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GS and ASLR in Windows Vista™

• Research conducted by Symantec in 2006
– Part of our larger research project into Windows Vista™

• GS research goals:
– Understand the implementation of GS
– Develop means to be able to identify GS and non-GS binaries
– Understand which binaries in Windows Vista™ are not GS

protected
– Understand any impact ASLR has on GS cookies

• ASLR research goals:
– Assess the implementation
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Introduction to
GS
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Introduction to GS

• Stack overflow mitigation
– Uses cookies placed on the stack
– These are verified on function return
– If the cookie is incorrect a stack overflow is assumed
– The program is shut down

• About the GS Cookie
– The unique is a random 32bit value
– A master copy is located in memory
– With ASLR this becomes random
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Introduction to GS

• Implemented via function prologs and epilogs
– Added at compile time to appropriate functions
– Prolog pushes the cookie on to the stack on function entry
– Epilog checks the cookie before function return

• 3rd generation GS in Visual Studio 2005
– First introduced in Visual Studio 2002
– We will only be covering Visual Studio 2003’s and 2005’s

implementations
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Introduction to GS

• GS has improved with Visual Studio 2005
– 2003 didn’t protect vulnerable parameters

• Result of these improvements – new stack layout

v

VS 2003 VS 2005

Stack Grows
That Way
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Introduction to GS

• GS won’t always be applied however!
– I refer to these as ‘The GS Rules’

• The Rules Are:
– Functions that do not contain a stack buffer.
– If optimizations (/O Options (Optimize Code)) are not enabled.
– Functions with a variable argument list (...).
– Functions marked with naked (C++).
– Functions containing inline assembly code in the first statement.
– If a parameter is used only in ways that are less likely to be

exploitable in the event of a buffer overrun.
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Detecting GS
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Detecting GS Binaries

• My original goals
– To be able to say if a binary is or is not GS compiled
– To be able to do this without symbols

• What I found
– Depending on the version of Visual Studio (2003 versus 2005)

slightly different approaches were needed
– Technique similar to FLIRT signatures used (conceived by Ilfak

of Data Rescue)
– This resulted in accurate results on if a binary contained GS code
– But also presented problems when dealing with statically linked

code or ‘The GS Rules’
– …. But we’ll get to that in a bit
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Quick Introduction to FLIRT

• Originally conceived by Ilfak Guilfanov of Data Rescue
– http://www.datarescue.com/idabase/flirt.htm

• Simple idea – great results
– Take a disassembly (bigger the better)
– Understand how this can be optimized
– Now for each potential implementation of the disassembly

remove the variable portions
– For optimal speed create if/else branches so your code becomes

unreadable
– Scan binaries for these signatures without the need to

disassemble
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Introduction to FLIRT

• The Original Disassembly
3B0DCC012309 cmp ecx,[L092301CC]
7509          jnz L09204E27
F7C10000FFFF  test ecx,FFFF0000h
7501          jnz L09204E27
C3            retn

• Now Remove the Variable Portions
3B0DCC012309 cmp ecx,[L092301CC]
7509          jnz L09204E27
F7C10000FFFF  test ecx,FFFF0000h
7501          jnz L09204E27
C3            retn

• Leaves Us With A Signature of
3B 0D [skip 4] 75 [skip 1] F7 C1 [skip 4] 75 [skip 1] C3
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Detecting GS Binaries (VS2003)

• How do we detect GS compiled VS 2003 binaries?
• Check for __security_error_handler wrapper function

6A08          push 00000008h
68C8243021      push L213024C8
E882020000      call SUB_L21316B44
8365FC00 and dword ptr [ebp-04h],00000000h
6A00            push 00000000h
6A01            push 00000001h
E86D020000      call jmp_MSVCR71.dll!....
59              pop ecx
59              pop ecx
EB07            jmp L213168DA
L213168D3:
33C0            xor eax,eax
40              inc eax
C3              retn
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Detecting GS Binaries (VS 2003)

• How does the wrapper function get called?
• Back one step (indirect jump)

– L213168F0:

– E9C1FFFFFF    jmp L213168B6

• Back two steps (cookie compare)
– SUB_L213168E7:

