
From the Tunnels Below Gotham

An Uninvited Guest
(Who Won’t Go Home)

Black Hat DC 2010

Below Gotham Labs

© 2010 Below Gotham Labs www.belowgotham.com

© 2010 Below Gotham Labs www.belowgotham.com

Police spokesman Hiroki Itakura Called the intruder
“neat and clean”

© 2010 Below Gotham Labs www.belowgotham.com

With respect to anti-forensics,
one way to be “neat and clean:”

Applying the Metaphor

© 2010 Below Gotham Labs www.belowgotham.com

With respect to anti-forensics,
one way to be “neat and clean:”

Applying the Metaphor

Avoid secondary storage

remain memory resident

© 2010 Below Gotham Labs www.belowgotham.com

If Properly engineered…
Not much outside of the page file
Can be captured post mortem

© 2010 Below Gotham Labs www.belowgotham.com

There are two challenges that this approach entails
These issues will define our primary design requirements

© 2010 Below Gotham Labs www.belowgotham.com

Evading Memory Analysis

© 2010 Below Gotham Labs www.belowgotham.com

Surviving System Restart

Call the security officer, I’ve been rooted

© 2010 Below Gotham Labs www.belowgotham.com

Design Goal #1
Achieve an Acceptable Level of Concealment

Different Approaches

Hide in a Crowd
Active Concealment
Jump Out of Bounds

© 2010 Below Gotham Labs www.belowgotham.com

Hide in a Crowd

Basic Idea:

This is the classic malware tactic
Create a new process/thread
Inject a module into an existing one
Try to blend in with existing objects

© 2010 Below Gotham Labs www.belowgotham.com

Hide in a Crowd

Downsides:

This tactic will not survive careful scrutiny

Standard live response forensics will unearth this sort of rogue binary

Huh?
QuickTime

doesn’t run an
FTP service?

© 2010 Below Gotham Labs www.belowgotham.com

Active Concealment

Basic Idea:

Install a module (e.g. a service, driver, injected library, etc.)
Modify the system so that the module’s presence isn’t readily detectable

Strategy Tactics Objects Affected

Modify Static Elements Hooking
In-Place Patching
Detour Patching

IAT, SSDT, GDT, IDT, MSRs
System Calls, Driver routines
System Calls, Driver routines

Modify Dynamic Elements Alter Repositories
DKOM
Patch Callback Tables

Registry Hives, Event Logs
EPROCESS, DRIVER_SECTION
Module .data, .bss sections

© 2010 Below Gotham Labs www.belowgotham.com

Active Concealment

Downsides:

You’re still creating bookkeeping data entries in OS data structures
This is unavoidable (if you’re using native facilities to load the module)
You may be able to hide from some tools, but not all of them simultaneously
This is the basis for cross-view detection, which has proven effective

© 2010 Below Gotham Labs www.belowgotham.com

Active Concealment

Current Trends in Memory Analysis:

Sidestep the system-level APIs (which can be subverted by an intruder)
Instead, forensic tools parse system data structures directly

© 2010 Below Gotham Labs www.belowgotham.com

Jump out of Bounds

Basic Idea:

Eschew direct modification of the targeted operating system
Migrate code outside of the OS proper and operate from this vantage point

Hiding Spot Example

Host/Root Mode Blue Pill Project
http://bluepillproject.org/

SMM Mode Embleton & Sparks Implementation
http://www.blackhat.com/presentations/bh-usa-08/Embleton_Sparks/BH_US_08_Embleton_Sparks_SMM_Rootkits_Slides.pdf

AMT Environment Ring -3 Rootkits
http://www.blackhat.com/presentations/bh-usa-09/TERESHKIN/BHUSA09-Tereshkin-Ring3Rootkit-SLIDES.pdf

© 2010 Below Gotham Labs www.belowgotham.com

Jump out of Bounds

This Trend Highlights a Recurring Theme:

Vendors try to counter malware by creating fortified regions of execution
This seems like a great idea, until malware finds it way into these regions

http://www.intel.com/technology/platform-technology/intel-amt/

© 2010 Below Gotham Labs www.belowgotham.com

Jump out of Bounds
Downsides:

These techniques tend to be hardware dependent
You may not have any information on the target platform
In some cases, all you’ll have to start with is a bunch of open ports

