

 © 2007 Kris Kendall. All Rights Reserved. Page 1

PRACTICAL MALWARE ANALYSIS

Kris Kendall
kris.kendall@mandiant.com

WHY PERFORM MALWARE ANALYSIS?

What are some of the reasons that one might want to invest the (sometimes significant)

resources required to effectively analyze malware? Imagine that you are in the unenviable

position of finding some unknown, running, and potentially malicious executable program on

an important server. In this situation, some very important questions can be answered—

and usually, can only be answered—by conducting malware analysis.

Malware analysis can be conducted with a variety of goals in mind. Some of the common

reasons that you might want to analyze a malicious program include:

• To assess damage from an intrusion

• To discover and catalogue indicators of compromise that will reveal other machines

that have been affected by the same malware or intruders

• To determine the sophistication level of the malware author

• To identify the vulnerability that was exploited to allow the malware to get there in

the first place

• To identify the intruder or insider that is responsible for installing the malware

• To learn and have fun!

By extending a common definition of the word “analysis”, we define malware analysis as

“the action of taking malware apart to study it”. While you are studying the malware, your

purpose is to discover the answers to questions about the malware. These questions can be

broken down into “business” questions and “technical” questions. Some of the most

common business questions answered by malware analysis are:

1. What is the purpose of the malware?

2. How did it get here?

3. Who is targeting us and how good are they?

4. How can I get rid of it?

5. What did they steal?

6. How long has it been here?

7. Does it spread on its own?

8. How can I find it on other machines?

9. How do I prevent this from happening in the future?

Answers to these business questions are usually revealed by combining and synthesizing

details revealed by asking purely technical questions, such as:

1. What are the network-based indicators that reveal the presence and activity of the

malware?

 © 2007 Kris Kendall. All Rights Reserved. Page 2

2. What are the host-based indicators that reveal the presence and activity of the

malware?

3. Is the malware persistent? If so, what mechanism does it use to ensure that it keeps

running after a machine is rebooted?

4. When was the program written, compiled, and installed?

5. Is the program based on any other well-known tool?

6. What language was used to write the program?

7. Is the program packed? What program was used to pack it?

8. Does the program have any anti-debugging functionality?

9. Does the program include any rootkit functionality?

CREATING A SAFE AND EFFECTIVE ANALYSIS ENVIRONMENT

Malware is software that is explicitly designed to perform evil. This means that it is

generally a bad idea to let malware run on the same PC on which you send e-mail to your

friends, do you online banking, and write papers for security conferences. One solution to

this problem is to create an “analysis lab” consisting of a bunch of computers that are on

their own physically partitioned network. These machines should have a standardized

software build that can easily be restored from a backup image after some piece of malware

has finished destroying the system. However, it is much easier (and only somewhat less

safe) to use virtual machines to create a simulated lab environment. There are several

software products (some of them free) that can be used to create virtual machines.

VMware is currently my favorite for malware analysis by virtue of its ability to create a tree

of snapshots that capture system state at various times. These snapshots can be used to

easily revert to a previous system state (such as right before you double-clicked on the icon

for rustock.exe). See Figure 1 for an example of how easy it is to keep a nested tree of

system states that allows you to virtually move forward and back in the history of your

virtual machine’s state.

Figure 1: VMware's tree of snapshots

 © 2007 Kris Kendall. All Rights Reserved. Page 3

Although VMware is (in my opinion) the best virtualization platform for malware analysis,

there are several other good options, including Parallels, Microsoft Virtual PC, and Xen.

Though using a virtualized victim machine provides some level of control over the behavior

of the malware, there are a few “gotchas” associated with running malware in a virtual

machine:

1. Your virtualization software is not perfect, and may allow information to “leak” from

the virtual machine to your host machine in ways that you didn’t expect.

2. Malicious code can detect that it is running in a virtual machine and may modify its

behavior.

3. A 0-day worm that can exploit a listening service on your host OS will escape the

virtual machine sandbox, even if you are using host-only networking!

If you are setting up a dedicated malware analysis environment, there are several tools that

can make the job of re-imaging machines easier:

• If you have a budget, Norton Ghost works just fine for quickly restoring system

images.

• If you don’t have a budget, but like the features of Ghost, check out udpcast1. It

works great, and the price (free) is hard to beat.

• Joe Stewart (from Lurhq) has developed an automated system called Truman2 that is

specifically designed for malware analysis using a pair of physical machines.

• CoreProtect makes a piece of hardware called a hard drive write cache card that can

be used to set up a system that restores itself to a pristine state each time it is

rebooted (Figure 2).

