
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 
 
 

Cross Site Scripting 
Anonymous Browser 

Black Hat DC 2009 



 

Cross Site Scripting 
Anonymous Browser 

 
 

 

 
 

www.fyrmassociates.com Black Hat DC 2009 Page 2 
 

Matthew Flick 
FYRM Associates 

matt.flick@fyrmassociates.com 
Abstract 
The recent attacks[1] against onion routing[2] tools highlight the need for a new 
method to maintain some degree of anonymity. The Cross Site Scripting 
Anonymous Browser ("XAB") addresses this problem for Web browsing by 
forcing unknowing victims—user browsers—to retrieve targeted Web pages via 
Cross Site Scripting for the attacker. 
 
True anonymity is not likely to be possible, so any anonymizing algorithms and 
tools simply attempt to increase the difficulty for others to discover the source, 
destination, and transmitted content. The XAB improves the user's anonymity 
by moving the Web server request and response one step away, i.e. to the 
victim's browser. There are numerous programming techniques that can also be 
used in order to mask the target and request/response data as well, thereby 
making it more difficult to track the user's actions. 
 
Synopsis 
The goal of the XAB is to provide a tool for attackers to make and receive HTTP 
requests and responses that will not be easily traced to the attacker. The 
concept of anonymous browsing via Cross Site Scripting is rather simple: 

1. Inject HTML into miscellaneous victims' browsers via Web site(s) 
vulnerable to HTML injection. 

2. Retrieve targeted Web page(s). 
3. Send the retrieved HTML and other content to the attacker's system. 

 
The implementation of this concept is, of course, much more complex. The 
known limits of JavaScript and the security controls implemented by Web 
browsers drive much of the complexity of the XAB. Specifically, the cross 
domain firewall restricting content access via JavaScript prevents current 
browsers from acting alone as a XAB and provided the greatest challenge in 
developing the tool. This obstacle was followed closely by handling non-text 
data; this paper will focus on images and leave video and other content for 
future research. 
 



 

Cross Site Scripting 
Anonymous Browser 

 
 

 

 
 

www.fyrmassociates.com Black Hat DC 2009 Page 3 
 

Design 
The XAB is comprised of the following components: 
• XABAttacker: attacker's system running Web server listening at (e.g.) 

http://xab.dyndns.org 
• XABProxy: proxy Web server scripts used to fetch target content listening at 

(e.g.) http://xabproxy.somesite.org 
• VulnerableSite: Web server that is vulnerable to HTML injection listening at 

(e.g.) http://vuln.site.com 
o If VulnerableSite can be used to host and execute the XABProxy 

server scripts, then the two components can be combined 
• Victim: any user that receives the XSS code stored at VulnerableSite 
• Target: any URL the attacker wishes to make an anonymous request for, e.g. 

http://www.fyrmassociates.com/about.htm 
Note: These component names will be used throughout the remainder of this 
document. 
 
The XABAttacker must register a domain name (or use a static IP address) for 
the victims to contact. It is noted that this requirement may negate the 
anonymity gained by the XAB, but it is left to the reader to determine how to 
implement this component anonymously. Alternatively, long DHCP lease times 
for cable modem providers may enable the use of the same dynamic IP address 
for an extended period of time. 
 
These components are illustrated in the diagram below along with the inter-
component communications displayed as numbered boxes connected by lines. 
The steps to retrieve content from Target—corresponding to the numbered 
boxes—are explained on the following page. 



 

Cross Site Scripting 
Anonymous Browser 

 
 

 

 
 

www.fyrmassociates.com Black Hat DC 2009 Page 4 
 

 
Figure 1: XAB diagram 
Step-by-step instructions to implement the XAB: 

1. XABAttacker uploads initial payload to VulnerableSite 
a. This can be accomplished via any system so the attacker's system 

does not actually “touch” VulnerableSite 
b. XABAttacker can also use Tor for this, but that may not be the best 

idea given the recent "one cell" attack 
2. Victim visits VulnerableSite and parses HTML including our initial payload, 

which requests additional script from XABAttacker 
3. XABAttacker sends second payload to Victim; this payload includes: 

a. XABProxy location 
b. Target URL(s) to be retrieved 

4. Victim makes another script request to XABProxy (Target included in the 
request) 

5. XABProxy requests HTML and other content from Target URL 
6. XABProxy encodes all content as string and sends script back to Victim 

that includes: 
a. Code to send data back to XABAttacker 
b. Data string (encoded version of Target contents) 