C:\>nmap -sS 12.120.184.8

Starting Nmap 5.00 at 2009-10-26 13:35 Pacific Daylight Time

NSE: Loaded 0 scripts for scanning.
Initiating ARP Ping Scan at 13:35
Scanning 12.120.184.8 [1 port]
Completed ARP Ping Scan at 13:35, 0.18s elapsed (1 total hosts)
Initiating Parallel DNS resolution of 1 host. at 13:35
Completed Parallel DNS resolution of 1 host. at 13:35, 0.02s elapsed
Initiating SYN Stealth Scan at 13:35
Scanning 12.120.184.8 [1000 ports]
Discovered open port 80/tcp on 12.120.184.8
Discovered open port 8099/tcp on 12.120.184.8
Completed SYN Stealth Scan at 13:35, 0.26s elapsed (1000 total ports)

© 2010 Below Gotham Labs www.belowgotham.com

Engineering Concessions

Need to resolve conflicting directives

On one hand, we wish to:

Minimize the footprint we leave in system’s data structures
Establish a presence without creating a new process/thread
Implement rootkit functionality without creating bookkeeping artifacts

Stealth

© 2010 Below Gotham Labs www.belowgotham.com

Engineering Concessions

Need to resolve conflicting directives

On one hand, we wish to:

Minimize the footprint we leave in system’s data structures
Establish a presence without creating a new process/thread
Implement rootkit functionality without creating bookkeeping artifacts

At the same time, we’d like to:

Remain as hardware agnostic as possible
Use technology that’s relatively transferable across the Intel platform
Avoid writing custom driver code for a specific Intel/OEM chipset

Stealth Portability

© 2010 Below Gotham Labs www.belowgotham.com

Engineering Concessions

Professor G.H. Dorr:
“You, sir, are a Buddhist. Is there not a ‘middle’ way?”

The General:
“Mm. Must float like a leaf on the river of life...
and kill old lady.”

From The Ladykillers, Touchstone Pictures (2004)

© 2010 Below Gotham Labs www.belowgotham.com

One Potential Middle Path…

© 2010 Below Gotham Labs www.belowgotham.com

Shellcode

© 2010 Below Gotham Labs www.belowgotham.com

You Heard Me… Shellcode

© 2010 Below Gotham Labs www.belowgotham.com

x86 Shellcode offers a degree of autonomy
It doesn’t require address fix-ups to execute
Therefore, it doesn’t use the Windows loader
Bookkeeping entries aren’t generated in the kernel

find_kernel32:
push esi
xor eax, eax
mov eax, fs:[eax+0x30]
test eax, eax
js find_kernel32_9x

find_kernel32_nt:
mov eax, [eax + 0x0c]
mov esi, [eax + 0x1c]
lodsd
mov eax, [eax + 0x8]
jmp find_kernel32_finished

find_kernel32_9x:
mov eax, [eax + 0x34]
lea eax, [eax + 0x7c]
mov eax, [eax + 0x3c]

find_kernel32_finished:
pop esi
ret

The Benefits of Shellcode

© 2010 Below Gotham Labs www.belowgotham.com

x86 Shellcode offers a degree of autonomy
It doesn’t require address fix-ups to execute
Therefore, it doesn’t use the Windows loader
Bookkeeping entries aren’t generated in the kernel

x86 Shellcode also offers a modicum of portability
It’s generally transferable across Intel motherboards

find_kernel32:
push esi
xor eax, eax
mov eax, fs:[eax+0x30]
test eax, eax
js find_kernel32_9x

find_kernel32_nt:
mov eax, [eax + 0x0c]
mov esi, [eax + 0x1c]
lodsd
mov eax, [eax + 0x8]
jmp find_kernel32_finished

find_kernel32_9x:
mov eax, [eax + 0x34]
lea eax, [eax + 0x7c]
mov eax, [eax + 0x3c]

find_kernel32_finished:
pop esi
ret

The Benefits of Shellcode

© 2010 Below Gotham Labs www.belowgotham.com

x86 Shellcode offers a degree of autonomy
It doesn’t require address fix-ups to execute
Therefore, it doesn’t use the Windows loader
Bookkeeping entries aren’t generated in the kernel

x86 Shellcode also offers a modicum of portability
It’s generally transferable across Intel motherboards