– 3B0DA8943121   cmp ecx,[L213194A8]

– 7501            jnz L213168F0

– C3              retn

• So
– Epilog -> Compare cookie -> Indirect jump -> Calling wrapper
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Detecting GS Binaries (VS2003)

• Signature used
6A08          push 00000008h
68C8243021      push L213024C8
E882020000      call SUB_L21316B44
8365FC00 and dword ptr [ebp-04h],00000000h
6A00            push 00000000h
6A01            push 00000001h
E86D020000      call jmp_MSVCR71.dll!....
59              pop ecx
59              pop ecx
EB07            jmp L213168DA
L213168D3:
33C0            xor eax,eax
40              inc eax
C3              retn
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Detecting GS Binaries (VS 2003)

• Results
– Able to identify VS 2003 GS compiled binaries
– BUT not able to identify at function level
– This will potentially miss binaries which are statically linked with

GS code
– However I never found any examples
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Example Detecting VS2003

• Example
D:\Code\C\GSAudit\Debug>GSAudit.exe | findstr 2003

[*] C:\Windows\System32\\AAAAAA.exe is /GS compiled (2003)

[*] C:\Windows\System32\\atl71.dll is /GS compiled (2003)

[*] C:\Windows\System32\\ceutil.dll is /GS compiled (2003)

[*] C:\Windows\System32\\cttune.cpl is /GS compiled (2003)

[*] C:\Windows\System32\\DEVMAN.DLL is /GS compiled (2003)

[*] C:\Windows\System32\\dllcache\netfxocm.dll is /GS compiled (2003)
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Detecting GS Binaries (VS 2005)

• VS 2005 - harder to detect (if done properly)
– As statically linked libraries may be GS compiled
– BUT the main application may not be
– Same is true for VS 2003 but less common
– So simply checking for a ‘signature’ can yield false positives

• VS 2005 is the primary compiler for Windows Vista™
– So had to solve this problem
– Couple of approaches taken

• I also wanted to understand
– Functions which fell under ‘The GS Rules’
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Detecting GS Binaries (VS 2005)

• We FLIRT signature __security_check_cookie
• We find the compare in __security_check_cookie

3B0DCC012309 cmp ecx,[L092301CC]

• This allows us to locate __security_cookie
– We then scan for every function which does

• MOV EAX,__security_cookie

– This is used to locate every GS protected function

• This then allows us to say
– foo.exe has (x) functions which call __security_check_cookie
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Example Detecting (VS2005)

• Example using VS2005 analyze option
D:\Code\C\GSAudit\Debug>GSAudit.exe -a
[i] /GS Audit - Ollie Whitehouse
[i] use '-h' for help!

[i] Analyze Mode: On
[*] C:\Windows\System32\\Audiodev.dll has /GS __security_check_cookie present (2
005) - type 2
[i] Number of MOV EAX,__security_cookie 101 - File size 480768 (bytes)
[*] C:\Windows\System32\\blackbox.dll has /GS __security_check_cookie present (2
005) - type 3
[i] Number of MOV EAX,__security_cookie 69 - File size 233472 (bytes)
[*] C:\Windows\System32\\cdm.dll has /GS __security_check_cookie present (2005)
- type 2
[i] Number of MOV EAX,__security_cookie 24 - File size 75544 (bytes)
[*] C:\Windows\System32\\CEWMDM.dll has /GS __security_check_cookie present (200
5) - type 2
[i] Number of MOV EAX,__security_cookie 54 - File size 226816 (bytes)
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Detecting GS Binaries (VS 2005)

• BUT we wanted to be able to say
– foo.exe has (n) functions of which (x) are GS protected which is

(y)%

• Solution
– IDAPython (caveat++) to export the total number of functions for

each binary!
– Allowed me to correlate total number of functions versus total GS

protected functions
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Detecting GS Binaries (VS 2005)

• Why this approach?
– It was the quickest to develop initially
– Shows me binaries with lots of functions and low number of GS

checks
– This allows me to prioritise manual analysis
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Detecting GS Binaries (VS 2005)

• Is there a better approach?
– Yes (in some respects)

