
[Black Hat DC 2010] An Uninvited Guest

1 | B e l o w G o t h a m L a b s

Black Hat DC 2010
Conference Proceedings

An Uninvited Guest (Who Won’t Go Home)

Bill Blunden
 Principal Investigator

Below Gotham Labs
 www.belowgotham.com

Abstract

While there are a multitude of battle-tested forensic tools that focus on disk storage,

the discipline of memory analysis is still maturing. Even the engineers who work at

the companies that sell memory-related tools have been known to admit that the

percentage of incident responders who perform an in-depth examination of memory

is relatively small. In light of this, staying memory resident is a viable strategy for

rootkit deployment. The problem then becomes a matter of remaining inconspicuous

and finding novel ways to survive a system restart. In this white paper I’ll look at

rootkit technology that tackles both of these challenges on the Windows platform.

[Black Hat DC 2010] An Uninvited Guest

2 | B e l o w G o t h a m L a b s

Introduction

From the standpoint of a developer

in the field, the process of software

engineering involves balancing what’s

possible with what’s realistic. Even a Black

Hat designing a rootkit has to walk this line.

Concealment takes effort, and (in the

absence of a federal budget) at a certain

point concessions will need to be made in

the interest of expediency and practical

limitations.

 On the Windows platform, the

functionality provided by the Windows API,

the Native system calls, and the kernel’s

associated internal data structures are a

common reservoir that both the attacker and

defender drink from. Both sides can try to

poison this communal well (so to speak) in

hopes of disabling the other guy. The

attacker can quietly modify objects to

mislead an observer and fabricate results.

Likewise, a defender can monitor system

components, examine their composition, and

set baited traps to reveal the presence of an

intruder.

Hence, the more independent a

rootkit is from the operating system’s

indigenous facilities, the stealthier it can be.

In the milieu of rootkit design, autonomy is

the coin of the realm.

At one end of the spectrum there’s

the classical approach, where an intruder

basically hides in a crowd. This is what

Rutkowska refers to a Type 0 malware
 [1]

.

This sort of software doesn’t take any

measures to actively conceal its presence;

which is to say that it doesn’t modify the

host operating system in any way. It uses

standard API routines to request core

services from the underlying OS (e.g. file

access, network I/O, IPC, etc.) and is

scheduled for execution by the kernel in the

same manner as a legitimate module. In

other words, it runs like any other

application, or driver, with the guarded

expectation that it will blend in with the

throng of executing code well enough to

escape casual inspection by a harried system

administrator.

Standard forensic analysis was made

to smoke out rootkits like this
 [2]

. All it takes

is sufficient familiarity with the target

platform, a baseline snapshot, and the time

necessary to do a thorough job. Once all of

the known-good binaries have been

accounted for, Type 0 malware tends to stick

out like a sore thumb.

At the other extreme, you move

towards a Microkernel design where the

rootkit doesn’t use any of the services

provided by the OS proper. It runs without

assistance from the targeted system,

communicating directly with the hardware,

relying entirely on its own code base. In this

case, nothing will be gleaned from reading

the event logs and no traces of the rootkit

will be unearthed by analyzing the operating

system’s internal bookkeeping data

structures. This is because nothing in the OS

itself has been modified. A hypervisor
[3]

 or

a firmware-based rootkit
[4]

 can be viewed as

an instance of this school of thought.

The problem with this latter

approach is that it’s extremely hardware

dependent. You’re essentially writing your

own little OS with all the attendant driver

code and processor-specific niceties.

In the absence of inside information,

many attackers don’t necessarily have the

[Black Hat DC 2010] An Uninvited Guest

3 | B e l o w G o t h a m L a b s

benefit of knowing what hardware they’ll be

facing once they breach the target’s

defenses. Sometimes all you have to start

with (if you’re lucky) is an OS fingerprint

and a set of open ports. Most developers

don’t have the luxury of preparing for every

contingency and they end up opting for a

solution that trades stealth for portability.