Thus, we’ve reached a middle ground
We want to rely as little as possible on native facilities
Any facilities that we invoke can be used to detect us
But we also want to avoid excessive hardware dependence

find_kernel32:
push esi
xor eax, eax
mov eax, fs:[eax+0x30]
test eax, eax
js find_kernel32_9x

find_kernel32_nt:
mov eax, [eax + 0x0c]
mov esi, [eax + 0x1c]
lodsd
mov eax, [eax + 0x8]
jmp find_kernel32_finished

find_kernel32_9x:
mov eax, [eax + 0x34]
lea eax, [eax + 0x7c]
mov eax, [eax + 0x3c]

find_kernel32_finished:
pop esi
ret

The Benefits of Shellcode

© 2010 Below Gotham Labs www.belowgotham.com

Raw assembly shellcode is tedious to write

Logic can get lost in all those statements

As a result, it can be prone to subtle bugs
And also be generally difficult to maintain

The Drawbacks of Shellcode

© 2010 Below Gotham Labs www.belowgotham.com

Is there a way to sidestep all these issues?
Couldn’t we just write shellcode in C?

© 2010 Below Gotham Labs www.belowgotham.com

http://www.blackhat.com/presentations/bh-europe-09/Caillat/BlackHat-Europe-09-Caillat-Wishmaster-slides.pdf

Yes, we can!

© 2010 Below Gotham Labs www.belowgotham.com

Types of Shellcode

Environment Popular Example Comments

User-Mode Metasploit Shellcode Archive
http://www.metasploit.com/shellcode/

Easier to implement
Easier to detect, capture

Kernel-Mode Deepdoor
http://www.blackhat.com/presentations/bh-jp-06/BH-JP-06-Rutkowska.pdf

More powerful (Ring-0)
More complicated

In the interest of stealth, I decided to employ kernel-mode shellcode

© 2010 Below Gotham Labs www.belowgotham.com

Design Goal #2
Persist (Without Persisting)

Related Concerns

Is This Even Necessary?
“Self-Healing” Software
Persistence Modules

© 2010 Below Gotham Labs www.belowgotham.com

Why is persistence even an issue?

© 2010 Below Gotham Labs www.belowgotham.com

Enterprise Systems are often up for months
(Or, at least, that’s how they’re marketed)

© 2010 Below Gotham Labs www.belowgotham.com

But this isn’t always the case…

© 2010 Below Gotham Labs www.belowgotham.com

Mission critical deployments managed by
The Chicago Stock Exchange
E*TRADE

Have been known to:
Reboot their servers daily
Implement rolling shutdowns periodically

http://staging.glg.com/tourwindowsntserver/CHX/technical.htm

© 2010 Below Gotham Labs www.belowgotham.com

One way to arrive at a potential solution

Is to examine the idea of “self-healing” software

© 2010 Below Gotham Labs www.belowgotham.com

A good example of a commercial implementation:

Absolute Software’s Computrace product

© 2010 Below Gotham Labs www.belowgotham.com

Application agent (rpcnet.exe)

Runs as a nondescript service
Phones home over an encrypted channel
Manages “helper” applications
Collects “inventory” data

Computrace is a loss prevention product
The client piece consists of two components

© 2010 Below Gotham Labs www.belowgotham.com

Application agent (rpcnet.exe)

Runs as a nondescript service
Phones home over an encrypted channel
Manages “helper” applications
Collects “inventory” data

Persistence Module
A secondary, independent, subsystem
Embedded in disk partition gap (or firmware)
Monitors for presence of Application Agent
Re-installs agent if detects that it’s missing

Computrace is a loss prevention product
The client piece consists of two components

© 2010 Below Gotham Labs www.belowgotham.com

The application agent hides in a crowd
It attempts to blend in with all of the other RPC services

© 2010 Below Gotham Labs www.belowgotham.com

It doesn’t take much to abstract these ideas
And then recast the two components as a rootkit

© 2010 Below Gotham Labs www.belowgotham.com

Application agent (rpcnet.exe)

Runs as a nondescript service
Phones home via encrypted channel
Manages helper applications
Collects inventory data

Persistence Module
An independent subsystem
Stashed on disk, or in firmware
Monitors for presence of Agent
Re-installs agent if missing

Rootkit (kmd.sys)

Provides concealment services
Implements Command & Control
Performs Surveillance

Secondary Rootkit
An independent subsystem
Provides concealment services
Monitors for presence of Rootkit
Re-installs Rootkit if missing

Original (White Hat) Package

Black Hat Incarnation

© 2010 Below Gotham Labs www.belowgotham.com

Implementing the Backup Rootkit

There are a number of ways that we could implement the secondary rootkit
Each approach has its own set of tradeoffs

