwise noted, the example companies, organizations, products, domain names, e-mail
addresses, logos, people, places, and events depicted herein are fictitious, and no association with any
real company, organization, product, domain name, e-mail address, logo, person, place, or event is
intended or should be inferred.

© 2009 Microsoft Corporation. All rights reserved.

Microsoft, ActiveX, Visual Basic, Visual C++, Visual Studio, and Windows are trademarks of the
Microsoft group of companies.

The names of actual companies and products mentioned herein may be the trademarks of their
respective owners.

 Security Development Lifecycle for Agile Development 1

Abstract
This document defines a way to embrace lightweight software security practices when using Agile
software development methods, such as Extreme Programming (XP) and Scrum. The goal is to meld the
proven Microsoft Security Development Lifecycle (SDL) with Agile methodologies in a way that maintains
the principles of both the Agile methods and the SDL process.

This document does not explain all the nuances of the SDL. To gain a deeper understanding of the SDL,
you can review the latest version at http://www.microsoft.com/sdl.

The intended audience for this document is development teams who want to build more secure
applications using Agile methods. No extensive SDL or Agile knowledge is assumed.

 Security Development Lifecycle for Agile Development 2

Contents

Abstract .. 1

Introduction .. 3

Melding the Agile and SDL Worlds ... 3

SDL-Agile Requirements ... 3

Every-Sprint Requirements .. 4
Bucket Requirements ... 4
One-Time Requirements .. 5
Constraints ... 6

Applying SDL Tasks to Sprints ... 7

Security Education ... 7
Tooling and Automation ... 8
Threat Modeling: The Cornerstone of the SDL ... 8
Fuzz Testing... 9
Using a Spike to Analyze and Measure Unsecure Code in Bug Dense and “At-Risk” Code 9
Exceptions ... 10
Final Security Review ... 10

SDL-Agile Example .. 11

Appendix A: Every-Sprint Requirements ... 13

Appendix B: Bucket Requirements .. 15

Bucket A: Security Verification ... 15
Bucket B: Design Review ... 16
Bucket C: Response Plans .. 17

Appendix C: SDL-Agile One-Time Requirements .. 18

Appendix D: High-Risk Code .. 19

Appendix E: Frequently Asked Questions ... 20

 Security Development Lifecycle for Agile Development 3

Introduction
Many software development organizations, including many product and online services groups within
Microsoft, use Agile software development and management methods to build their applications.
Historically, security has not been given the attention it needs when developing software with Agile
methods. Since Agile methods focus on rapidly creating features that satisfy customers’ direct needs, and
security is a customer need, it’s important that it not be overlooked. In today’s highly interconnected
world, where there are strong regulatory and privacy requirements to protect private data, security must
be treated as a high priority.

There is a perception today that Agile methods do not create secure code, and, on further analysis, the
perception is reality. There is very little “secure Agile” expertise available in the market today. This needs
to change. But the only way the perception and reality can change is by actively taking steps to integrate
security requirements into Agile development methods.

Microsoft has embarked on a set of software development process improvements called the Security
Development Lifecycle (SDL). The SDL has been shown to reduce the number of vulnerabilities in shipping
software by more than 50 percent. However, from an Agile viewpoint, the SDL is heavyweight because it
was designed primarily to help secure very large products, such as Windows® and Microsoft Office, both
of which have long development cycles.

If Agile practitioners are to adopt the SDL, two changes must be made. First, SDL additions to Agile
processes must be lean. This means that for each feature, the team does just enough SDL work for that
feature before working on the next one. Second, the development phases (design, implementation,
verification, and release) associated with the classic waterfall-style SDL do not apply to Agile and must be
reorganized into a more Agile-friendly format. To this end, the SDL team at Microsoft developed and put
into practice a streamlined approach that melds agile methods and security—the Security Development
Lifecycle for Agile Development (SDL-Agile).