 

Cross Site Scripting 
Anonymous Browser 

 
 

 

 
 

www.fyrmassociates.com Black Hat DC 2009 Page 5 
 

7. Victim forwards data to XABAttacker 
8. XABAttacker resends second payload to Victim with new Target (optional) 

 
XAB vs. Onion Routing 
The XAB should not be seen as a threat to onion routing’s reign as the 
anonymity king, despite other recent threats to the throne. Admittedly, the XAB 
is limited in its current state to simple Web browsing and does not address any 
other types of connections. Other limitations and weaknesses will be discussed 
below, but it is recommended that this tool be used in conjunction with other 
tools and techniques if a high degree of anonymity is desired. 
 
Using XAB and an onion routing network provides the attacker the ability to 
replace his own system with a semi-anonymous proxy (XABProxy) as the source 
in that network, adding a nice degree of separation. Another degree of 
separation is provided by the many victims acting as proxies between the 
XABProxy and the true source (XABAttacker). 
 
Technical Difficulties 
Perhaps the most daunting technicality to overcome is the Web browser security 
control preventing JavaScript in one domain to access (read or write) the 
content of the DOM in another domain. Since the ultimate goal of the XAB is to 
have minions retrieve content from any domain/Web server of the attacker’s 
choosing and then send that content back to the attacker, a workaround is 
needed. The next section will discuss three approaches to enable such 
interaction between attacker and victim, including the use of a proxy that is 
used in XAB version 1.0. 
 
The second major obstacle involves handling non-text data. Suffice to say 
browsers do not treat images, audio, and video the same as simple HTML text 
and markup. A browser can easily retrieve an image from any domain 
accessible to the host; however, there is no known method to parse that 
content’s data into a transmittable code—or simply retransmit the content—to 
the attacker’s system via JavaScript. This complication pushed the proxy 
approach into the lead during development of the XAB. By breaking out of the 
browser/client-side JavaScript sandbox, the XAB enables many more options for 
better anonymity by allowing more tools and techniques to be used in 
conjunction with it without sacrificing much in the prerequisites arena. 
 



 

Cross Site Scripting 
Anonymous Browser 

 
 

 

 
 

www.fyrmassociates.com Black Hat DC 2009 Page 6 
 

The last problem to be mentioned in this paper is related to the implementation 
of HTTP verbs other than ‘GET’. Although uncommon, some Web servers will 
only accept specific HTTP verbs for specific requests; this functionality is 
typically reserved as a security control for highly sensitive functions within the 
application, such as authentication or payment submission. In the interest of 
reading time, the uninformed reader is strongly recommended to search for 
“xss http post” and examine the results. 
 
Workarounds 
Through extensive browser research, there appear to be only two possible 
techniques available for use in the XAB to allow browsing of any domain: a 
proxy and DNS spoofing. Another technique will soon be available for use 
against the most up-to-date browser users and will be described here as well, 
but does come with its own limitations. 
 
The first technique is DNS spoofing. One may ask, “Why would I go through the 
trouble of spoofing DNS records just to semi-anonymously browse a few Web 
sites”? It’s an excellent question that is left to the reader to decide. Rather, this 
paper will focus more on the technical options available to the user. The design 
of this technique includes the Victim’s DNS server(s) in addition to the same 
components described. Here are the required steps: 

1. XABAttacker spoofs the Target domain name to redirect traffic to the 
XABAttacker system. The Web server running on XABAttacker system 
must also be configured to accept connections for that domain. 

2. XABAttacker loads initial payload to VulnerableSite. 
3. Victim retrieves initial payload from VulnerableSite. 
4. Victim makes request for content from the Target domain, which is sent 

to XABAttacker system due to DNS spoofing. 
5. XABAttacker sends full payload to Victim that includes a second request 

for the attacker’s desired URL from the Target domain. 
6. The full payload executes a denial of service attack against the browser 

so that the user must restart the application. This action will forcibly 
reset the DNS pinning of the browser. 