Possible Implementation Comments

Backup Service/Driver Robust, but conspicuous during a post-mortem

Bootkit (e.g. Stoned Again) Less conspicuous, but still vulnerable to forensics

Firmware-Based Module Very stealthy, but also fairly hardware dependent

© 2010 Below Gotham Labs www.belowgotham.com

More Engineering Concessions

Again, conflicting directives

On one hand, we wish to:

Survive a system restart

Fault Tolerance

© 2010 Below Gotham Labs www.belowgotham.com

More Engineering Concessions

Again, conflicting directives

On one hand, we wish to:

Survive a system restart

At the same time, we’d like to:

Minimize the amount of forensic evidence on the target system
Keep our runtime footprint as small as possible

Fault Tolerance Stealth

© 2010 Below Gotham Labs www.belowgotham.com

In other words…
We want a stealthy, fault-tolerant, and logistically tenable solution

© 2010 Below Gotham Labs www.belowgotham.com

One Solution
Install the persistence module on another machine
Where it can monitor the target for a heartbeat signal

Attacker

Targeted Server

RootkitLAN Machine

Heartbeat
Monitor

© 2010 Below Gotham Labs www.belowgotham.com

An Aside on Deployment
The Desktop Machines of High-Ranking Officials are Soft Targets

Their status often provides them with admin rights
But they’re not the most technically savvy people
And they also install all sorts of 3rd party software
So their machines are typically “noisy” to begin with
In the mind of the admin, availability trumps security

© 2010 Below Gotham Labs www.belowgotham.com

Implementation

Kernel-Mode Shellcode in C
Creating
Extracting
Deploying
Executing

© 2010 Below Gotham Labs www.belowgotham.com

Shellcode is merged into a single segment
Using Visual Studio preprocessor directives

#pragma section(".code",execute,read,write)
#pragma comment(linker,"/MERGE:.text=.code")
#pragma comment(linker,"/MERGE:.data=.code")
#pragma comment(linker,"/SECTION:.code,ERW")
#pragma code_seg(".code")

This section encapsulates both code and data

.code

.rdata

PAGE

INIT

.reloc

Creating Kernel-Mode Shellcode

© 2010 Below Gotham Labs www.belowgotham.com

Don’t use conventional address resolution tables
.idata
.reloc

The shellcode has its own internal symbol table
This table is used to store the addresses of

Imported Routines
Local Routines (referenced in callbacks)

The internal symbol table is just a C structure

typedef struct GD_
{

// “GD” as in Global Data
}GD;

.code

.rdata

PAGE

INIT

.reloc

Symbol Table

Creating Kernel-Mode Shellcode

© 2010 Below Gotham Labs www.belowgotham.com

The composition of GD is imposed upon storage that’s reserved for a routine

GD* gd = (GD*)GlobalDataRoutine();

The storage routine also returns the address of its data at runtime

unsigned int GlobalDataRoutine()
{

unsigned int globalDataAddress;
__asm
{

call endOfData
//allocate shellcode data storage here
endOfData:
pop eax
mov globalDataAddress,eax

}
return(globalDataAddress);

}

Creating Kernel-Mode Shellcode

© 2010 Below Gotham Labs www.belowgotham.com

An entry in this internal symbol table is referenced at runtime as follows:

address of entry = (Table’s address) + (Offset into table)

; Call a routine whose address is stored in the symbol table

mov eax, GobalDataRoutine
call DWORD PTR [eax+24]

Notice how the table entry offset is predetermined at compile time

End Result:
A series of addresses is replaced by a single address and a bunch of offsets

Creating Kernel-Mode Shellcode

© 2010 Below Gotham Labs www.belowgotham.com

The internal symbol table is populated when the shellcode is loaded

In other words, the shell code takes over work traditionally done by the loader
Most of the real work involves resolving external routines
MSR Scandown is used to locate routines exported by ntoskrnl.exe

http://www.uninformed.org/?v=3&a=4&t=sumry

AuxKlibQueryModuleInformation() is also invoked when necessary

Note: using routines in aux_klib.lib will require makefile adjustments
This library is not mentioned in the WDK’s default makefile.new

GETLIB=$(DDK_LIB_PATH)\ntoskrnl.lib $(DDK_LIB_PATH)\hal.lib $(DDK_LIB_PATH)\wmilib.lib