Melding the Agile and SDL Worlds
With Agile release cycles taking as little as one week, there simply isn’t enough time for teams to
complete all of the SDL requirements for every release. On the other hand, there are serious security
issues that the SDL is designed to address, and these issues simply can’t be ignored for any release—no
matter how small.

Integrating the two worlds is not as difficult as it might seem—at its heart, the SDL defines tasks, and
these tasks can be mapped into an Agile development process. One benefit of the SDL is that it is
relatively artifact-free, which means there is little documentation overhead (with the notable exception of
threat models, which are discussed later in this document). It is possible to create artifacts if they are
needed, but this is generally not required in an Agile environment.

SDL-Agile Requirements
A workhorse of Agile development is the sprint, which is a short period of time (usually 15 to 60 days)
within which a set of features or stories are designed, developed, tested, and then potentially delivered to
customers. The list of features to add to a product is called the product backlog, and prior to a sprint
commencing, a list of features is selected from the product backlog and added to the sprint backlog. The

 Security Development Lifecycle for Agile Development 4

SDL fits this metaphor perfectly—SDL requirements are represented as tasks and added to the product
and sprint backlogs. These tasks are then selected by team members to complete. You can think of the
bite-sized SDL tasks added to the backlog as non-functional stories.

Every-Sprint Requirements
In order to fit the weighty SDL requirements into the svelte Agile framework, SDL-Agile places each SDL
requirement and recommendation into one of three categories defined by frequency of completion. The
first category consists of the SDL requirements that are so essential to security that no software should
ever be released without these requirements being met. This category is called the every-sprint category.
Whether a team’s sprint is two weeks or two months long, every SDL requirement in the every-sprint
category must be completed in each and every sprint, or the sprint is deemed incomplete, and the
software cannot be released. This includes any release of the software to an external audience, whether
this is a box product release to manufacturing (RTM), online service release to Web (RTW), or alpha/beta
preview release.

Some examples of every-sprint requirements include:

• Run analysis tools daily or per build (see the Tooling and Automation section later in this document).
• Threat model all new features (see Threat Modeling: The Cornerstone of the SDL).
• Ensure that each project member has completed at least one security training course in the past year

(see Security Education).
• Use filtering and escaping libraries around all Web output.
• Use only strong crypto in new code (AES, RSA, and SHA-256 or better).

For a complete list of the every-sprint requirements as followed by Microsoft SDL-Agile teams, see
Appendix A.

Bucket Requirements
The second category of SDL requirement consists of tasks that must be performed on a regular basis over
the lifetime of the project but that are not so critical as to be mandated for each sprint. This category is
called the bucket category and is subdivided into three separate buckets of related tasks. Currently there
are three buckets in the bucket category—verification tasks (mostly fuzzers and other analysis tools),
design review tasks, and response planning tasks. Instead of completing all bucket requirements each
sprint, product teams must complete only one SDL requirement from each bucket of related tasks during
each sprint. The table below contains only a sampling of the tasks for each bucket. To see a complete list
of all tasks for all three buckets, consult Appendix B: Bucket Requirements.

Verification Tasks Design Review Response Planning

ActiveX® fuzzing Conduct a privacy review Create privacy support documents

Attack surface analysis Review crypto design Update security response contacts

Binary analysis (BinScope) Assembly naming and APTCA Update network down plan

File fuzz testing User Account Control Define/update security bug bar

Table 1. Example of bucket categories. For a complete list of bucket items, see Appendix B: Bucket
Requirements.

 Security Development Lifecycle for Agile Development 5

In this example, a team would be required to complete one verification requirement, one design review
requirement, and one response planning requirement in every sprint (in addition to the every-sprint
requirements discussed earlier). For sprint one, the team might choose to complete ActiveX fuzzing,
Review crypto design, and Update security bug bar from the table. For sprint two, they might choose Binary
analysis, Conduct a privacy review, and Update network down plan.

It is left to the product teams to determine which tasks from each bucket that they would like to address
in any given sprint. The SDL-Agile does not mandate any type of round-robin or other task prioritization
for these requirements. If your team determines that they are best served by completing file fuzzing
requirements every other sprint but that SOAP fuzzing only needs to be performed every 10 sprints, that’s
acceptable.

