
GS and ASLR
in Windows Vista™

Ollie Whitehouse

GS and ASLR in Windows Vista™ 2Symantec Advanced Threat Research

Agenda

Introduction to GS / Detecting GS11

GS Analysis Findings22

Introduction to ASLR33

ASLR Analysis Findings44

Conclusions55

GS and ASLR in Windows Vista™ 3Symantec Advanced Threat Research

GS and ASLR in Windows Vista™

• Research conducted by Symantec in 2006
– Part of our larger research project into Windows Vista™

• GS research goals:
– Understand the implementation of GS
– Develop means to be able to identify GS and non-GS binaries
– Understand which binaries in Windows Vista™ are not GS

protected
– Understand any impact ASLR has on GS cookies

• ASLR research goals:
– Assess the implementation

GS and ASLR in Windows Vista™ 4Symantec Advanced Threat Research

Introduction to
GS

GS and ASLR in Windows Vista™ 5Symantec Advanced Threat Research

Introduction to GS

• Stack overflow mitigation
– Uses cookies placed on the stack
– These are verified on function return
– If the cookie is incorrect a stack overflow is assumed
– The program is shut down

• About the GS Cookie
– The unique is a random 32bit value
– A master copy is located in memory
– With ASLR this becomes random

GS and ASLR in Windows Vista™ 6Symantec Advanced Threat Research

Introduction to GS

• Implemented via function prologs and epilogs
– Added at compile time to appropriate functions
– Prolog pushes the cookie on to the stack on function entry
– Epilog checks the cookie before function return

• 3rd generation GS in Visual Studio 2005
– First introduced in Visual Studio 2002
– We will only be covering Visual Studio 2003’s and 2005’s

implementations

GS and ASLR in Windows Vista™ 7Symantec Advanced Threat Research

Introduction to GS

• GS has improved with Visual Studio 2005
– 2003 didn’t protect vulnerable parameters

• Result of these improvements – new stack layout

v

VS 2003 VS 2005

Stack Grows
That Way

GS and ASLR in Windows Vista™ 8Symantec Advanced Threat Research

Introduction to GS

• GS won’t always be applied however!
– I refer to these as ‘The GS Rules’

• The Rules Are:
– Functions that do not contain a stack buffer.
– If optimizations (/O Options (Optimize Code)) are not enabled.
– Functions with a variable argument list (...).
– Functions marked with naked (C++).
– Functions containing inline assembly code in the first statement.
– If a parameter is used only in ways that are less likely to be

exploitable in the event of a buffer overrun.

GS and ASLR in Windows Vista™ 9Symantec Advanced Threat Research

Detecting GS

GS and ASLR in Windows Vista™ 10Symantec Advanced Threat Research

Detecting GS Binaries

• My original goals
– To be able to say if a binary is or is not GS compiled
– To be able to do this without symbols

• What I found
– Depending on the version of Visual Studio (2003 versus 2005)

slightly different approaches were needed
– Technique similar to FLIRT signatures used (conceived by Ilfak

of Data Rescue)
– This resulted in accurate results on if a binary contained GS code
– But also presented problems when dealing with statically linked

code or ‘The GS Rules’
– …. But we’ll get to that in a bit

GS and ASLR in Windows Vista™ 11Symantec Advanced Threat Research

Quick Introduction to FLIRT

• Originally conceived by Ilfak Guilfanov of Data Rescue
– http://www.datarescue.com/idabase/flirt.htm

• Simple idea – great results
– Take a disassembly (bigger the better)
– Understand how this can be optimized
– Now for each potential implementation of the disassembly

remove the variable portions
– For optimal speed create if/else branches so your code becomes

unreadable
– Scan binaries for these signatures without the need to

disassemble

GS and ASLR in Windows Vista™ 12Symantec Advanced Threat Research

Introduction to FLIRT

• The Original Disassembly
3B0DCC012309 cmp ecx,[L092301CC]
7509 jnz L09204E27
F7C10000FFFF test ecx,FFFF0000h
7501 jnz L09204E27
C3 retn

• Now Remove the Variable Portions
3B0DCC012309 cmp ecx,[L092301CC]
7509 jnz L09204E27
F7C10000FFFF test ecx,FFFF0000h
7501 jnz L09204E27
C3 retn