.
Figure 2: CoreRestore card from CoreProtect

Once you have chosen whether to use virtual machines or physical machines for your

malware analysis, the next choice is what level of network access you want to allow the

machines to have. It is easier and faster to conduct malware analysis using a victim

machine that is connected to the Internet and is able to connect to the real controlling hosts

being operated by the intruder. However, this approach has several significant drawbacks:

1. The attacker might change his behavior when he sees connections from a machine

that he didn’t hack.

2. By allowing malware to connect to a controlling server, you may be entering a real-

time battle with an actual human for control of your analysis (virtual) machine.

1 http://udpcast.linux.lu/
2 http://www.lurhq.com/truman/

 © 2007 Kris Kendall. All Rights Reserved. Page 4

3. The external IP address used by your analysis machine may become the target for

additional attacks.

4. If the malware spreads automatically or conducts DDoS attacks, you may end up

unwittingly attacking others.

For these reasons, I usually recommend conducting malware analysis using a closed

network with virtualized services (like DNS servers, HTTP server, etc.). This approach can

require significant extra effort; in order to conduct effective dynamic analysis in a closed

network environment you may need to reverse-engineer and recreate the functionality of

the controlling server. This is not easy, but is usually worth it given the significant risks of

allowing malware to access the Internet. If you do conduct malware analysis on a machine

connected to the Internet, I suggest using a separate dedicated firewall with a very

restrictive ruleset to ensure that you are aware of exactly what traffic you are allowing from

the malware.

STATIC ANALYSIS TECHNIQUES

As I begin analysis of a suspected piece of malware, I usually start out by performing some

initial static analysis. In essence, I “kick the tires” of the program I am examining—taking a

look at some of its more obvious external features. This section focuses on static analysis

techniques that do not require an extensive programming or reverse engineering

background. Detailed static analysis of a program's internal logic will generally involve use

of a disassembler and analysis of assembly language code—coverage of these more

advanced techniques is outside the scope of this paper.

Static analysis is generally safer than dynamic analysis; because the code isn’t actually

running, you don’t need to worry about it deleting files, calling home, or stealing data.

Generally, the only risk involved in static analysis is the risk of accidentally double-clicking

or otherwise accidentally running the malware. The risk of accidentally running malware

can be reduced by conducting static analysis on a machine running a different operating

system than the malware was designed to run; for example, static analysis of Windows

malware can safely be conducted on an OS X system.

File Fingerprinting

Before doing anything else, it is advisable to compute a cryptographic hash value for each

file under investigation. Although there are a wide variety of hash functions available, the

best for the purpose of malware analysis is the one most likely to be used by other

researchers—generally MD5, SHA1, or SHA256. After the file hash has been computed, you

can also use the file hash to periodically verify that the program has been modified, or has

modified itself. Many programs are available that can compute hash values for files. One of

the most flexible is the open source command-line program md5deep3 by Jesse Kornblum.

Virus Scanning

If the file being examined is a component of a well-known piece of malware, there is a

chance that it will be recognized as such by anti-virus software. If the anti-virus program

recognizes the malware, the anti-virus vendor will typically post analysis describing it. This

analysis will sometimes provide only minimal details, but other times it will be quite

thorough, including lengthy discussion of the software's capabilities, signatures, and

instructions for removal. Clearly this information gives you a giant leg up in your analysis.

3 http://md5deep.sourceforge.net

 © 2007 Kris Kendall. All Rights Reserved. Page 5

Websites like http://www.virustotal.com and http://virusscan.jotti.org allow you to upload

files and have them scanned by a wide-variety of different scan engines. This is very

convenient since most anti-virus programs will not allow installation on a machine alongside

another anti-virus program. Keep in mind that these websites keep the files you upload and

may share them with other people; the file you upload might have been customized for your

environment or contain information about your organization that you wouldn’t want to share

with others.

Packer Detection

One of the major complicating factors in performing malware analysis is the proliferation of

programs that modify an executable file to obfuscate its contents and hide the actual

program logic from a reverse engineer performing static analysis. Programs that modify

other program files to compress or disguise their contents are most commonly referred to

as “executable packers” or just “packers”. When a packer compresses, encrypts, or

otherwise modifies an executable program, the program looks much different from the static

analysis perspective, but still runs as it did before it was "packed". Once a program has

been packed, the original program's logic and other metadata are very hard to recover

through static analysis.

PEiD4 is a free program that has signatures for over 600 different compilers and packers.