However, no requirement can be completely ignored. Every requirement in the SDL has been shown to
identify or prevent some form of security or privacy issue, or both. Therefore, no SDL bucket requirement
can go more than six months without being completed.

One-Time Requirements
There are some SDL requirements that need to be met when you first start a new project with SDL-Agile
or when you first start using SDL-Agile with an existing project. These are generally once-per-project tasks
that won’t need to be repeated after they’re complete. This is the final category of SDL-Agile
requirements, called the one-time requirements.

The one-time requirements should generally be easy and quick to complete, with the exception of
creating a baseline threat model, which is discussed later in this document. Even though these tasks are
short, there are enough of them that it would not be feasible for a team just starting with SDL-Agile to
complete all of them in one sprint, given that the team also needs to complete the every-sprint
requirements and one requirement from each of the buckets.

To address this issue, the SDL-Agile allows a grace period to complete each one-time requirement. The
period generally ranges from one month to one year after the start of the project, depending on the size
and complexity of the requirement. For example, choosing a security advisor is considered an easy,
straightforward task and has a one-month completion deadline, whereas updating your project to use the
latest version of the compiler is considered a potentially long, difficult task and has a one-year completion
deadline. The current list of one-time requirements and the corresponding grace periods can be found in
Appendix C of this document. Figure 1 provides an illustration of this process in action.

 Security Development Lifecycle for Agile Development 6

Figure 1. SDL-Agile process

Constraints
The main difficulty that SDL-Agile attempts to address is that of fitting the entire SDL into a short release
cycle. It is entirely reasonable to mandate that every SDL requirement be completed over the course of a
two- or three-year-long release cycle. It is not reasonable to mandate the same for a two- or three-week-
long release cycle. The categorization of SDL requirements into every-sprint, one-time, and the three
bucket groups is the SDL-Agile solution for dealing with this conundrum. However, an effect of this
categorization is that teams can temporarily skip some SDL requirements for some releases. The Microsoft
SDL team believes this is a necessary situation required to provide the best mix of security, feature
development, and speed of release for teams with short release cycles.

Although SDL-Agile was designed for teams with short release cycles, teams with longer release cycles are
still eligible to use the SDL-Agile process. However, they may find that they are actually performing more
security work than if they had used the classic, waterfall-based SDL. Requirements that a team only needs
to complete once in classic SDL may need to be met five or six (or more) times in SDL-Agile over the
course of a long project. However, this is not necessarily a bad thing and may help the team to create a
more secure product.

 Security Development Lifecycle for Agile Development 7

Applying SDL Tasks to Sprints
While the previous section focused on requirements specific to the SDL-Agile, this section focuses on
tasks associated with the SDL and how they are applied within the Agile framework.

Security Education
Each member of a project team must complete at least one security training course every year. If more
than 20 percent of the project members are out of compliance with this non-negotiable requirement, the
requirement is failed (and consequently so is the sprint, and the product is not allowed to release).
Consult your sprint leader for a list of courses that satisfy SDL training requirements. You can also consult
the SDL Pro Network for training courses and recommendations.

Additionally, in the interests of staying lean, engineers and testers performing security-related tasks or
SDL-related tasks should acquire relevant security knowledge prior to performing the tasks on the sprint.
In this case, relevant is defined as security concepts that are pertinent to the features developed or tested
during the sprint. Examples include:

Web-based applications

• Cross-site scripting (XSS) vulnerabilities
• SQL injection vulnerabilities

Database applications

• SQL injection vulnerabilities

C and C++ applications

• Buffer overflows
• Integer overflows

All languages

• Input validation
• Language-specific issues (PHP, Java, C#)

Cryptographic code

• Common cryptographic errors

Acquiring security knowledge could be as simple as reading appropriate chapters in a book1 or watching
an online training class. If someone on the team wants to adopt the role of “security champion” or

1 19 Deadly Sins of Software Security by Howard, LeBlanc, and Viega is a book that focuses on language and domain-specific

coding vulnerabilities.