• Did this achieved my original goals?
– I can tell if NO GS code is present
– But I can’t tell if ‘The GS Rules’ are in play
– I also can’t tell if there are other unprotected stack buffers
– So… Sort Of…
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GS Analysis Findings – Next Problem

• So a new problem
– Need to be able to see for every function if

• A) It has local stack variables over four bytes
• B) Is or is NOT GS protected

– This will allow us to categorically say
• Is the application GS compiled
• OR is it linked with GS code
• If it is GS compiled
• ARE there any functions which fall under the GS rules
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GS Analysis Findings – Next Problem

• Solution
– IDA based (.idc)

•  Could use Phoneix from Microsoft (only non commercial though)
– Current implementation only works with Symbols
– Can be combined with FLIRT signatures from GSAudit
– Scans every function
– Works out size of local stack buffers (using Halvars BugScam

code) – i.e. is it > 4 bytes
– Checks to see if function is GS protected
– Flags if local stack variable size > 4 and NOT GS protected

• Perfect?
– Alas not, but proof of concept does work…



GS and ASLR in Windows Vista™ 26Symantec Advanced Threat Research

GS Analysis
Findings
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GS Analysis Findings

• Windows Vista™ RTM 32 bit – C:\Windows
– ~150 binaries had NO GS code present
– That is to say they where either not GS compiled
– OR did not have local stack buffers which required GS protection

• Caveats
– I explicitly added checks for drivers (GSDriverEntry())
– Not all these binaries will be authored by Microsoft – i.e. 3rd

parties
– Others will be legacy binaries (Microsoft indicated some were

from NT4)
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GS Analysis Findings

• Using the statistical approach
– Binaries with a large number of total functions BUT low number

of GS checks were flagged
• 1000 functions / 30 checks
• 38,871 functions / 1,568 checks
• 8,250 functions / 2 checks
• 294 functions / 4 checks
• 166 functions / 3 checks

– These five were manually investigated
– Showed there was no statistical link between total functions and

GS checks
– This was expected - all were GS compiled
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GS – Other Observations

• There is a bug in Image randomization (we’ll discuss this
in more detail later)
– Which impacts where the GS master cookie is stored
– David Litchfield of NGS talked about attacking the master cookie

in previous versions of Visual Studio with an arbitrary 4 byte
overwrite

– BUT although we know where the GS master cookie will be 25%
of the time

– It doesn’t currently yield us anything
– As Microsoft now XOR the GS master cookie with EBP when

placing it on the stack
– EBP is subject to ASLR ;-( (potentially – if not overwrite SEH)
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Oh! A Quick Note

• Compile this code and GS protect it
#include "stdafx.h"

void vulnerable(char *input){

char foo[4];

strcpy(foo,input);

}

int _tmain(int argc, _TCHAR* argv[])

{

vulnerable(argv[1]);

return 0;

}

• Result – not GS protected (due to stack buffer <= 4)
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Introduction to
ASLR
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Introduction to ASLR

• Conceived as part of the PaX project
• Entropy to where the stack, heap and code sections exist
• Makes exploitation of vulnerabilities using fixed offsets

harder
• Previously only available via third party solutions on

Windows, with Windows Vista™ now native support
• Applications need to be linked with Visual Studio 2005

SP1 and the /dynamicbase flag
• Affects not only the main program binary but DLL’s as

well (if they are ASLR enabled)
• Legacy applications will require recompilation
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Introduction to ASLR

32+5+Heap – HeapAlloc

32+5+Heap – Malloc

164PEB

2568Image (Code)

16,38414Stack

32+5+
Heap – CreateHeap /
HeapAlloc

Observed
Locations

Expected
Locations

Bits of
Entropy

Section
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Introduction to ASLR

• Microsoft kind enough to provide basic heuristics
• Heap

– Request an allocation of size (rand(0..31) * 64kb) then free the extra
memory.