Creating Kernel-Mode Shellcode

© 2010 Below Gotham Labs www.belowgotham.com

The SOURCES file deviates slightly from the KMD standard

TARGETNAME=HeartBeat
TARGETPATH=.
TARGETTYPE=DRIVER
SOURCES=HeartBeat.c
INCLUDES=.
MSC_WARNING_LEVEL=/W3
USER_C_FLAGS=/Od /Oy /GS- /J /GR- /FAc /TC
TARGETLIBS=$(DDK_LIB_PATH)\netio.lib

Also, to prevent the linker from treating warnings as errors
Change the following line in the WDK’s default makefile.new:

LINKER_WX_SWITCH=/WX

To
LINKER_WX_SWITCH=/WX:NO

Really important settings

Creating Kernel-Mode Shellcode

© 2010 Below Gotham Labs www.belowgotham.com

The USER_C_FLAGS build macro is crafted such that:

Machine code for a routine is emitted when the compiler encounters it
Thus, the first routine in the source will be located at the lowest address

f01(){ … }

f02(){ … }

f03(){ … }

SourceFile.c

f01 Machine Code

f02 Machine Code

f03 Machine Code

.code section

Low Address

High Address

Creating Kernel-Mode Shellcode

© 2010 Below Gotham Labs www.belowgotham.com

To see this in action…

Check out the shcode.h file, then compare it to HeartBeat.c

unsigned char ShCodeArray[]=
{

// doDNSQueries()
/* 00000000 */ 0x8B, 0xFF, 0x55, 0x8B, 0xEC, 0x83, 0xEC, 0x10, ...

// getHashA()
/* 00000270 */ 0xCC, 0xCC, 0xCC, 0xCC, 0x8B, 0xFF, 0x55, 0x8B, ...

// walkExportList()
/* 000002B0 */ 0xCC, 0xCC, 0xCC, 0xCC, 0x8B, 0xFF, 0x55, 0x8B, ...

//...

Creating Kernel-Mode Shellcode

© 2010 Below Gotham Labs www.belowgotham.com

The shellcode’s position in the driver can be found via dumpbin.exe

C:\>dumpbin.exe /headers kmd.sys

SECTION HEADER #1
.code name
3A4 virtual size
1000 virtual address (00011000 to 000113A3)
400 size of raw data
400 file pointer to raw data (00000400 to 000007FF)
0 file pointer to relocation table
0 file pointer to line numbers
0 number of relocations
0 number of line numbers

Location of shellcode in .SYS

Extracting Kernel-Mode Shellcode

© 2010 Below Gotham Labs www.belowgotham.com

Once you’ve isolated the shellcode, you can extract it out with a hex editor

You can ignore the leading zero bytes (the code is position independent)

Extracting Kernel-Mode Shellcode

© 2010 Below Gotham Labs www.belowgotham.com

Initially, I stayed within the confines of a Kernel-Mode Driver (KMD)
I defined a placeholder routine, consisting of junk instructions

void placeholder()
{

__asm _emit 0x90
__asm _emit 0x90
__asm _emit 0x90
__asm _emit 0x90
__asm _emit 0x90
...
__asm _emit 0x90
return;

}

Deploying Kernel-Mode Shellcode

© 2010 Below Gotham Labs www.belowgotham.com

At runtime the KMD would overwrite this dead space with shellcode

void placeholder()
{

__asm _emit 0x90
__asm _emit 0x90
__asm _emit 0x90
__asm _emit 0x90
__asm _emit 0x90
...
__asm _emit 0x90
return;

}

0x8B
0xFF
0x55
0x8B
0xEC
...
0xC2
0x04

Deploying Kernel-Mode Shellcode

© 2010 Below Gotham Labs www.belowgotham.com

Then, the KMD launched the shellcode as a separate system thread

void placeholder()
{

__asm _emit 0x90
__asm _emit 0x90
__asm _emit 0x90
__asm _emit 0x90
__asm _emit 0x90
...
__asm _emit 0x90
return;

}

0x8B
0xFF
0x55
0x8B
0xEC
...
0xC2
0x04

PsCreateSystemThread()

Deploying Kernel-Mode Shellcode

© 2010 Below Gotham Labs www.belowgotham.com

This approach is far too conspicuous for a production rootkit

But it’s useful as a testing area, before you wade into deep water

Deploying Kernel-Mode Shellcode

© 2010 Below Gotham Labs www.belowgotham.com

One alternative is to simply to load the shellcode into memory somewhere
Specifically, a KMD could allocate storage from the non-paged pool