To use PEiD, simply open a file with PEiD and take note of the value the PEiD reports in the

text box highlighted in Figure 3. If PEiD reports that a file is “Not a valid PE file”, then it

didn't match the basic signature of a PE file. PEiD does a good job of identifying many

compilers and packers. Sometimes PEiD will report “Nothing Found *”. In this case, the file

is a valid executable, but PEiD did not find the signature of a known compiler or packer.

Figure 3: PEiD with an unknown compiler/packer

Mandiant has also developed and released a free tool5 that uses a variety of techniques to

identify and analyze packed code. More details on Mandiant’s tool will be presented at

Blackhat DC 2007 and published at http://www.mandiant.com.

Strings

To understand what a program does, it would be ideal to have access to an instruction

manual that walks step-by-step through each of the program’s functions and options. Of

course, malicious programs usually don't come with instruction manuals—but you might be

surprised by how much can be learned about a program simply by analyzing strings of

4 http://peid.has.it
5 At the time this paper was written, it was internally named Caprica6, but by the time you

are reading this, the name will likely have changed.

 © 2007 Kris Kendall. All Rights Reserved. Page 6

readable text that are embedded within the program. For example, programs often print

output to the screen to provide the user a status update, or to indicate that an error has

occurred. These status strings and error strings end up embedded in the program’s

executable file and can be incredibly useful in analyzing malware.

Embedded strings can be extracted from executable files using a wide variety of tools,

including Strings from Sysinternals, Bintext from Foundstone, and Hex Workshop.

Whichever tool you use, be sure that it can extract strings that are represented in both

ASCII and Unicode formats.

Once you have extracted strings from an executable file, pop some of the more interesting

looking strings into a search engine and see what pops up. Be careful, as the information

embedded in the executable could easily be inserted deliberately to mislead you or cause

you to trigger a sort of reverse-honeypot.

Inside the PE File Format

PE stands for “portable executable” and is the format used by executable files on Windows

systems. There is a wealth of useful information that can be extracted by examining the

metadata of a PE formatted file, including:

• Date and time of compilation

• Functions imported by the program

• Functions exported by the program

• Icons, Menus, Version Info, and Strings embedded in resources

There is a wide-variety of tools available that will parse PE files and allow you to extract

these important details, including:

• PEview (Wayne Radburn, http://www.magma.ca/~wjr/)

• Depends (Steve Miller, http://www.dependencywalker.com

• PEBrowse Pro (Russ Osterlund, http://www.smidgeonsoft.com)

• Objdump (Cygwin, http://www.cygwin.com)

• Resource Hacker (Angus Johnson, http://www.angusj.com/resourcehacker/)

Disassembly

After you have conducted the analysis described so far, the next step is usually to

disassemble the file and analyze the assembly code instructions that make up the program.

Although there are many programs that can reverse machine code to assembly language,

everyone uses IDA Pro. If you are doing any serious malware analysis or other reverse

engineering you need to buy a copy of IDA—it is worth it. Examining a program in IDA Pro

can be somewhat intimidating at first, and certainly requires more specialized knowledge

than any of the other techniques presented here. However, there is no combination of tools

more powerful for malware analysis than a good disassembler (like IDA Pro) and a good

debugger (like Ollydbg).

 © 2007 Kris Kendall. All Rights Reserved. Page 7

Figure 4: Disassembly of a backdoor program in IDA Pro

DYNAMIC ANALYSIS TECHNIQUES

The previous section focused on techniques that can be used to analyze malware without

running it. When performing static analysis, you are in essence conducting an autopsy of

the code—examining it at rest, in a dead state. When performing dynamic analysis, you

actually run the malware and observe its actions. Is essence, you will create a fishbowl for

the malware and then watch what it does.

In the discussion on static analysis, it was not yet important to create a safe analysis

environment. Code that isn’t running isn’t really all that dangerous (unless it contains an

exploit for IDA Pro’s analysis engine6). However, dynamic analysis of malware must be

performed in an environment that you are willing to sacrifice, and that is logically

partitioned from other hosts on your network (and, hopefully, the rest of the world).