• Stack:
– 1. Skip rand(0..31) STACK_SIZE (typically 64kb or 256kb) spaces, then

allocate stack
– 2.  Skip rand(0..PAGE_SIZE/2) (rounded to PTR alignment: 4b (x86), 8b

(x64) or 16b (IA64)) bytes from top of stack

• Image:
– Heuristic: Offset the starting address for the first image (NTDLL.DLL) by

(rand(0..255) * 64kb) and then pack all images after that
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ASLR Analysis
Findings
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ASLR Findings

• Based on a run of 11,500 executions
• The 32bit RTM release was used on an AMD3200 CPU
• Rebooted between each run
• This was to ensure:

– A) The entropy was reset
– B) So I could measure image randomization

• Results have been confirmed by Microsoft
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Introduction to ASLR

9532+5+Heap – HeapAlloc

19232+5+Heap – Malloc

16164PEB

2552568Image (Code)

8,56816,38414Stack

20932+5+
Heap – CreateHeap /
HeapAlloc

Observed
Locations

Expected
Locations

Bits of
Entropy

Section
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Stack – Near Uniform Distribution
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Heap – via HeapAlloc()
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Heap – via malloc()
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Heap – via CreateHeap() / HeapAlloc()
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Image – I Spy a Spike!
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PEB – I Spy Two Spikes!
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Image Randomization Bug

• Microsoft nice enough to provide offending code

if ((ImageInfo->ExportedImageInformation.ImageCharacteristics & IMAGE_FILE_DLL) == 0) {
//
// This is an executable not a DLL so don't consume the valuable DLL
// space for this (ie, it's better if we use the same VA space for
// all executables).
//

RelocateExe:

TSCStart = ReadTimeStampCounter ();

Delta = (ULONG) ((TSCStart & ((16 * _1mb) / X64K - 1)) * X64K);

if (Delta == 0) {
Delta = X64K;

}
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PEB Randomization Bug

• Microsoft nice enough to provide offending code again
KeQueryTickCount (&CurrentTime);

CurrentTime.LowPart &= ((X64K >> PAGE_SHIFT) - 1);
if (CurrentTime.LowPart <= 1) {

CurrentTime.LowPart = 2;
}

//
// Select a varying PEB address without fragmenting the address space.
//

HighestVadAddress = (PVOID) ((PCHAR)HighestVadAddress - (CurrentTime.LowPart << PAGE_SHIFT));

if (MiCheckForConflictingVadExistence (TargetProcess, HighestVadAddress, (PVOID) ((PCHAR)
HighestVadAddress + NumberOfBytes - 1)) == FALSE) {

//
// Got an address ...
//

*Base = HighestVadAddress;
    goto AllocatedAddress;
}
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ASLR – Other Observations

• Microsoft used RtlRandom instead of RtlRandomEx
– “The RtlRandomEx function is an improved version of the

RtlRandom function.”
– “Compared with the RtlRandom function, RtlRandomEx is twice

as fast and produces better random numbers…”
– Microsoft have confirmed this will be resolved

• A Reseeding Method Was Also Discovered
– This removed the requirement to reboot to get the image rebased
– Simply update the last file write time
– But produced some crazy results – paper contains more details
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ASLR – Findings Summary

• Stack has pretty much uniform distribution
• Heap distribution is no where near uniform
• Using HeapAlloc() verus malloc() results in lower entropy in

terms of locations used
• Both PEB and Image randomization have bugs in their

implementation (the PEB bug has been present since XP SP2)
• End of the world?

– Not really, just an increased likelihood of successful exploitation
– But still better than no having anything at all

• When will these be fixed?
– ETA is Windows Vista™ SP1 / Longhorn
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Conclusions
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Conclusions

• We can now detect non GS protected binaries
– This allows us to understand where lower hanging fruit is

• We can now detect non GS protected functions in GS
binaries
– Which have local stack variables
– This again allows us to locate lower hanging fruit

• We know that binaries that use HeapAlloc are afforded
less protection than those that use malloc

• We know that there are biases for the heap
• We know that image and PEB randomization have bugs

– Which improve slightly the chance of successful exploitation



GS and ASLR in Windows Vista™ 50Symantec Advanced Threat Research

Finally

• GS White Paper
– http://www.symantec/ - URL TBC

• ASLR White Paper
– http://www.symantec/ - URL TBC

• Both papers contain supporting code
• Raw ASLR data available on request!
• Thanks to
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For ASLR to be effective,
DEP/NX must be enabled by
default too.

Michael Howard,
Microsoft
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