This doesn’t mean that malware

engineers haven’t taken the other route. If

circumstances demand it, and the attacker

has the necessary funding, they can scope

out the target so that a customized one-of-a-

kind rootkit can be constructed for a specific

chipset, peripheral device, or system

software interface. This is exactly what

happened in Greece back in 2005, where

intruders compromised a series of telephone

switches belonging to the country’s largest

cellular service provider. Given the level of

sophistication demonstrated by the intruders,

investigators suspect that the rootkit was

planted by an intelligence agency with the

assistance of an insider
[5]

.

What all of this demonstrates is that

there’s a cost associated with stealth. The

more difficult you want to make life for the

incident responders, the more resources you

will spend in terms of development effort

and reconnaissance. Everyone has a budget.

Black Hats on a Budget – Part I

One way to limit the number of

artifacts that you leave on a system is to stay

memory resident. If you take this route,

you’ll need to find ways to evade memory

analysis and survive a system restart.

 As Jesse Kornblum has pointed out,

if the operating system can find a rootkit’s

code (to execute it), then so can the

investigator
[6]

. This doesn’t mean that

rootkit detection will be an easy process, and

indeed there are steps you can take to foil

the incident responder.

 The majority of memory forensic

tools seem preoccupied with enumerating

tasks and threads. To subvert this defense,

you simply avoid creating the bookkeeping

entries that represent tasks and threads. One

field-expedient way to do this is to allocate a

region of memory from the nonpaged pool

and inject shellcode into it, allowing an

attacker to sidestep the Windows Loader

(which might otherwise be invoked to map a

module into RAM, resolve addresses, etc.).

Granted, the concealment we achieve is far

from perfect, but this approach does offer a

modicum of transferability across

motherboards. Think bullet-resistant, not

bullet-proof.

 Our shellcode has to find some way

to get the attention of the processor.

Otherwise the code is just a harmless series

of bytes floating adrift in kernel space. It’s

inevitable: somehow we have to plug in to

the targeted system and institute

modifications. Think of this limitation as the

Achilles heel of kernel-mode injection.

In this regard, if you’re going to

interface with the OS, it’s always better to

alter system components that are inherently

dynamic and thus more difficult to monitor.

Thankfully the Windows kernel is rife with

entropy; the average production system is a

roiling sea of pointers and constantly

morphing data structures. Watching this sort

of system evolve is like driving down a

desert highway at midnight with your

headlights off. You’re not entirely sure

[Black Hat DC 2010] An Uninvited Guest

4 | B e l o w G o t h a m L a b s

what’s happening, or where you’re headed,

but you know you’re getting there fast.

Black Hats on a Budget – Part II

 If all we did was hide out in

memory, our foothold on the targeted

system could prove to be short-lived.

Murphy’s Law applies to attackers just as

much as it does to everyone else. Once

more, there are enterprise-class deployments

(e.g. The Chicago Stock Exchange) that are

restarted on a regular basis ostensibly to

guard against memory leaks and gradual

runtime decay
[7]

.

 From 10,000 feet, preparing for

Murphy and his ilk is a matter of building

fault tolerance into our rootkit. To this end,

the Computrace inventory tracking product

from Absolute Software serves as an

illustration of how this can be done in

practice. Computrace can be configured to

use a persistence module embedded in the

BIOS (or firmware)
[8]

. If the tracking

service installed in the OS is removed, the

persistence agent springs to life and re-

installs the service.

 Naturally, Absolute has the benefit

of collaborating directly with hardware

OEMs. The average Black Hat does not

have this advantage, much less

foreknowledge of the targeted system’s

chipset. Still, the idea of instituting a

monitoring component is something that we

can borrow from. Instead of deploying a

single rootkit, deploy a primary rootkit and a

secondary rootkit.

For example, we could install the

primary rootkit on the targeted system and

the secondary rootkit on another machine

somewhere in the vicinity. By keeping the

two rootkits on separate machines we limit

our potential exposure to a catastrophic

system failure that would take both

components out. The secondary rootkit

could check for the presence of a heartbeat,

which the primary rootkit emits periodically.

If the secondary rootkit fails to detect a

heartbeat after a certain amount of time, it

could mimic the behavior of the Computrace

persistence module and re-install the

primary rootkit.

Black Hats on a Budget – Part III

Then there’s the matter of emitting a

heartbeat signal. Network communication

has traditionally been a challenge for rootkit

architects. If you’re too brazen, and use the

existing network stack to initiate

communication over a nonstandard port, you

risk being blocked by the resident firewall,

or (even worse) detected by the system

administrator.