 Security Development Lifecycle for Agile Development 8

security expert for their team, they should attend broader and deeper security education as part of their
normal ongoing education. Having a security expert close by is advantageous to the team and, more
importantly, to the customer.

Tooling and Automation
Tools that automate security-related tasks are critical to a successful security process because the more
you can automate the work necessary to meet requirements, the easier security becomes. Also, tools help
reduce some of the development effort required of the developers by shifting it onto the tools. When
security is involved, tools are not a replacement for humans, but tools do offer scalability—a tool can scan
lots of code or check binaries without getting tired. Keep in mind, however, that simply running tools does
not make a software product secure.

SDL-Agile requires the following tools to be run at least once per sprint and recommends that they be run
daily or as part of the build and check-in process:

.NET code:

• CAT.NET (applies to ASP.NET applications only)
• FxCop 1.35 or later (all security rules at a minimum)

Native code:

• PREFast (or /analyze in Microsoft Visual Studio®)

Threat Modeling: The Cornerstone of the SDL
At some point, the major SDL artifact—the threat model—must be used as a baseline for the product.
Whether this is a new product or a product already under development, a threat model must be built as
part of the sprint design work. Like many good Agile practices, the threat model process should be time-
boxed and limited to only the parts of the product that currently exist or are in development.

Once a threat model baseline is in place, any extra work updating the threat model will usually be small,
incremental changes.

A threat model is a critical part of securing a product because a good threat model helps to:

• Determine potential security design issues.
• Drive attack surface analysis and most “at-risk” components.
• Drive the fuzz-testing process.

During each sprint, the threat model should be updated to represent any new features or functionality
added during that sprint. The threat model should also be updated to represent any significant design
changes, even if the functionality stays the same.

SDL Threat Modeling Tool
While not officially required as part of the SDL (either SDL-Agile or SDL-Classic), many internal Microsoft
teams use the SDL Threat Modeling Tool with great success. The SDL Threat Modeling Tool is specifically
designed to be used by developers and architects who may not necessarily have security expertise. A full
review of the SDL Threat Modeling Tool is beyond the scope of this paper, but you can read more about it
(and download it for free) at the Microsoft SDL Threat Modeling Tool Web site.

 Security Development Lifecycle for Agile Development 9

Starting a Threat Model for an Existing Project
If an Agile team adopts the SDL-Agile as outlined in this document while a product is already in
development, a threat model needs to be built for the current product, but it is imperative that the team
remains lean. A minimal, but useful, threat model can be built by analyzing high-risk entry points and data
in the system. At a minimum, the following should be identified and threat models built around the entry
points and data:

• Anonymous and remote network endpoints
• Anonymous or authenticated local endpoints into high-privileged processes
• Sensitive, confidential, or personally identifiable data held in data stores used in the application

Continuing Threat Modeling
Threat modeling is one of the every-sprint SDL requirements for SDL-Agile. Unlike most of the other
every-sprint requirements, threat modeling is not easily automated and can require significant team
effort. However, in keeping with the spirit of agile development, only new features or changes being
implemented in the current sprint need to be threat modeled in the current sprint. This helps to minimize
the amount of developer time required while still providing all the benefits of threat modeling.

Fuzz Testing
Fuzz testing is a brutally effective security testing technique, especially if the team has never used fuzz
testing on the product. The threat model should determine what portions of the application to fuzz test. If
no threat model exists, the initial list should include high-risk items, such as those defined in Appendix D:
High-Risk Code.

After this list is complete, the relative exposure of each entry point should be determined, and this drives
the order in which entry points are fuzzed. For example, remotely accessible or unauthenticated endpoints
are higher risk than local-only or authenticated endpoints.