You can develop a fairly good picture of the behavior of a Windows program by simply

monitoring its interaction with the file system, the registry, other processes, and the

network. Although there is no single system monitoring tool that captures all of this

information, you can come close with two free tools—Process Monitor from SysInternals and

the open-source Wireshark. One of the interesting things about these tools is that they

monitor the behavior of a whole machine rather than the behavior of the single malicious

program. Therefore, it is important to be able to “filter out" normal background activity and

other actions that are not attributable to the malware you are examining. Both Process

Monitor and Wireshark provide sophisticated filtering capabilities. As you gain experience in

malware analysis, you will also develop a “cognitive filter” based on your intuition for

determining what behavior is “normal” and what is malicious. Process Monitor and

6 http://www.securiteam.com/securitynews/5FP0G20F5U.html

 © 2007 Kris Kendall. All Rights Reserved. Page 8

Wireshark cannot automatically differentiate “good” activity from “bad” activity, or

background noise from the data that is truly relevant. The tools simply collect the raw data;

it is your job to interpret this data and use it to gain an understanding of the program being

examined.

Process Monitor

Process Monitor is a SysInternals tool that allows users to monitor all file, registry, and

process activity on Windows systems. Process Monitor works by installing a device driver

that captures information about activity happening inside the kernel of the system being

monitored. Although this data is captured using a device driver, the captured information is

transferred to userland and presented within a simple and easy to use graphical user

interface. In my opinion, Process Monitor is virtually unchallenged as the best and most

powerful tool for monitoring system activity on Windows systems.

As Process Monitor captures activity, each file, registry or process operation creates a line of

output in the Process Monitor window (Figure 5).

Figure 5: Process Monitor

When running Process Monitor, immediately notice that even when idle, the typical Windows

system creates a LOT of events. Therefore, the key to using Process Monitor effectively is

setting up accurate filters that capture the information you are interested in without missing

important details. The filtering capability of Process Monitor is the single largest

improvement over its progenitors Filemon and Regmon. In Filemon and Regmon, “capture

filters” are configured based on simple string expressions with wildcards. Process Monitor

captures everything, but then creates “display filters” containing precise compound

expressions. An example of an effective filter for malware analysis is shown in Figure 6.

This expression focuses on events created by a single process (named “unknown1”) and

focuses on events that result in some permanent change to the system, such as data

written to a file or creation of a new registry value. Once you design a filter expression you

like, it can be saved for future re-use.

 © 2007 Kris Kendall. All Rights Reserved. Page 9

Figure 6: Process Monitor filter

Wireshark

Wireshark is a multi-platform, open-source network protocol analyzer that captures,

analyzes, and filters network traffic. Because there are already many good free tutorials

and papers on using Wireshark, I won’t focus on the mechanics of using Wireshark here7.

Wireshark is a very useful tool, but it does have some drawbacks for performing malware

analysis. Most notably, Wireshark does not know what process generates each packet of

captured network data, so it can be difficult to determine if a packet was generated by the

malicious program you are analyzing. One alternative to Wireshark is Port Explorer from

DiamondCS. Port Explorer monitors network traffic at the connection level, and unlike

Wireshark records details about which process generates each connection.

DEBUGGING

In many cases, simple static analysis and dynamic analysis with Process Monitor and

Wireshark will reveal the answers to the most important questions about a particular piece

of malware. However, the methods presented so far are not sufficient for analyzing full-

featured backdoors or botnet clients that may use custom encoding methods, complicated

sets of commands, and multiple layers of obfuscated or encrypted data. The fastest way to

perform full-blown analysis of these more complicated programs is to use a combination of

static analysis with IDA and dynamic analysis with a good debugger like Ollydbg or Windbg.

Also, keep an eye on some of the new scriptable debugging frameworks like Paimei8 and

Vtrace9. These tools provide a great platform for building complicated automated analysis

7 See http://www.wireshark.org/news/20060714.html for examples of a Wireshark tutorial
8 http://pedram.redhive.com/PaiMei/docs/
9 http://www.kenshoto.com/vtrace/

 © 2007 Kris Kendall. All Rights Reserved. Page 10

modules, and will likely be used in the future to automate away some of the pain of manual

analysis using a typical debugger.

CONCLUSION

This paper provided a very high-level introduction to the topic of malware analysis, and

some practical techniques and tools that can be used to conduct limited analysis of Windows

programs of unknown functionality. The material covered here truly is the very small tip of

the very large iceberg of the techniques and knowledge required to master malware

analysis. If you would like to learn more, there is a wealth of additional information

available in forums like www.openrce.org and www.offensivecomputing.net. For more

detailed information about static analysis I highly recommend reading Reversing: Secrets of

Reverse Engineering by Eldad Eilam. Also, take a look at Mandiant’s hands-on malware

analysis classes, where we cram as much malware analysis fun as can possibly fit into three

days. If you have any questions about the material presented here, or have any

suggestions for improvement, please contact me at kris.kendall@mandiant.com. Happy

reversing!