User-Mode
Kernel-Mode

Exploited User-Mode Process
DeviceIoControl()

kernel32.dll

ntdll.dll

System Calls (Nt*())

I/O Manager (Io*())

KMD.sys

SYSENTER

IRP

Allocated
RAM

Deploying Kernel-Mode Shellcode

© 2010 Below Gotham Labs www.belowgotham.com

Then, it receives a shellcode payload via a call to DeviceIoControl()

User-Mode
Kernel-Mode

Exploited User-Mode Process
DeviceIoControl()

kernel32.dll

ntdll.dll

System Calls (Nt*())

I/O Manager (Io*())

KMD.sys

SYSENTER

IRP
Shellcode

Deploying Kernel-Mode Shellcode

© 2010 Below Gotham Labs www.belowgotham.com

Finally, the KMD unloads, leaving the shellcode alone in memory

User-Mode
Kernel-Mode

Exploited User-Mode Process
DeviceIoControl()

kernel32.dll

ntdll.dll

System Calls (Nt*())

I/O Manager (Io*())

KMD.sys

SYSENTER

IRP
ShellCode

Deploying Kernel-Mode Shellcode

© 2010 Below Gotham Labs www.belowgotham.com

Executing Kernel-Mode Shellcode

ShellCode

So, we have this inert blob of shellcode in memory

© 2010 Below Gotham Labs www.belowgotham.com

ShellCode

By itself, it really can't do that much
It’s not a registered driver (e.g. no interface to the I/O Manager)
It’s not a legitimate thread (e.g. not scheduled by the Windows kernel)

WTF?!

Executing Kernel-Mode Shellcode

© 2010 Below Gotham Labs www.belowgotham.com

ShellCode

It’s swimming alone in memory,
With no explicit connection to anything else

Isolation Barrier

Executing Kernel-Mode Shellcode

© 2010 Below Gotham Labs www.belowgotham.com

Question: How do we get our shellcode to execute?

Executing Kernel-Mode Shellcode

© 2010 Below Gotham Labs www.belowgotham.com

Answer: We need to intercept an existing path of execution

ShellCode

program control

Executing Kernel-Mode Shellcode

© 2010 Below Gotham Labs www.belowgotham.com

Common misconception:

Application and driver code are confined to their relative address spaces

User-Mode

Kernel-Mode

Path of Execution

Path of Execution

Executing Kernel-Mode Shellcode

© 2010 Below Gotham Labs www.belowgotham.com

Execution paths are actually able to transition between the two modes

User-Mode

Kernel-Mode

Path of Execution

Executing Kernel-Mode Shellcode

© 2010 Below Gotham Labs www.belowgotham.com

There are a variety of different ways to sidetrack the EIP register:

A first cut could implement call table hooking, just to get things to work
As you become more confident, you can adopt more advanced tactics

Method of Interception Level of Stealth

Call Table Hooking Low: call tables are the epitome of static objects

Detour Patching Moderate: depending on where and what you patch

Callback Object Modification High: you’re changing naturally dynamic objects

Executing Kernel-Mode Shellcode

© 2010 Below Gotham Labs www.belowgotham.com

Implementation

Heartbeat Generation
Alternatives
Compromises

© 2010 Below Gotham Labs www.belowgotham.com

We can tunnel data from the targeted machine using different approaches

Tactic Stealth Comments

Use the Existing TCP/IP Stack Low Connection will be locally visible

Roll Your Own TCP/IP Stack Moderate More work, but less conspicuous

Talk Directly to the NIC High Hardware dependent

Heartbeat Generation - Alternatives

© 2010 Below Gotham Labs www.belowgotham.com

Sidestepping the native TCP/IP stack offers better (local) concealment

It also allows an intruder to bypass existing firewall rules

Tactic Stealth Comments

Use the Existing TCP/IP Stack Low Connection will be locally visible

Roll Your Own TCP/IP Stack Moderate More work, but less conspicuous

Talk Directly to the NIC High Hardware dependent

Heartbeat Generation - Alternatives

© 2010 Below Gotham Labs www.belowgotham.com

But, there are problems with this approach:

“The absence of an artifact
is in itself an artifact”

−Harlan Carvey, Windows Forensic Analysis, p. 372

Heartbeat Generation - Alternatives

© 2010 Below Gotham Labs www.belowgotham.com

NSM may be deployed, and will capture heartbeat traffic

The absence of a corresponding local connection is a telltale sign…

Hence, overtly hiding network connections may not be a good idea

TCPView
(heartbeat is invisible)