One work-intensive alternative is to

build a self-contained networking stack into

the rootkit. Not only does this allow an

intruder to bypass restrictions imposed by

the local firewall, it also hides the intruder’s

network connections from an admin who’s

logged onto the machine’s console. On the

surface, this would seem to be an ideal

solution.

Nevertheless, this over-engineered

approach poses serious complications. An

investigator who’s monitoring network

traffic both locally and from a line tap may

notice the discrepancy. Specifically, they’ll

see packets running over the wire, to and

from the target system, that don’t

[Black Hat DC 2010] An Uninvited Guest

5 | B e l o w G o t h a m L a b s

correspond to connections that are visible

from the system’s console. If this isn’t a tip-

off, I don’t know what is.

A more subtle tactic would be to

tunnel the heartbeat over a common protocol

(e.g. ARP, HTTP, DNS, etc.) so that the

connection is visible on the host but appears

to correspond to legitimate traffic
[9]

. This is

another variation of the “hide in a crowd”

strategy. Many protocols have slack space,

or general-purpose fields, that can be

employed to ferry data. In other words, it’s

the network-based incarnation of the grugq’s

FISTing technique
[10]

.

 The problem with all of this is that

you’re still generating new packets, ones

that don’t really belong, and these new

packets in and of themselves may be enough

to give you away. For example, an elderly

mainframe that’s running COBOL apps

written in the 1980s to execute financial

transactions deep in a LAN probably

wouldn’t have any reason to generate HTTP

traffic. A security officer perusing NSM

logs would probably choke on their coffee

and raise the alarm if they saw something

like that.

 This is the beauty of Passive Covert

Channels (PCC). Rather than emit new

packets, why not make subtle modifications

to existing packets to transmit information.

In other words, it’s steganography at the

packet level. There has been some publicly

available work done in this domain both

inside
[11]

 and outside of academia
[12]

.

You could argue that all of this fuss

really isn’t necessary. Do you really have to

crack a heavily guarded mainframe to access

the data that it stores? Rather, would it be

simpler just to compromise a client machine

that has access to that data? Imagine, for a

moment, the desktop machine of a high-

ranking executive officer who has all sorts

of little toy applications and browser

extensions installed on their system. This

sort of noisy environment makes it much

easier to tunnel out data.

Sample Code and Build Environment

The sample code that accompanies

this presentation consists of three packages,

each placed in a separate folder:

 HeartBeat

 Bin2Array

 KMDLoader

The HeartBeat directory houses a

shellcode payload that generates a heartbeat

signal tunneled over DNS. The Bin2Array

package is just a primitive tool that takes

this shellcode and translates it into an array

in the C programming language.

The KMDLoader directory contains

a user-mode component that passes the

shellcode C array to a kernel-mode staging

driver, which in turn injects the shellcode

into memory and modifies the OS so that the

shellcode is periodically executed at random

intervals. The KMDLoader is basically the

software equivalent of training wheels. In

practice, the shellcode would most likely be

deployed via exploit (e.g. either a user-mode

exploit that loads its own staging driver or a

direct attack against a buggy KMD). I’ve

stuck with the training wheels in an effort to

focus on post-intrusion topics.

Strictly speaking, the build script in

the HeartBeat folder generate a vanilla

[Black Hat DC 2010] An Uninvited Guest

6 | B e l o w G o t h a m L a b s

kernel-mode driver. The shellcode that

we’re after is embedded in this KMD.

Standard toolsets like Visual Studio

and the WDK weren’t really designed to

produce shellcode. They were designed to

emit libraries, executables, and drivers that

adhere to the Windows PE file format. Thus,

coaxing them into emitting position

independent code takes a bit of tweaking.

For example, one step that I took was

to merge all of the relevant code and data

into a single executable section (i.e. the

.code section). By default, the compiler will

emit warnings about this that are treated like

errors, putting the kibosh on our shellcode

dreams. To disable this behavior I changed

the LINKER_WX_SWITCH macro in the

WDK’s makefile.new file from /WX to

/WX:NO.