• Leaves Us With A Signature of
3B 0D [skip 4] 75 [skip 1] F7 C1 [skip 4] 75 [skip 1] C3

GS and ASLR in Windows Vista™ 13Symantec Advanced Threat Research

Detecting GS Binaries (VS2003)

• How do we detect GS compiled VS 2003 binaries?
• Check for __security_error_handler wrapper function

6A08 push 00000008h
68C8243021 push L213024C8
E882020000 call SUB_L21316B44
8365FC00 and dword ptr [ebp-04h],00000000h
6A00 push 00000000h
6A01 push 00000001h
E86D020000 call jmp_MSVCR71.dll!....
59 pop ecx
59 pop ecx
EB07 jmp L213168DA
L213168D3:
33C0 xor eax,eax
40 inc eax
C3 retn

GS and ASLR in Windows Vista™ 14Symantec Advanced Threat Research

Detecting GS Binaries (VS 2003)

• How does the wrapper function get called?
• Back one step (indirect jump)

– L213168F0:

– E9C1FFFFFF jmp L213168B6

• Back two steps (cookie compare)
– SUB_L213168E7:

– 3B0DA8943121 cmp ecx,[L213194A8]

– 7501 jnz L213168F0

– C3 retn

• So
– Epilog -> Compare cookie -> Indirect jump -> Calling wrapper

GS and ASLR in Windows Vista™ 15Symantec Advanced Threat Research

Detecting GS Binaries (VS2003)

• Signature used
6A08 push 00000008h
68C8243021 push L213024C8
E882020000 call SUB_L21316B44
8365FC00 and dword ptr [ebp-04h],00000000h
6A00 push 00000000h
6A01 push 00000001h
E86D020000 call jmp_MSVCR71.dll!....
59 pop ecx
59 pop ecx
EB07 jmp L213168DA
L213168D3:
33C0 xor eax,eax
40 inc eax
C3 retn

GS and ASLR in Windows Vista™ 16Symantec Advanced Threat Research

Detecting GS Binaries (VS 2003)

• Results
– Able to identify VS 2003 GS compiled binaries
– BUT not able to identify at function level
– This will potentially miss binaries which are statically linked with

GS code
– However I never found any examples

GS and ASLR in Windows Vista™ 17Symantec Advanced Threat Research

Example Detecting VS2003

• Example
D:\Code\C\GSAudit\Debug>GSAudit.exe | findstr 2003

[*] C:\Windows\System32\\AAAAAA.exe is /GS compiled (2003)

[*] C:\Windows\System32\\atl71.dll is /GS compiled (2003)

[*] C:\Windows\System32\\ceutil.dll is /GS compiled (2003)

[*] C:\Windows\System32\\cttune.cpl is /GS compiled (2003)

[*] C:\Windows\System32\\DEVMAN.DLL is /GS compiled (2003)

[*] C:\Windows\System32\\dllcache\netfxocm.dll is /GS compiled (2003)

GS and ASLR in Windows Vista™ 18Symantec Advanced Threat Research

Detecting GS Binaries (VS 2005)

• VS 2005 - harder to detect (if done properly)
– As statically linked libraries may be GS compiled
– BUT the main application may not be
– Same is true for VS 2003 but less common
– So simply checking for a ‘signature’ can yield false positives

• VS 2005 is the primary compiler for Windows Vista™
– So had to solve this problem
– Couple of approaches taken

• I also wanted to understand
– Functions which fell under ‘The GS Rules’

GS and ASLR in Windows Vista™ 19Symantec Advanced Threat Research

Detecting GS Binaries (VS 2005)

• We FLIRT signature __security_check_cookie
• We find the compare in __security_check_cookie

3B0DCC012309 cmp ecx,[L092301CC]

• This allows us to locate __security_cookie
– We then scan for every function which does

• MOV EAX,__security_cookie

– This is used to locate every GS protected function

• This then allows us to say
– foo.exe has (x) functions which call __security_check_cookie

GS and ASLR in Windows Vista™ 20Symantec Advanced Threat Research

Example Detecting (VS2005)

• Example using VS2005 analyze option
D:\Code\C\GSAudit\Debug>GSAudit.exe -a
[i] /GS Audit - Ollie Whitehouse
[i] use '-h' for help!

