
Connection String Parameter Pollution Attacks

Chema Alonso1, Manuel Fernandez1, Alejandro Martín1 and Antonio Guzmán2

1Informatica64, S.L.

2Universidad Rey Juan Carlos
1{chema,mfernandez,amartin}@informatica64.com, 2antonio.guzman@urjc.es

Abstract. In 2007 the ranking of the top ten critical vulnerabilities for the
security of a system established code injection as the top 2, closely following
top 1 XSS attacks. The first release candidate of the 2010 version of the ranking
has promoted code injection attacks to top 1. Actually, the most critical attacks
are those that combine XSS techniques to access systems and code injection
techniques to access the information. The potential damage associated with this
kind of threats, the total absence of background and the fact that the solution to
mitigate these vulnerabilities must be worked together with programmers,
systems administrators and database vendors justifies an in-depth analysis to
estimate all the possible ways of implementing this technique.

Keywords: Code injection attacks, connection strings, web application
authentication delegation.

1 Introduction

SQL injections are probably the most known injection attacks to web applications by
abusing its database architecture. Many different approaches and techniques have
been studied and analyzed so far, and the published results conclude that to prevent
these attacks from being successful, development teams need to establish the correct
filtering levels on the inputs to the system.

In the case of the attack presented in this paper, responsibility lays not only on
developers, but also on system administrators and database vendors. This attack
affects web applications, but instead of abusing implementation flaws in the way
database queries are crafted, which is the most commonly found scenario on other
injection attacks, it abuses the way applications connect to the database.

According to OWASP [1], in 2007 the ranking of the top ten critical vulnerabilities
for the security of a system established code injection attacks as the top 2, closely
following top 1 XSS attacks. The first release candidate of the 2010 version of the
ranking has promoted code injection attacks to top 1. Actually, the most critical
attacks are those that combine XSS techniques to access systems and code injection
techniques to access the information. This is the case for the so-called connection
string parameter pollution attacks. Potential impact of this type of vulnerability and
the total absence of background justify an in-depth analysis to estimate all possible
attack vectors using this technique.

This paper is structured is in three main sections. The first is this short introduction
where the foundations of the connection strings and existing mechanisms for the
implementation of web applications authentication will be introduce. Section two
proposes a comprehensive study of this new attack technique, with an extensive
collection of test cases. The article concludes briefly summarizing the lessons learned.

1.1 Connections Strings

Connection strings [2] are used to connect applications to database engines. The
syntax used on these strings depends on the database engine to be connected to and on
the provider or driver used by the programmer to establish the connection.

One way or another, the programmer must specify the server and port to connect
to, the database name, authentication credentials, and some connection configuration
parameters, such as timeout, alternative databases, communication protocol or
encryption options.

The following example shows a common connection string used to connect to a
Microsoft SQL Server database:

“Data Source=Server,Port; Network Library=DBMSSOCN;
Initial Catalog=DataBase; User ID=Username;
Password=pwd;”

As the example shows, a connection string is a collection of parameters separated
by semicolons (;), each parameter being a key-value pair. The attributes used in the
example correspond to the ones used in the “.NET Framework Data Provider for SQL
Server”, which is chosen by programmers when they use the “SqlConnection” class in
their .NET applications. Obviously, it is possible to connect to SQL Server using
different providers such as:

- “.NET Framework Data Provider for OLE DB” (OleDbConnection)
- “.NET Framework Data Provider for ODBC” (OdbcConnection)
- “SQL Native Client 9.0 OLE DB provider”
The most common and recommended way to connect a .NET based application

and a SQL server, is to use the framework default provider, where the connection
string syntax is the same regardless the different versions of SQL Server (7, 2000,
2005 and 2008). This is the one used in this article to illustrate the examples.

1.2 Web Application authentication delegation

There are two ways of defining an authentication system for a web application: create
an own credential system, or delegate it to the database engine.
In most cases, the application developer chooses to use only one user to connect to the
database. Seen from the database side, this database user represents the entire web
application. Using this connection, the web application will make queries to a custom
users table where the user credentials for the application are stored.