The beauty of fuzz testing is that once a computer or group of computers is configured to fuzz the
application, it can be left running, and only crashes need to be analyzed. If there are no crashes from the
outset of fuzz testing, the fuzz test is probably inadequate, and a new task should be created to analyze
why the fuzz tests are failing and make the necessary adjustments.

Using a Spike to Analyze and Measure Unsecure Code in Bug Dense and “At-Risk”
Code
A critical indicator of potential security bug density is the age of the code. Based on the experiences of
Microsoft developers and testers, the older the code, the higher the number of security bugs found in the
code. If your project has a large amount of legacy code or risky code (see Appendix D: High-Risk Code),
you should locate as many vulnerabilities in this code as possible. This is achieved through a spike. A spike
is a time-boxed “side project” with a well-defined goal (in this case, to find security bugs). You can think of
this spike as a mini security push. The goal of the security push at Microsoft is to bring risky code up to
date in a short amount of time relative to the project duration.

Note that the security push doesn't propose fixing the bugs yet but rather analyzing them to determine
how bad they are. If a lot of security bugs are found in code with network connections or in code that
handles sensitive data, these bugs should not only be fixed soon, but also another spike should be set up
to comb the code more thoroughly for more security bugs.

 Security Development Lifecycle for Agile Development 10

Examples of analysis performed during a spike include:

• All code. Search for input validation failures leading to buffer overruns and integer overruns. Also,
search for insecure passwords and key handling, along with weak cryptographic algorithms.

• Web code. Search for vulnerabilities caused through improper validation of user input, such as CSS.
• Database code. Search for SQL injection vulnerabilities.
• Safe for scripting ActiveX controls. Review for C/C++ errors, information leakage, and dangerous

operations.

All appropriate analysis tools available to the team should be run during the spike, and all bugs triaged
and logged. Critical security bugs, such as a buffer overrun in a networked component or a SQL injection
vulnerability, should be treated as high-priority unplanned items.

Exceptions
The SDL requirement exception workflow is somewhat different in SDL-Agile than in the classic SDL.
Exceptions in SDL-Classic are granted for the life of the release, but this won’t work for Agile projects. A
“release” of an Agile project may only last for a few days until the next sprint is complete, and it would be
a waste of time for project managers to keep renewing exceptions every week.

To address this issue, project teams following SDL-Agile can choose to either apply for an exception for
the duration of the sprint (which works well for longer sprints) or for a specific amount of time, not to
exceed six months (which works well for shorter sprints). When reviewing the requirement exception, the
security advisor can choose to increase or decrease the severity of the exception by one level (and thus
increase or decrease the seniority of the manager required to approve the exception) based on the
requested exception duration.

For example, say a team requests an exception for a requirement normally classified as severity 3, which
requires manager approval. If they request the exception only for a very short period of time, say two
weeks, the security advisor may drop the severity to a 4, which requires only approval from the team’s
security champion. On the other hand, if the team requests the full six months, the security advisor may
increase the severity to a 2 and require signoff from senior management due to the increased risk.

In addition to applying for exceptions for specific requirements, teams can also request an exception for
an entire bucket. Normally teams must complete at least one requirement from each of the bucket
categories during each sprint, but if a team cannot complete even one requirement from a bucket, the
team requests an exception to cover that entire bucket. The team can request an exception for the
duration of the sprint or for a specific time period, not to exceed six months, just like for single
exceptions. However, due to the broad nature of the exception—basically stating that the team is going
to skip an entire category of requirements—bucket exceptions are classified as severity 2 and require the
approval of at least a senior manager.

Final Security Review
A Final Security Review (FSR) similar to the FSR performed in the classic waterfall SDL is required at the
end of every agile sprint. However, the SDL-Agile FSR is limited in scope—the security advisor only needs
to review the following:

• All every-sprint requirements have been completed, or exceptions for those requirements have been
granted.

 Security Development Lifecycle for Agile Development 11

• At least one requirement from each bucket requirement category has been completed (or an
exception has been granted for that bucket).

• No bucket requirement has gone more than six months without being completed (or an exception
has been granted).