[i] Analyze Mode: On
[*] C:\Windows\System32\\Audiodev.dll has /GS __security_check_cookie present (2
005) - type 2
[i] Number of MOV EAX,__security_cookie 101 - File size 480768 (bytes)
[*] C:\Windows\System32\\blackbox.dll has /GS __security_check_cookie present (2
005) - type 3
[i] Number of MOV EAX,__security_cookie 69 - File size 233472 (bytes)
[*] C:\Windows\System32\\cdm.dll has /GS __security_check_cookie present (2005)
- type 2
[i] Number of MOV EAX,__security_cookie 24 - File size 75544 (bytes)
[*] C:\Windows\System32\\CEWMDM.dll has /GS __security_check_cookie present (200
5) - type 2
[i] Number of MOV EAX,__security_cookie 54 - File size 226816 (bytes)

GS and ASLR in Windows Vista™ 21Symantec Advanced Threat Research

Detecting GS Binaries (VS 2005)

• BUT we wanted to be able to say
– foo.exe has (n) functions of which (x) are GS protected which is

(y)%

• Solution
– IDAPython (caveat++) to export the total number of functions for

each binary!
– Allowed me to correlate total number of functions versus total GS

protected functions

GS and ASLR in Windows Vista™ 22Symantec Advanced Threat Research

Detecting GS Binaries (VS 2005)

• Why this approach?
– It was the quickest to develop initially
– Shows me binaries with lots of functions and low number of GS

checks
– This allows me to prioritise manual analysis

GS and ASLR in Windows Vista™ 23Symantec Advanced Threat Research

Detecting GS Binaries (VS 2005)

• Is there a better approach?
– Yes (in some respects)

• Did this achieved my original goals?
– I can tell if NO GS code is present
– But I can’t tell if ‘The GS Rules’ are in play
– I also can’t tell if there are other unprotected stack buffers
– So… Sort Of…

GS and ASLR in Windows Vista™ 24Symantec Advanced Threat Research

GS Analysis Findings – Next Problem

• So a new problem
– Need to be able to see for every function if

• A) It has local stack variables over four bytes
• B) Is or is NOT GS protected

– This will allow us to categorically say
• Is the application GS compiled
• OR is it linked with GS code
• If it is GS compiled
• ARE there any functions which fall under the GS rules

GS and ASLR in Windows Vista™ 25Symantec Advanced Threat Research

GS Analysis Findings – Next Problem

• Solution
– IDA based (.idc)

• Could use Phoneix from Microsoft (only non commercial though)
– Current implementation only works with Symbols
– Can be combined with FLIRT signatures from GSAudit
– Scans every function
– Works out size of local stack buffers (using Halvars BugScam

code) – i.e. is it > 4 bytes
– Checks to see if function is GS protected
– Flags if local stack variable size > 4 and NOT GS protected

• Perfect?
– Alas not, but proof of concept does work…

GS and ASLR in Windows Vista™ 26Symantec Advanced Threat Research

GS Analysis
Findings

GS and ASLR in Windows Vista™ 27Symantec Advanced Threat Research

GS Analysis Findings

• Windows Vista™ RTM 32 bit – C:\Windows
– ~150 binaries had NO GS code present
– That is to say they where either not GS compiled
– OR did not have local stack buffers which required GS protection

• Caveats
– I explicitly added checks for drivers (GSDriverEntry())
– Not all these binaries will be authored by Microsoft – i.e. 3rd

parties
– Others will be legacy binaries (Microsoft indicated some were

from NT4)

GS and ASLR in Windows Vista™ 28Symantec Advanced Threat Research

GS Analysis Findings

• Using the statistical approach
– Binaries with a large number of total functions BUT low number

of GS checks were flagged
• 1000 functions / 30 checks
• 38,871 functions / 1,568 checks
• 8,250 functions / 2 checks
• 294 functions / 4 checks
• 166 functions / 3 checks

– These five were manually investigated
– Showed there was no statistical link between total functions and

GS checks
– This was expected - all were GS compiled

GS and ASLR in Windows Vista™ 29Symantec Advanced Threat Research

GS – Other Observations

• There is a bug in Image randomization (we’ll discuss this
in more detail later)
– Which impacts where the GS master cookie is stored
– David Litchfield of NGS talked about attacking the master cookie

in previous versions of Visual Studio with an arbitrary 4 byte
overwrite

– BUT although we know where the GS master cookie will be 25%
of the time

– It doesn’t currently yield us anything
– As Microsoft now XOR the GS master cookie with EBP when

placing it on the stack
– EBP is subject to ASLR ;-((potentially – if not overwrite SEH)