Fig. 1. Common web application authentication architecture

The web application is identified by a single database user with access to the entire
application content in the database, thus it is impossible to implement a granular
permission system in the database over the different object, or to trace the actions of
each user in the web application, delegating these tasks to the web application itself.
If an attacker is able to abuse some vulnerability in the application to access the
database, the whole database will be exposed. This architecture is very common, and
can be found in widely used CMS systems such as Joomla, Mambo and many others.
Usually, the target of the attacker is to get the application users credentials from the
users table in the database.

The alternative consists in delegating the authentication to the database engine, so

that the connection string does not contain a fixed set of credentials, but will use those
entered by the application user and it is the database engine responsibility to check
them.

Database management applications always use this delegated authentication, so
that the user connecting to the application will only be able to access and control
those objects and actions for which he has permissions. With this architecture, it is
possible to implement a granular permission system and to trace user actions in the
database.

Database engine Web application

Fig. 2. Web application delegated authentication architecture.

Both methods offer different advantages and disadvantages, apart from the ones

already mentioned, which are outside the scope of this article. The techniques
described in this paper will focus on the second environment: web applications with
delegated authentication to the database engine.

2 Connection String Injection

In a delegated authentication environment connection string injection techniques
allow an attacker to inject parameters by appending them with the semicolon (;)
character.

In an example where the user is asked to enter a username and a password to create
a connection string, an attacker can void the encrypting system by entering a
password such as "pwd; Encryption=off", resulting in a connection string like:

“Data Source=Server,Port; Network Library=DBMSSOCN;
Initial Catalog=DataBase; User ID=Username;
Password=pwd; Encryption=off”

When the connection string is populated, the Encryption value will be added to the

previously configured set of parameters.

2.1 Connection String Builder in .NET

Aware of this exploitation [3] of the connection strings, Microsoft included the
“ConnectionStringBuilder” [4] classes on it's version 2.0 of the Framework. They are
meant to create secure connection strings through the base class
(DbConnectionStringBuilder) or through the specific classes for the different
providers (SqlConnectionStringBuilder, OleDbConnectionStringBuilder, etc…), and
they achieve this by allowing just key-value pairs for attributes and by escaping
injection attempts.

The use of these classes when creating a connection string would prevent the
injections. However, not every developer or application uses them.

2.2 Connection String Parameter Pollution

Parameter pollution techniques are used to override values on parameters. They are
well known in the HTTP [5] environment but they are also applicable to other
environments. In this example, parameter pollution techniques can be applied to
parameters in the connection string, allowing several attacks.

2.3 Connection String Parameter Pollution (CSPP) Attacks

As an example scenario to illustrate these attacks, a web application where a user
[User_Value] and a password [Password_Value] are required is served by a Microsoft
Internet Information Services web server running on a Microsoft Windows Server.
The application user credentials are going to be used to create a connection string to a
Microsoft SQL Server database as follows:

Data source = SQL2005; initial catalog = db1;
integrated security=no; user id=+’User_Value’+;
Password=+’Password_Value’+;

This connection string shows how the application is connecting to a Microsoft SQL
Server database engine. Knowing this, and attacker can perform a Connection String
Parameter Pollution Attack. The idea of this attack is to add a parameter to the
connection string with the desired value, regardless of if it already was in the string or
the value with which was set up. The component used by .NET applications to craft
the connection string will use the value of the last occurrence of the parameter in the
connection string. If the connection string has two parameters which key is "Data
Source", the value used will be the one of the last of the two pairs, which allows the
following CSPP attack vectors:

2.3.1 CSPP Attack 1: Hash stealing
An attacker can place a Rogue Microsoft SQL Server connected to the Internet with a
Microsoft SQL Server credential sniffer listening (In this exsmple CAIN [6] has been
used). An attacker would perform a CSPP attack as follows:

User_Value: ; Data Source = Rogue_Server

Password_Value: ; Integrated Security = true

Resulting in the following connecting string:

Data source = SQL2005; initial catalog = db1;
integrated security=no; user id=;Data Source=Rogue
Server; Password=; Integrated Security=true;

The "Data Source" and "Integrated Security" parameters are being overridden so
that the Microsoft SQL Server native drivers will use the last set of values ignoring
the previous ones, and the application will try to connect to Rogue_Server with the
Windows credentials it's running on, which can be either a system user or an
application pool user.