The hardest part was figuring out the

correct combination of compiler options.

Based on my experience, building shellcode

is a matter of ensuring that the compiler

doesn’t mix in all of those extra value-added

features (like frame pointers, buffer checks,

type checks, optimization, etc.). As Shel

Silverstein observed, “some kind of help is

the kind of help we all can do without.” So,

it’s not what you introduce into the final

byte stream, but actually what you keep out.

After several hours of trial and error, I ended

up using the following set of parameters:

USER_C_FLAGS=/Od /Oy /GS- /J /GR- /FAcs /TC

The end result is a driver module (a

.sys file) which has shellcode snookered

away in the .code section. To get at this

shellcode you can use the ever-handy

dumpbin.exe utility to determine the

physical offset of the .code section within

the driver. I opted for a low-tech solution

and used a hex editor to extract the shellcode

once I located it. I suppose it wouldn’t be

too hard to write a tool that would automate

the process. An even more elaborate

solution would be to write a full-fledged

compiler that spits out kernel-mode

shellcode as its final product. Then you

could build an IDE with an integrated

debugger, a profiler, a virtual machine

testing ground, and … and …

Last but not least, in the staging

driver I reference a nonstandard API so that

I can feed the shellcode the necessary fix-up

address at runtime. To link this API into the

staging driver I had to append the path to the

aux_klib.lib library to the end of the

GETLIB macro in the WDK’s makefile.new

file.

State-Sponsored Rootkits

 The recurring theme of this white

paper has been that you can’t have your cake

and eat it too. But this isn’t always the case.

With enough money and the proper

resources (read: staffing, equipment, time),

you can build a rootkit that, at least over the

short term, can attain near perfect levels of

stealth. The organizations that can build this

sort of rootkit are the same ones capable of

building a MIRVed SLBM. I’m talking

about the heavy hitters; the groups funded

by a national budget
[13]

.

These high-end purveyors have

advantages not afforded to the independent

labs and lone Black Hat developers. They

have close ties with governmental

departments that can leverage their clout to

encourage vendors to cooperate. Why spend

[Black Hat DC 2010] An Uninvited Guest

7 | B e l o w G o t h a m L a b s

the better part of a year reverse-engineering

a proprietary chipset, with somewhat limited

success, when you can simply read the

architect’s original design specification and

be done with it? All of the energy that would

otherwise be spent deciphering magic

numbers and performing differential

analysis can be funneled directly into more

productive software development, saving

who knows how much hair pulling and

resulting in a more stable, powerful, rootkit.

In the race between the Black Hats

and the White Hats, victory often goes to

whoever burrows deeper into the core

regions of a system (recall what I said about

autonomy). In the early days of the Intel

platform, this meant descending into Ring 0.

As related technology has matured, rootkits

that execute in Ring -1 (hypervisor host

mode), Ring -2 (SMM Mode), and Ring -3

(the Intel AMT Environment) have

appeared. As the path of program control

submerges into the lower rings, it becomes

more entangled with the intricacies of the

native chipset and much harder to detect.

Thus, it should come as no surprise

that major league players have gone all the

way down into the hardware, placing

backdoors at the circuit level
[14]

. Scan with

Anti-Virus software all you want, it will do

little to protect against this sort of embedded

subversion.

At the end of the day, the

independent labs (the ones that make their

code available to the general public) are

probably several steps behind the cutting

edge. In fact, I’m pretty sure our tech is

neither Black Hat nor White Hat; it’s old

hat. In all honesty, if you were an attacker

who was actively engaged in collecting

intelligence (and perhaps breaking laws in

other countries), would you publish the

blueprints for your offensive weaponry?

Thus, take what I provided in this white

paper and extrapolate it out a bit and you

may at least have an idea of what the White

Hats are up against. It’s enough to make you

want to unhook from the network and bury

your servers in a thick slab of concrete.

Closing Thoughts

In a sense, rootkits are nothing new.

They’re merely the hi-tech embodiment of

techniques that have been practiced for ages.

The best way to maintain control over a

system is to burrow deep into the

infrastructure, where core components can

be manipulated both to manage the flow of

information to the outside and to orchestrate

events that increase the interloper’s relative

level of privilege. All it takes is an intimate

understanding of the existing system and the

right kind of access
[15]

.