To Gateway
NSM Tap

(heartbeat is conspicuous)

Heartbeat Generation - Alternatives

© 2010 Below Gotham Labs www.belowgotham.com

Yet More Engineering Concessions

Again, must find a middle path

On one hand, we wish to:

Be stealthy enough to evade a cursory inspection

At the same time, we’d like to:

Not be so stealthy that we alert a forensic investigator

© 2010 Below Gotham Labs www.belowgotham.com

Hide in as large a crowd as possible
Tunnel the heartbeat over a ubiquitous protocol
This isn’t perfect, as we’ll see, but can be “good enough”
(Joanna Rutkowska jokingly told me this was 1990s tech, and rightfully so*)

Targeted Server

RootkitLAN Machine

Heartbeat
Monitor

Commonplace Protocol
(e.g. DNS, ICMP, HTTP, …)

*http://www.phrack.org/issues.html?issue=49&id=6

One Solution:

© 2010 Below Gotham Labs www.belowgotham.com

Countermeasures

The Rootkit Paradox
Detecting Local Modifications
NSM: The Final Frontier
Reality Sinks In

© 2010 Below Gotham Labs www.belowgotham.com

The Rootkit Paradox

“All rootkits obey two basic principles:
They want to remain hidden
They need to run

…If a deterministic process like the operating system can find the rootkit,
then an examiner can find it as well”

−Jesse Kornblum, International Journal of Digital Evidence
Fall 2006, Volume 5, Issue 1
http://www.utica.edu/academic/institutes/ecii/publications/articles/EFE2FC4D-0B11-BC08-AD2958256F5E68F1.pdf

© 2010 Below Gotham Labs www.belowgotham.com

Corollary:
In addition to acquiring the attention of a processor

Most rootkits communicate with the outside

(Otherwise implementing C2 could be problematic…)

The Rootkit Paradox

© 2010 Below Gotham Labs www.belowgotham.com

Nevertheless…
Just because rootkit code executes and communicates

Doesn’t necessarily mean it will be easy to identify
(It just indicates that detection is possible)

© 2010 Below Gotham Labs www.belowgotham.com

It’s possible to make a lot of money in the stock market
(You just buy low and sell high)

This doesn’t mean that it’s easy in practice

© 2010 Below Gotham Labs www.belowgotham.com

Detecting Local Modification

Recent Solution: HookSafe
Employs a hypervisor to act as a watchdog
Monitors some 5,900 kernel hooks in a Linux guest OS
Relocates kernel hooks to a reserved region of memory
Control access to these kernel hooks using hardware features

http://discovery.csc.ncsu.edu/pubs/ccs09-HookSafe.pdf

© 2010 Below Gotham Labs www.belowgotham.com

Method of EIP Interception

Call Table Hooks

Detour Patches

Callback Object Modification

Call Tables/Code ≈ Static
(very rarely “write”-accessed)

Callbacks are fluid
(inherently dynamic)

Not all kernel “hooks” are equal

Detecting Local Modification

© 2010 Below Gotham Labs www.belowgotham.com

Callbacks, in particular, are a nightmare

Detecting Local Modification

© 2010 Below Gotham Labs www.belowgotham.com

There can be an arbitrary number of routines registered with a callback object
Routines can be registered and unregistered dynamically
Callbacks are spread over the far reaches of kernel space
It’s not always obvious what constitutes a malicious function pointer

PVOID ExRegisterCallback
(

IN PCALLBACK_OBJECT CallbackObject,
IN PCALLBACK_FUNCTION CallbackFunction,
IN PVOID CallbackContext

);

VOID ExUnregisterCallback
(

IN PVOID CbRegistration
);

Detecting Local Modification

© 2010 Below Gotham Labs www.belowgotham.com

General Lesson:
Modify system components that are inherently dynamic

Addendum:
Watchdog code can be targeted
Exhibit-A: the arms race to subvert PatchGuard

http://www.uninformed.org/?v=all&a=38&t=sumry

Recall what I said about dedicated protected regions…
This is akin to a police department that goes bad

Detecting Local Modification

© 2010 Below Gotham Labs www.belowgotham.com

Rootkits can “interfere” with local data collection
It’s difficult to obtain an objective POV
A rootkit can obfuscate or eliminate evidence