2.3.1.1 Example 1: ASP.NET Enterprise Manager
This tool is an abandoned and unsupported Open Source tool, but still being used by
some hosting companies and some organizations to manage Microsoft SQL Server
databases via a web interface. The official web site, which used to be
aspnetenterprisemanager.com, is today abandoned, but the tool can be obtained from
several other web sites like SourceForge [7] or MyOpenSource [8]. This tool is being
recommended in a lot of forums as a good ASP.NET alternative to PHPMyAdmin [9],
even though the last version was published on the 3rd of January of 2003.

Fig. 3. CSPP in ASP.NET Enterprise Manager to steal the account information

The results are collected on the rogue server where the database connection sniffer
has been installed giving access to the LM Hash of the account.

Fig. 4. Hash collected in the rogue server with Cain

2.3.2 CSPP Attack 2: Port scanning
One of the valid parameters on a connection string is the port to connect to. An
attacker can abuse an application vulnerable to this technique to network scan servers
by trying to connect to different ports and see the error messages obtained:

User_Value: ; Data Source =Target_Server,
Target_Port

Password_Value: ; Integrated Security = true

This injection attack will result in the following connection string:

Data source = SQL2005; initial catalog = db1;
integrated security=no; user id=;Data Source=Target
Server, Target Port; Password=; Integrated
Security=true;

This connection string will ignore the first instance of the first "Data Source"
parameter and will use the last one, meaning that the web application is going to try to
connect to "Target Port" port on the "Target Server" machine. Observing the
differences in the returned error messages, a port scan can be performed.

2.3.2.1 Example 2: myLittleAdmin and myLittleBackup
The tools myLittleAdmin [10] and myLittleBackup [11] are commercial tools

developed by myLittleTools [12]. Both tools are vulnerable to CSPP attacks up to
versions myLittleAdmin 3.5 and myLittleBackup 1.6.

Fig. 5. A connection can be established through port 80 to www.gooogle.com

As shown in Fig. 5, when the port is listening (open) the error message obtained says
that no Microsoft SQL Server is listening on it, but a TCP connection was established.

Fig. 6. A connection cannot be established through the XX port to www.google.com

When the port is closed, a TCP connection could not be completed and the error
message is different. Using these error messages a complete TCP port scan can be run
against a server. Of course, this technique can also be used to discover internal servers
within the DMZ where the web application is hosted.

2.3.3 CSPP Attack 3: Hijacking Web credentials
This time the attacker tries to connect to the database by using the web application
system account instead of a user provided set of credentials:

User_Value: ; Data Source =Target_Server

Password_Value: ; Integrated Security = true

These injected values will result in the following connection string:

Data source = SQL2005; initial catalog = db1;
integrated security=no; user id=;Data Source=Target
Server, Target Port; Password=; Integrated
Security=true;

This time is the "integrated security" parameter what is being overwritten with a
"True" value. This means that the system will try to connect to the database with the
system account which the tool is running with. In this case this is the system account
used by the web application in the web server.

2.3.3.1 Example 3: SQL Server Web Data Administrator
This tool is a project, originally developed by Microsoft, which was made free as an
Open Project. Today, it is still possible to download the last version that Microsoft
released on 2004 from Microsoft Servers [13] but the latest one, released on 2007, is
hosted in the Codeplex web site [14]. The version hosted in Codeplex is secure to this
type of attacks because it is using the ConnectionStringBuilder classes to dynamically
construct the connection string.

The version published on the Microsoft web site is vulnerable to CSPP attacks. The
following screenshots show how it is possible to get access to the system using this
type of attack.