• No one-time requirements have exceeded their grace period deadline (or exceptions have been
granted).

• No security bugs are open that fall above the designated severity threshold (that is, the security bug
bar).

Some of these tasks may require manual effort from the security advisor to ensure that they have been
completed satisfactorily (for example, threat models should be reviewed), but in general, the SDL-Agile
FSR is considerably more lightweight than the SDL-Classic FSR.

Now that the basic methodology and foundation is in place, it's time for an example scenario.

SDL-Agile Example
A database-driven Web product is currently in development by a team with a four-week sprint duration. It
is primarily written using C# and ASP.NET. There is a Windows service that processes some data from the
Web application. The service was originally written three years ago and is about 11,000 lines of C++
code—it’s pretty complex.

Input to the Web application is mostly unauthenticated, but it does offer a remotely accessible admin-
only interface. The application also uses a small ActiveX control written in C++.

The product backlog includes 45 user stories—21 of these are high-priority stories, 10 are medium-
priority stories, and 14 are low-priority stories. During the sprint planning phase, 10 user stories are
selected for the current sprint, 3 stories are high priority, 3 are medium priority, and the final 4 are low
priority.

At this point, the team adds technology stories for each of the every-sprint SDL requirements. Even
though the product uses both managed and native modules, the team is only working on the managed-
code modules during this sprint, so only the every-sprint tasks that apply to managed online services are
added to the sprint.

Since this is the first sprint in which the team is using the SDL-Agile process, additional high-priority
stories are added to complete some of the one-time requirements (for example, registering the project in
the security compliance tracking system, creating a privacy form, identifying a privacy incident response
person, and identifying a security program manager). One more high-priority story is added to update the
build process to integrate the SDL-required, every-build requirements (use of the SDL-required compiler
and linker flags and integration of the FxCop security rules).

 Security Development Lifecycle for Agile Development 12

Finally, the team also adds in high-priority stories for the bucket tasks that the team wants to complete
during the current sprint. For this sprint, the team chooses to add tasks to run an attack surface analyzer,
review the crypto design of the system, and create a content publishing and user interface security plan.

The sprint begins, and two people on the team take on the task of building the threat model for the
features to be developed during this sprint. The big problem is that no one knows how to build a threat
model, so the two people read the threat modeling chapter in the SDL book2 and read Adam Shostack’s
series of threat modeling blog posts. This gives them enough information to perform the threat modeling
task.

After the threat model is built (and the corresponding story completed), the team uncovers a critical
vulnerability—the database contains sensitive data (users’ names, computer information, browser
information, and IP addresses), and the data is not protected from disclosure threats. Because the data is
sensitive, and it appears that unauthenticated attackers could access the data through a potential SQL
injection vulnerability, two more high-priority stories are added to the sprint backlog—one to add
defenses to protect the data in the database and the other to scour the code for SQL injection
vulnerabilities. The team does not know about protecting data from disclosure, so the person slated to
work on this defense reads chapter 12, “Failing to Store and Protect Data Securely,” in the 19 Deadly Sins.

One developer checks to ensure that the build environment is set up to use the SDL-required compiler
and linker switches and that the security-focused code analysis tools are also set to run as part of the
build process.

After looking at the new set of user stories so far, the team decides to remove two medium-priority
stories and two low-priority stories to keep within the sprint time box—these stories are put back in the
product backlog. Finally, after talking to the customer, one high-priority story is downgraded to a
medium-priority story but is to be completed in this sprint.

One developer elects to address the possible SQL injection vulnerabilities identified by the threat model.
He spends three days finding all database access code within the Web and C++ code and modifying it to
use stored procedures and parameterized queries. He also modifies the access rights of the interactive
database user so that it does not have access to any database tables that are not necessary for the
application. He also removes the interactive user’s permissions for deleting database objects and creating
new database objects, since these are also not necessary for the application to function. These practices
are good defense-in-depth measures that help prevent the system from being exploited in the event that
a vulnerability accidentally slips into the production code.