7. XABAttacker resets the DNS settings to the original (true) state. 
8. When Victim visits the VulnerableSite again, the initial payload is 

executed a second time but the full payload is retrieved from local 
browser cache. The second request is sent by the browser for content in 
the Target domain, which is sent to the real Target server. 



 

Cross Site Scripting 
Anonymous Browser 

 
 

 

 
 

www.fyrmassociates.com Black Hat DC 2009 Page 7 
 

9. Victim encodes retrieved data and transmits to XABAttacker via HTTP GET 
request(s). 

 
The “DNS rebinding”[3] technique described here is simple enough to recreate in 
a controlled test environment, but is likely to fail or become far too noisy in a 
real world environment (especially for our simple goal of anonymous Web 
browsing). Whereas this approach successfully enables access to the Target 
content, it fails to address the second problem described in the previous 
section: how to handle non-text content. For these reasons, the proxy approach 
becomes the logical choice for implementation. 
 
The basic XABProxy is a simple request and response forwarder; in other words, 
a proxy. It receives a request for script content that includes a target URL, 
retrieves and encodes the content from the target Web server, and responds 
with the encoded content and instructions for the requester to pass the data to 
the final destination (i.e., the XABAttacker). However, since the XABProxy is 
implemented as server-side technology, its functionality is no longer limited to 
client-side JavaScript. This not only allows cross domain content access, but 
also affords the proxy code author the ability to implement such potential 
functionality as non-text content encoding, response splitting, victim chaining, 
and even data encryption or obfuscation to further hide data traffic to/from the 
attacker’s system. 
 
The prerequisite list for the XABProxy is short and is likely to be available at any 
one of thousands of appropriately vulnerable Web servers in the world. In its 
simplest form, the attacker must configure the Web server to execute server-
side scripts. The desired functionality can very likely be implemented in any 
such language/framework, so portability is not a problem. If the VulnerableSite 
can be exploited to host this functionality in addition to the initial payload, then 
the attacker can merge the two components and remove the need to identify or 
create a separate XABProxy host. Of course any Web server allowing users to 
upload executable script will suffice, but limiting the number of involved hosts 
will decrease latency as well as the probability of the attacker being identified 
as the source. 
Note: The XABProxy component may be eliminated or replaced in the event 
browser bugs are discovered or user error permits cross-domain requests. 
 
The final technique involves the new “Access-Control-Allow-Origin” HTTP 
response header[4] and an expected response to its widespread implementation. 
In relation to the XAB, this proposed mechanism would allow the Target Web 



 

Cross Site Scripting 
Anonymous Browser 

 
 

 

 
 

www.fyrmassociates.com Black Hat DC 2009 Page 8 
 

server (the real one) to specify which other domains may access its content. 
Although this mechanism has been on many developers’ wish lists for a long 
time, it is likely to expect a reasonable percentage of Web site/application 
developers to insert a quick “Access-Control-Allow-Origin: *” into the 
standard operating procedures of the Web server, either for ease of 
implementation, as a forgotten test setting, or due to a lack of proper training 
and oversight. It is very likely that Web servers implementing the new header in 
this fashion would allow XAB payloads to request, access, and forward the 
server’s content to the XABAttacker without a proxy. 
 
Enhancements 
With the basic functionality completed, the focus now shifts to improving the 
XAB by adding additional functionality, reconfiguring components, or 
incorporating other options for various goals. The following list serves as a 
discussion board as well as implementation plans for future XAB versions (in no 
particular order). 
Note: The following functionality has not been tested and should be considered 
only theoretically possible until proper testing can be completed. 
• Response splitting – Content filters can be quite bothersome, especially 

when trying to research information security vulnerabilities and attacks (i.e. 
the “hacking sites”). Some quick modifications to the XAB code can instruct 
the victim browsers to only send a particular segment of the Target’s 
content to XABAttacker. With this approach, the monitoring systems will 
have to dynamically identify the splitting algorithm and the connected 
pieces, and then reconstruct the original content. A slightly more advanced 
customization can ensure no single victim transmits multiple segments of 
the same content. 