GS and ASLR in Windows Vista™ 30Symantec Advanced Threat Research

Oh! A Quick Note

• Compile this code and GS protect it
#include "stdafx.h"

void vulnerable(char *input){

char foo[4];

strcpy(foo,input);

}

int _tmain(int argc, _TCHAR* argv[])

{

vulnerable(argv[1]);

return 0;

}

• Result – not GS protected (due to stack buffer <= 4)

GS and ASLR in Windows Vista™ 31Symantec Advanced Threat Research

Introduction to
ASLR

GS and ASLR in Windows Vista™ 32Symantec Advanced Threat Research

Introduction to ASLR

• Conceived as part of the PaX project
• Entropy to where the stack, heap and code sections exist
• Makes exploitation of vulnerabilities using fixed offsets

harder
• Previously only available via third party solutions on

Windows, with Windows Vista™ now native support
• Applications need to be linked with Visual Studio 2005

SP1 and the /dynamicbase flag
• Affects not only the main program binary but DLL’s as

well (if they are ASLR enabled)
• Legacy applications will require recompilation

GS and ASLR in Windows Vista™ 33Symantec Advanced Threat Research

Introduction to ASLR

32+5+Heap – HeapAlloc

32+5+Heap – Malloc

164PEB

2568Image (Code)

16,38414Stack

32+5+
Heap – CreateHeap /
HeapAlloc

Observed
Locations

Expected
Locations

Bits of
Entropy

Section

GS and ASLR in Windows Vista™ 34Symantec Advanced Threat Research

Introduction to ASLR

• Microsoft kind enough to provide basic heuristics
• Heap

– Request an allocation of size (rand(0..31) * 64kb) then free the extra
memory.

• Stack:
– 1. Skip rand(0..31) STACK_SIZE (typically 64kb or 256kb) spaces, then

allocate stack
– 2. Skip rand(0..PAGE_SIZE/2) (rounded to PTR alignment: 4b (x86), 8b

(x64) or 16b (IA64)) bytes from top of stack

• Image:
– Heuristic: Offset the starting address for the first image (NTDLL.DLL) by

(rand(0..255) * 64kb) and then pack all images after that

GS and ASLR in Windows Vista™ 35Symantec Advanced Threat Research

ASLR Analysis
Findings

GS and ASLR in Windows Vista™ 36Symantec Advanced Threat Research

ASLR Findings

• Based on a run of 11,500 executions
• The 32bit RTM release was used on an AMD3200 CPU
• Rebooted between each run
• This was to ensure:

– A) The entropy was reset
– B) So I could measure image randomization

• Results have been confirmed by Microsoft

GS and ASLR in Windows Vista™ 37Symantec Advanced Threat Research

Introduction to ASLR

9532+5+Heap – HeapAlloc

19232+5+Heap – Malloc

16164PEB

2552568Image (Code)

8,56816,38414Stack

20932+5+
Heap – CreateHeap /
HeapAlloc

Observed
Locations

Expected
Locations

Bits of
Entropy

Section

GS and ASLR in Windows Vista™ 38Symantec Advanced Threat Research

Stack – Near Uniform Distribution

GS and ASLR in Windows Vista™ 39Symantec Advanced Threat Research

Heap – via HeapAlloc()

GS and ASLR in Windows Vista™ 40Symantec Advanced Threat Research

Heap – via malloc()

GS and ASLR in Windows Vista™ 41Symantec Advanced Threat Research

Heap – via CreateHeap() / HeapAlloc()

GS and ASLR in Windows Vista™ 42Symantec Advanced Threat Research

Image – I Spy a Spike!

GS and ASLR in Windows Vista™ 43Symantec Advanced Threat Research

PEB – I Spy Two Spikes!