Nineteen days into the sprint, all of the SDL-required, high-priority stories are completed, as are many of
the selected user stories. The team finishes out the sprint, completing the rest of the selected user stories.
The sprint is a success, and the team is poised to release their new code to the public.

2 Howard, Michael, and Steve Lipner. The Security Development Lifecycle (Chapter 9). Microsoft Press, June 28, 2006.

 Security Development Lifecycle for Agile Development 13

Appendix A: Every-Sprint Requirements
Title Requirement/

Recommendation
Applies to

Online
Services

Applies to
Managed

Code

Applies to
Native Code

Communicate privacy-impacting
design changes to the team’s
privacy advisor

Requirement X X X

Compile all code with the /GS
compiler option

Requirement X X

Comply with SDL firewall
requirements

Requirement X X

Do not use banned APIs in new
code

Requirement X X

Ensure all ASP.NET applications
use the ValidateRequest cross-site
scripting input validation
attribute

Requirement X X

Ensure all database access is
performed through
parameterized queries to stored
procedures

Requirement X X X

Ensure all team members have
had security education within the
past year

Requirement X X X

Ensure the application domain
group is granted only execute
permissions on the database
stored procedures

Requirement X X X

Fix all issues identified by code
analysis tools for unmanaged
code

Requirement X X

Fix all security issues identified by
CAT.NET and FxCop static analysis

Requirement X X

Follow input validation and
output encoding guidelines to
defend against cross-site scripting
attacks

Requirement X X X

 Security Development Lifecycle for Agile Development 14

Title Requirement/
Recommendation

Applies to
Online

Services

Applies to
Managed

Code

Applies to
Native Code

Link all code with the
/dynamicbase linker option
(Address Space Layout
Randomization)

Requirement X X

Link all code with the /nxcompat
linker option (Data Execution
Prevention)

Requirement X

Link all code with the /safeseh
linker option (safe exception
handling)

Requirement X

Update threat models for new
features

Requirement X X X

Use HeapSetInformation Requirement X

Use the /robust MIDL compiler
switch

Requirement X

Use the Relying Party Suite SDK Requirement X X

Avoid JavaScript eval function
and equivalents

Recommendation X

Canonicalize URLs Recommendation X X X

Encode long-lived pointers Recommendation X X

Review error messages to ensure
sensitive information is not
disclosed

Recommendation X X X

Use standard annotation
language (SAL) to annotate all
functions

Recommendation X X

Use strict /GS option Recommendation X X

Use whitelist of allowed domains
to perform redirects

Recommendation X X X

 Security Development Lifecycle for Agile Development 15

Appendix B: Bucket Requirements

Bucket A: Security Verification

Title Requirement/
Recommendation

Applies to
Online

Services

Applies to
Managed

Code

Applies to
Native Code

Debug the application with the
Application Verifier enabled

Requirement X

Disable tracing and debugging in
ASP.NET applications

Requirement X X

Investigate and service any
reported /GS crashes

Requirement X

Perform ActiveX control fuzzing Requirement X X

Perform attack surface analysis Requirement X X X

Perform binary analysis
(BinScope)

Requirement X X X

Perform COM object testing Requirement X

Perform cross-domain scripting
testing

Requirement X X X

Perform file fuzz testing Requirement X X

Perform RPC fuzz testing Requirement X X

Conduct in-depth manual and
automated code review for high-
risk code

Recommendation X X X

Perform data flow testing Recommendation X X X

Perform input validation testing Recommendation X X X

Perform replay testing Recommendation X X X

 Security Development Lifecycle for Agile Development 16

Bucket B: Design Review

Title Requirement/
Recommendation

Applies to
Online

Services

Applies to
Managed

Code

Applies to
Native Code

Avoid cross-domain access to
authenticated sites

Requirement X X X

Comply with User Account
Control (UAC) best practices to
ensure all code runs as a non-
administrator