• Request splitting – For XAB users that wish to never transmit a whole target 
URL akin to the response splitting technique, the XABProxy and Victim 
components can be modified to handle split Target URLs. The XABProxy will 
act as the manager in order to recombine the split URL and redistribute the 
full URL when all segments are received. Note: This technique increases the 
likelihood of errors due to Victim users browsing away from the 
VulnerableSite, exiting the browser, or severing the connection for some 
other reason. 

• XABAttacker splitting – Establishing multiple recipients for content retrieved 
by victims can add yet another layer of separation between the true source 
of the request and response destination. The candidates for this option 
would include hosts similar to the XABProxy list of candidates since Web 
server functionality is required. 

• Multiple requests – The XABAttacker component can be configured to send 



 

Cross Site Scripting 
Anonymous Browser 

 
 

 

 
 

www.fyrmassociates.com Black Hat DC 2009 Page 9 
 

multiple requests in single or multiple payloads that instruct the browser to 
make the requests simultaneously or sequentially. The Victim and XABProxy 
can instruct each other on which responses should be sent back to the 
XABAttacker: none, all, the final response only, or any error response. 

• Binary data transfer – Transmit non-text data from XABProxy and/or Victim 
to XABAttacker. Images and audio have been shown to be transmittable as 
encoded strings and interpreted correctly in client-side technology using the 
data URI scheme [5,6]. With similar tools available to the XABProxy component, 
the XAB can be [somewhat] easily configured to handle HTML text and 
markup, images, and audio files. Larger and more complex content, such as 
video, will very likely require a more complex solution that does not yet 
exist. 

• Victim [mind] tricks – One yet-unmentioned requirement for the XAB is the 
page containing the initial payload (from VulnerableSite) must remain 
resident in the Victim’s browser until at least one round of the process is 
completed; otherwise, no content will be sent to the attacker. Although every 
XAB Victim payload will be hidden from normal browser view, there is no 
measure available to prevent the user from destroying the window and 
breaking the process. However, the social engineering empowered XAB user 
could implement any number of techniques to convince the user not to 
destroy the payload window. 

o Authors of other Cross Site Scripting exploit tools [7,8] have 
implemented useful techniques that attempt to maintain control of 
the browser and will be incorporated into future versions of the 
XAB. 

• XMLHTTPRequest and Access-Control-Allow-Origin – When the major 
browsers and Web servers begin implementing the new cross domain access 
control HTTP response header (e.g. for XMLHTTPRequest or “XHR” calls), the 
Victim can be configured to attempt an XHR call directly to the Target, 
bypassing the XABProxy. This approach will, of course, negate the benefits 
of the proxy approach mentioned above, but it can be implemented as a 
per-request or per-target option for the XAB user. 

• Data encryption – If Rijndael has already been implemented purely in 
JavaScript [9], then surely the advanced and JavaScript-savvy XAB 
administrator can implement some form of data encryption to better protect 
data communications from analysis. However, this technique may not 
provide the intended return on investment due to the large amount of 
JavaScript code required for implementation when compared to other 
techniques listed above. 

• Onion routing XABProxies – With an army of established and known proxies, 
an XAB infrastructure can be created akin to the Tor network, even 
implementing a similar (or the same) onion routing algorithm within the 



 

Cross Site Scripting 
Anonymous Browser 

 
 

 

 
 

www.fyrmassociates.com Black Hat DC 2009 Page 10 
 

proxy army. Or better yet, just install Tor on the XABProxy. The benefit of 
using the XAB in this fashion is the extra degree of separation between the 
true source (attacker) and the network of onion routers, courtesy the pseudo 
source (victims). 
 