The rootkits are there, as are the

informal back channels that they use to

control our institutions. As any skilled

forensic investigator will tell you,

recognizing what’s really going on is simply

a matter of finding new ways to discern their

presence and trace their movement. Mind

control
[16]

, subterfuge
[17]

, and Hegelian

dialectics
[18]

 are more prevalent than you

may think. Pay no attention to the man

behind the curtain, says the great ball of fire

named Oz. Regrettably, the bulk of society

dutifully heeds this advice, perpetuating the

silent reign of the Wizard.

[Black Hat DC 2010] An Uninvited Guest

8 | B e l o w G o t h a m L a b s

References

[1] Joanna Rutkowska, Introducing Stealth Malware Taxonomy, November 2006,

http://www.invisiblethings.org/papers/malware-taxonomy.pdf

[2] Harlan Carvey, Windows Forensic Analysis DVD Toolkit, 2nd Edition, Syngress, June 2009, ISBN-10:

1597494224

[3] http://bluepillproject.org/

[4] Alexander Tereshkin, Rafal Wojtczuk, Introducing Ring -3 Rootkits, Black Hat USA 2009,

http://www.blackhat.com/presentations/bh-usa-09/TERESHKIN/BHUSA09-Tereshkin-Ring3Rootkit-

SLIDES.pdf

[5] Vassilis Prevelakis, Diomidis Spinellis, “The Athens Affair,” IEEE Spectrum, July 2007,

http://spectrum.ieee.org/telecom/security/the-athens-affair

[6] Jesse Kornblum, “Exploiting the Rootkit Paradox with Windows Memory Analysis,” International

Journal of Digital Evidence, Fall 2006, Volume 5, issue 1

[7] Microsoft Corporation, Windows NT Server at The Chicago Stock Exchange: Technical Roadmap,

http://staging.glg.com/tourwindowsntserver/CHX/technical4.htm

[8] http://www.absolute.com/resources/public/FAQ/CT-FAQ-TEC-E.pdf

[9] Alhambra and daemon9, “Project Loki: ICMP Tunneling,” Phrack Magazine, Volume Seven, Issue 49

[10] grugq, The Art of Defiling, Black Hat Asia 2003, http://www.blackhat.com/presentations/bh-asia-

03/bh-asia-03-grugq/bh-asia-03-grugq.pdf

[11] Steven J. Murdoch and Stephen Lewis, Embedding Covert Channels into TCP/IP, Information Hiding

Workshop 2005 proceedings, http://www.cl.cam.ac.uk/~sjm217/papers/ih05coverttcp.pdf

[12] Joanna Rutkowska, The Implementation of Passive Covert Channels in the Linux Kernel, Chaos

Communication Congress, December 2004, http://www.invisiblethings.org/papers/passive-covert-

channels-linux.pdf

[13] Christopher Drew and John Markoff, “Contractors Vie for Plum Work, Hacking for U.S.” New York

Times, May 30,2009, http://www.nytimes.com/2009/05/31/us/31cyber.html?_r=2

[Black Hat DC 2010] An Uninvited Guest

9 | B e l o w G o t h a m L a b s

[14] John Markoff, “Old Trick Threatens the Newest Weapons,” The New York Times, October 26, 2009,

http://www.nytimes.com/2009/10/27/science/27trojan.html?pagewanted=1&_r=1

[15] William Greider, Who Will Tell The People? : The Betrayal of American Democracy, Simon &

Schuster 1993, ISBN-10: 0671867407

[16] Edward S. Herman and Noam Chomsky, Manufacturing Consent: The Political Economy of the Mass

Media, Pantheon 2002, ISBN-10: 0375714499

[17] Bethany McLean and Peter Elkind, The Smartest Guys in the Room: The Amazing Rise and

Scandalous Fall of Enron, Portfolio Trade, 2004, ISBN-10: 1591840538

[18] Alan Greenspan, The Age of Turbulence: Adventures in a New World, Penguin, 2008, ISBN-10:

0143114166, “I am saddened that it is politically inconvenient to acknowledge what everyone knows:

The Iraq war is largely about oil.”