Requirement X X

Conduct a privacy review Requirement X X X

Ensure all code is compliant with
the SDL Cryptographic Standards

Requirement X X X

Ensure all code is compliant with
the SDL Privacy Guidelines
document

Requirement X X X

Use strongly named assemblies,
and request minimal permissions

Requirement X X

Complete in-depth threat model
training

Recommendation X X X

Disable rarely used features by
default, to reduce attack surface

Recommendation X X X

Grant minimal privileges Recommendation X X X

Review planning and design
specifications for user interface
elements

Recommendation X X X

Use Windows Imaging
Component to process image data

Recommendation X X

 Security Development Lifecycle for Agile Development 17

Bucket C: Response Plans

Title Requirement/
Recommendation

Applies to
Online

Services

Applies to
Managed

Code

Applies to
Native Code

Add or update privacy scenarios
in the test plan

Requirement X X X

Create or update the list of
response contacts

Requirement X X X

Define or update the privacy bug
bar

Requirement X X X

Define or update the security bug
bar

Requirement X X X

Ensure symbols are available
internally for all public releases

Requirement X X X

Create or update a business
continuity-disaster recovery plan

Recommendation X X X

Create or update a network down
plan

Recommendation X X X

Create or update content
publishing plan

Recommendation X X X

Create or update privacy support
documents

Recommendation X X X

 Security Development Lifecycle for Agile Development 18

Appendix C: SDL-Agile One-Time Requirements
Title Requirement/

Recommendation
Completion

Deadline
(months)

Applies to
Online

Services

Applies to
Managed

Code

Applies to
Native Code

Avoid writable PE
segments

Requirement 6 X X

Create a baseline
threat model

Requirement 3 X X X

Determine security
response standards

Requirement 6 X X X

Establish a security
response plan

Requirement 6 X X X

Identify primary
security and privacy
contacts

Requirement 1 X X X

Identify your team’s
privacy expert

Requirement 1 X X X

Identify your team’s
security expert

Requirement 1 X X X

Use approved XML
parsers

Requirement 6 X X

Use latest compiler
versions

Requirement 12 X X X

Configure bug
tracking to track the
cause and effect of
security bugs

Recommendation 3 X X X

Designate full-time
security program
manager

Recommendation 3 X X X

Remove
dependencies on
NTLM authentication

Recommendation 12 X X X

 Security Development Lifecycle for Agile Development 19

Appendix D: High-Risk Code
The following defines the highest risk code (at the time of writing) that should receive greater scrutiny if
the code is legacy code and should be written with the greatest care if the code is new code.

• Windows services and *nix daemons listening on network connections
• Windows services running as SYSTEM or *nix daemons running as root
• Code listening on unauthenticated network ports connections
• ActiveX controls
• Browser protocol handlers (for example, about: or mms:)
• setuid root applications on *nix
• Code that parses data from untrusted (non-admin or remote) files
• File parsers or MIME handlers

 Security Development Lifecycle for Agile Development 20

Appendix E: Frequently Asked Questions
Q: Can teams release products without ever having to complete some requirements?

A: Yes, but it is not the intent of SDL-Agile to allow teams to ignore or avoid certain SDL requirements
indefinitely. This is a side effect of a process that is designed to respect the needs of the team to spend a
significant amount of time innovating and implementing new features while still maintaining an
appropriate security baseline. No requirement can go more than six months without being completed (or
having an exception granted).

Q: Why not mandate a round-robin or other type of requirement rotation to ensure that all requirements
eventually get addressed?

A: Some teams feel strongly that certain requirements are a better use of their limited time budget. If, for
example, a team feels that the process of running and analyzing attack surface analyzer results is not as
valuable as running and analyzing file fuzzer results, it can perform file fuzzing more often and attack
surface analysis less often.

Q: Why not mandate a security spike—a sprint totally focused on security?

A: If teams want to do this, great! But it is not part of the SDL-Agile requirements. In general, one of the
guiding principles of SDL-Agile is to keep teams from spending so much time on security that it
significantly affects their feature velocity. A mandated security spike would definitely affect a team’s
feature release schedule.