Known Weaknesses 
As stated above, the goal of XAB and other anonymizing tools is to increase the 
degree of one’s anonymity. No tool is perfect and the XAB has its own share of 
weaknesses: 
• Registering XABAttacker – The likely targets for VulnerableSites are those 

Web servers vulnerable to persistent Cross Site Scripting, which means the 
attacker must store the XABAttacker system’s publicly accessible address—
DNS name or IP address—in the attack. If/when the payload is identified by 
law enforcement authorities or other interested parties, the necessary ISP 
records will likely lead them to the attacker’s location. Some potential 
solutions include: 

o Use some common techniques for hiding a system’s identity: 
change the MAC, use free and open networks, use a live CD distro 
(e.g. BackTrack), use public access systems, etc. 

o Run the XABAttacker component from another source, similar to 
the XABProxy component. The attacker could then simply interface 
with the XABAttacker as a client. 

• Targeting XABProxy – If an attacker-controlled system has been configured 
as the XABProxy component, then identification or compromise of this 
system could lead back to the attacker, thereby negating the benefits 
afforded by the victims. This potential weakness may drive the attacker to 
identify a VulnerableSite that can act as the XABProxy in addition to simply 
an initial payload distributor. Free CGI hosting Web servers may also be 
targeted as XABProxies, though configuring Tor on these systems may be 
more difficult. 

• Malicious victims – Though unlikely, it is possible for a victim to inject 
malicious HTML or execute other attacks against XABAttacker since the 
Victim component has access to all of the retrieved content. Mitigating 
controls for this weakness would include all of the usual steps used when 
attempting to safely browse in a normal user fashion. 

• Corporate firewalls – Corporate network environments are largely configured 
with security controls preventing any internal, non-administrator user from 
adding a publicly accessible server to the network. Adept attackers may be 
able to exploit the many vulnerabilities plaguing today’s armadillo corporate 
networks and install the XABAttacker component; however, the less-skilled 
(or simply more reserved) attacker must host the XABAttacker system from 
some other location. 



 

Cross Site Scripting 
Anonymous Browser 

 
 

 

 
 

www.fyrmassociates.com Black Hat DC 2009 Page 11 
 

 
Conclusions 
The goal of this paper and the XAB is to illustrate techniques that may be used 
to increase a user’s degree of anonymity, specifically when browsing Web 
content. Onion routing—and specifically Tor—will likely remain the first tool of 
choice in the anonymous network user’s arsenal. However, additional tools and 
techniques will become even more crucial as additional attacks targeting onion 
routing networks are discovered. The XAB demonstrates one such technique by 
turning unknowing Web browsers into drones that retrieve content for the XAB 
user. Similar to the defense-in-depth approach for protecting sensitive data 
and systems, it is recommended to implement an anonymize-in-depth design 
for protecting an individual’s identity. 
 
References 
[1]Fu, Xinwen. "Black Hat DC 2009 Briefings Speaker List." One Cell is Enough to Break Tor's 

Anonymity. 15 Jan 2009. Department of Computer Science, University of Massachusetts 
Lowell. <http://www.blackhat.com/html/bh-dc-09/bh-dc-09-speakers.html#Fu>. 

[2]"Onion routing." 5 Jan. 2009. Wikipedia. <http://en.wikipedia.org/wiki/Onion_routing>. 
[3]“DNS rebinding." 26 Dec. 2008. Wikipedia. <http://en.wikipedia.org/wiki/DNS_rebinding>. 
[4]van Kesteren, Anne. "Access Control for Cross-Site Requests." . 12 Sept. 2008. World Wide 

Web Consortium. <http://www.w3.org/TR/access-control/>. 
[5]Resig, John. Embedding and Encoding in JavaScript. 9 Apr. 2008. 

<http://ejohn.org/blog/embedding-and-encoding-in-javascript/>. 
[6]Masinter, L. "The data URL scheme." IETF RFCs. Aug. 1998. IETF. 5 Dec. 2008 

<http://tools.ietf.org/html/rfc2397>. 
[7]Rager, Anton. XSS-Proxy. 9 Feb. 2005. <http://xss-proxy.sourceforge.net/>. 
[8]Mavituna, Ferruh. "XSS Shell." . 11 Oct. 2008. Portcullis Labs. 

<http://labs.portcullis.co.uk/application/xssshell/>. 
[9]Veness, Chris. "AES Advanced Encryption Standard." . 1 Aug. 2008. Movable Type Scripts. 

<http://www.movable-type.co.uk/scripts/aes.html>. 