GS and ASLR in Windows Vista™ 44Symantec Advanced Threat Research

Image Randomization Bug

• Microsoft nice enough to provide offending code

if ((ImageInfo->ExportedImageInformation.ImageCharacteristics & IMAGE_FILE_DLL) == 0) {
//
// This is an executable not a DLL so don't consume the valuable DLL
// space for this (ie, it's better if we use the same VA space for
// all executables).
//

RelocateExe:

TSCStart = ReadTimeStampCounter ();

Delta = (ULONG) ((TSCStart & ((16 * _1mb) / X64K - 1)) * X64K);

if (Delta == 0) {
Delta = X64K;

}

GS and ASLR in Windows Vista™ 45Symantec Advanced Threat Research

PEB Randomization Bug

• Microsoft nice enough to provide offending code again
KeQueryTickCount (&CurrentTime);

CurrentTime.LowPart &= ((X64K >> PAGE_SHIFT) - 1);
if (CurrentTime.LowPart <= 1) {

CurrentTime.LowPart = 2;
}

//
// Select a varying PEB address without fragmenting the address space.
//

HighestVadAddress = (PVOID) ((PCHAR)HighestVadAddress - (CurrentTime.LowPart << PAGE_SHIFT));

if (MiCheckForConflictingVadExistence (TargetProcess, HighestVadAddress, (PVOID) ((PCHAR)
HighestVadAddress + NumberOfBytes - 1)) == FALSE) {

//
// Got an address ...
//

*Base = HighestVadAddress;
 goto AllocatedAddress;
}

GS and ASLR in Windows Vista™ 46Symantec Advanced Threat Research

ASLR – Other Observations

• Microsoft used RtlRandom instead of RtlRandomEx
– “The RtlRandomEx function is an improved version of the

RtlRandom function.”
– “Compared with the RtlRandom function, RtlRandomEx is twice

as fast and produces better random numbers…”
– Microsoft have confirmed this will be resolved

• A Reseeding Method Was Also Discovered
– This removed the requirement to reboot to get the image rebased
– Simply update the last file write time
– But produced some crazy results – paper contains more details

GS and ASLR in Windows Vista™ 47Symantec Advanced Threat Research

ASLR – Findings Summary

• Stack has pretty much uniform distribution
• Heap distribution is no where near uniform
• Using HeapAlloc() verus malloc() results in lower entropy in

terms of locations used
• Both PEB and Image randomization have bugs in their

implementation (the PEB bug has been present since XP SP2)
• End of the world?

– Not really, just an increased likelihood of successful exploitation
– But still better than no having anything at all

• When will these be fixed?
– ETA is Windows Vista™ SP1 / Longhorn

GS and ASLR in Windows Vista™ 48Symantec Advanced Threat Research

Conclusions

GS and ASLR in Windows Vista™ 49Symantec Advanced Threat Research

Conclusions

• We can now detect non GS protected binaries
– This allows us to understand where lower hanging fruit is

• We can now detect non GS protected functions in GS
binaries
– Which have local stack variables
– This again allows us to locate lower hanging fruit

• We know that binaries that use HeapAlloc are afforded
less protection than those that use malloc

• We know that there are biases for the heap
• We know that image and PEB randomization have bugs

– Which improve slightly the chance of successful exploitation

GS and ASLR in Windows Vista™ 50Symantec Advanced Threat Research

Finally

• GS White Paper
– http://www.symantec/ - URL TBC

• ASLR White Paper
– http://www.symantec/ - URL TBC

• Both papers contain supporting code
• Raw ASLR data available on request!
• Thanks to

– Nitin Kumar Goel of Microsoft for his candidness
– Zulfikar Ramzan and Matt Conover of Symantec for their help
– Tim Newsham of iSEC Partners for his peer review and help
– John Cartwright / Halvar Flake for their IDC code

GS and ASLR in Windows Vista™ 51Symantec Advanced Threat Research

For ASLR to be effective,
DEP/NX must be enabled by
default too.

Michael Howard,
Microsoft

GS and ASLR in Windows Vista™ 52Symantec Advanced Threat Research

Copyright © 2007 Symantec Corporation. All rights reserved. Symantec and the Symantec Logo are trademarks or registered trademarks of Symantec Corporation or its affiliates in the
U.S. and other countries. Other names may be trademarks of their respective owners.
This document is provided for informational purposes only and is not intended as advertising. All warranties relating to the information in this document, either express or implied, are
disclaimed to the maximum extent allowed by law. The information in this document is subject to change without notice.

Thank You!

Ollie Whitehouse
ollie_whitehouse@symantec.com
http://www.symantec.com/