But it’s a whole new ballgame on the network
It’s much harder to conceal data
Responders can capture and analyze everything
Sometimes just seeing a connection is enough

NSM: The Final Frontier

© 2010 Below Gotham Labs www.belowgotham.com

Fact: IT Divisions operate on a budget
Overworked responders often don’t have the time to unearth a rootkit
As a result, imperfect concealment is often sufficient

“I have encountered plenty of roles where I am motivated and
technically equipped, but without resources and power.
I think that is the standard situation for incident responders”
−Richard Bejtlich
http://taosecurity.blogspot.com/2008/08/getting-job-done.html

Reality Sinks In

© 2010 Below Gotham Labs www.belowgotham.com

Future Directions

Heartbeat Mechanism
Command & Control
Runtime Deployment

© 2010 Below Gotham Labs www.belowgotham.com

Heartbeat Mechanism

My heartbeat code introduces new packets into the network stream

Under careful scrutiny, this could indicate that something is amiss

ID
[00, 02]

DNS Header
12 bytes

Question(s)
Size varies

Answer RRs
Size varies

Authority RRs Additional RRs

flags
[81, 80]

questions
[00, 01]

Answers RRs
[00, 01]

Authority RRs
[00, 00]

Additional RRs
[00, 00]

Type
[00, 01]

Class
[00, 01]

Name
[03, 77, 77, 77, 04, 63, 77, 72, 75, 03, 65, 64, 75, 00]

Name
[C0, 0C]

Type
[00, 01]

Class
[00, 01]

TTL
[00, 00, 0a, ed]

Data Length
[00, 04]

IP Address
[81, 16, 68, 88]

© 2010 Below Gotham Labs www.belowgotham.com

There’s been some publicly available research done in this area
NUSHU http://www.invisiblethings.org/papers/passive-covert-channels-linux.pdf

Lathra http://www.cl.cam.ac.uk/~sjm217/papers/ih05coverttcp.pdf

Heartbeat Mechanism

One alternative is simply to embed data in existing network traffic
In other words, establish a Passive Covert Channel (PCC)

Compromised Box

Cracked Router

mail.corp.com

Attacker

© 2010 Below Gotham Labs www.belowgotham.com

Heartbeat Mechanism

There are a couple of challenges that accompany the PCC strategy

 The necessity to intercept all traffic emitted by the compromised host
Could entail cracking a hardened gateway device
Involves extra time and resources

Data exfiltration can a slow and tedious process
Not a good scheme for looting a data warehouse
The longer you operate, the greater your risk
But, for smuggling out a list of password hashes…

© 2010 Below Gotham Labs www.belowgotham.com

For a full-featured rootkit deployments, we wish to optimize ROI

Command & Control (C2)

Bytecode Engine

Native Call Interface

Runtime Environment

Bytecode Loader

Bytecode APIs

Shellcode VM

Bytecode
Rootkit

Virtual machine isolates
The foibles of a given OS

Rootkit logic implemented
Using arbitrary bytecode

© 2010 Below Gotham Labs www.belowgotham.com

This approach lends itself to loading bytecode dynamically

Virtual Machine

Bytecode Rootkit

Command Interpreter

Call Gate Monitor

Hash Extractor

Key Logger

Packet Sniffer

Instance-Specific Attack
Which, in turn, translates into

runtime extensions

sweet

Command & Control (C2)

© 2010 Below Gotham Labs www.belowgotham.com

Thus far, we’ve loaded the rootkit by means of a user-mode exploit
A more direct alternative would be to leverage a Kernel-Mode Exploit
(Though, this depends heavily on the targeted buggy driver being present)

User-Mode
Kernel-Mode

Exploited User-Mode Process
DeviceIoControl()

Staging Driver (bring it with us)

payload

Shellcode

Existing (buggy) KMD

Attacker

Runtime Deployment

© 2010 Below Gotham Labs www.belowgotham.com

Source Code for this Presentation:
http://www.belowgotham.com/BH-DC-2010.zip

For Additional Information, See:

The Rootkit Arsenal
Jones & Bartlett Publishers
1st edition (May 4, 2009), 908 pages
ISBN-10: 1598220616
ISBN-13: 978-1598220612

© 2010 Below Gotham Labs www.belowgotham.com

Thank You For Your Time

© 2010 Below Gotham Labs www.belowgotham.com

One engineer’s secret
Is another’s implementation detail