Fig. 7. Exploiting the credentials at the WEB Data Administrator

In Fig. 7, the password value is: “; integrated Security=true”, as described
previously.

Fig. 8. Console access with the server account

The attacker can log into the web application to manage the whole system. As

shown in Fig. 9, this is because all users and network services have access to the
server.

Fig. 9. System account access grant.

2.3.3.2 Example 4: myLittleAdmin and myLittleBackup
In mylittleAdmin and myLittlebackup tools, it is possible to check out the connection
string used to get the access. Looking at it, the parameter pollution injected in order to
obtain access to the system can be clearly seen.

Fig. 10. CSPP in myLittleAdmin.

Fig. 10 shows how the "Data Source" parameter, after the "User ID" parameter, has
been injected with the localhost value. This parameter, "Data Source", is also the first
one of the connection string. Their values are different but the one that is being used
is the last one, i.e. the injected one.

Same happens with the "Integrated Security" parameter that appears initially with
the no value but then is overriden by the one injected in the password value with
value yes, resulting in a total access to the server with the system account the web
application is running as.

Fig. 11. Querying the master..sysusers table.

2.3.3.3 Example 5: ASP.NET Enterprise Manager

The same attack also works on the latest public version of the ASP.NET Enterprise
manager, so, as can be seen in the following login form, an attacker can perform the
CSPP injection to get access to the web application.

Fig. 12. CSPP in ASP.NET Enterprise Manager login form.

And as a result of it, full access can be obtained, just as can be seen in the

following screenshot.

Fig. 13. Administration console in ASP.NET Enterprise Manager.

3 Conclusions

All these examples show the importance of filtering any user input in web
applications. Moreover, these examples are a clear proof of the importance of
maintaining the software updated. Microsoft released ConnectionStringbuilder in

order to avoid these kinds of attacks, but not all projects were updated to use these
new and secure components.

These techniques also apply to other database engines such as Oracle databases,
which allow administrators to set up Integrated security into the database. Besides, in
Oracle connection strings it is possible to change the way a user gets connected by
forcing the use of a sysdba session.

MySQL databases do not allow administrators to configure an Integrated Security
authentication process. However, it is still possible to inject code and manipulate
connection strings to try to connect against internal servers not exposed to the
Internet.

In order to avoid these attacks the semicolon character must be filtered out, all the
parameters sanitized, and the firewall be hardened in order to filter not only inbound
connections but also prevent outbound connections from internal servers that are
sending NTLM credentials to the internet. Databases administrator should also apply
a hardening process in the database engine to restrict access by a minimum privilege
policy.

References

1. The Open Web Application Security Project, http://www.owasp.org
2. Connection Strings.com: http://www.connectionstrings.com
3. Ryan, W.: Using the SqlConnectionStringBuilder to guard against Connection String

Injection Attacks, http://msmvps.com/blogs/williamryan/archive/2006/01/15/81115.aspx
4. Connection String Builder (ADO.NET),

http://msdn.microsoft.com/en-us/library/ms254947.aspx
5. Carettoni L., di Paola S.: HTTP Parameter Pollution,

http://www.owasp.org/images/b/ba/AppsecEU09_CarettoniDiPaola_v0.8.pdf
6. Cain: http://www.oxid.it/cain.html
7. ASP.NET Enterprise Manager in SourceForge, http://sourceforge.net/projects/asp-ent-man/
8. ASP.NET Enterprise Manager in MyOpenSource:
http://www.myopensource.org/internet/asp.net+enterprise+manager/download-review
9. PHPMyAdmin: http://www.phpmyadmin.net/
10. myLittleAdmin: http://www.mylittleadmin.com
11. myLittleBackup: http://www.mylittlebackup.com
12. myLittleTools: http://www.mylittletools.net
13. Microsoft SQL Server Web Data Administrator:

http://www.microsoft.com/downloads/details.aspx?FamilyID=c039a798-c57a-419e-acbc-
2a332cb7f959&displaylang=en

14. Microsoft SQL Server Web Data Administrator in Codeplex project:
http://www.codeplex.com/SqlWebAdmin

