
Low Cost Attacks on Tamper Resistant Devices

Ross Anderson1, Markus Kuhn2

1 Computer Laboratory, Pembroke Street, Cambridge CB2 3QG, UK

rja14@cl.cam.ac.uk
2 COAST Laboratory, Purdue University, West Lafayette, IN 47907, USA

kuhn@cs.purdue.edu

Abstract. There has been considerable recent interest in the level of

tamper resistance that can be provided by low cost devices such as smart-

cards. It is known that such devices can be reverse engineered using chip

testing equipment, but a state of the art semiconductor laboratory costs

millions of dollars. In this paper, we describe a number of attacks that

can be mounted by opponents with much shallower pockets.
Three of them involve special (but low cost) equipment: di�erential fault

analysis, chip rewriting, and memory remanence. There are also attacks

based on good old fashioned protocol failure which may not require any

special equipment at all. We describe and give examples of each of these.

Some of our attacks are signi�cant improvements on the state of the art;

others are useful cautionary tales. Together, they show that building

tamper resistant devices, and using them e�ectively, is much harder than

it looks.

1 Introduction

An increasing number of large and important systems, from pay-TV through

GSM mobile phones and prepayment gas meters to smartcard electronic wal-

lets, rely to a greater or lesser extent on the tamper resistance properties of

smartcards and other specialist security processors.

This tamper resistance is not absolute: an opponent with access to semicon-

ductor test equipment can retrieve key material from a smartcard chip by direct

observation and manipulation of the chip's components. It is generally believed

that, given su�cient investment, any chip-sized tamper resistant device can be

penetrated in this way. A number of less expensive techniques for attacking

speci�c tamper resistant devices are also known [2].

So the level of tamper resistance o�ered by any particular product can be

measured by the time and cost penalty that the protective mechanisms impose

on the attacker. Estimating these penalties is clearly an important problem,

but is one to which security researchers, evaluators and engineers have paid less

attention than perhaps it deserves. (The relatively short bibliography at the end

of this article bears witness to that.)

We will adopt the taxonomy of attackers proposed by IBM to guide designers

of security systems that rely to some extent on tamper resistance [1]:

Class I (clever outsiders): They are often very intelligent but may have in-

su�cient knowledge of the system. They may have access to only moderately

sophisticated equipment. They often try to take advantage of an existing

weakness in the system, rather than try to create one.

Class II (knowledgeable insiders): They have substantial specialized tech-

nical education and experience. They have varying degrees of understanding

of parts of the system but potential access to most of it. They often have

highly sophisticated tools and instruments for analysis.

Class III (funded organisations): They are able to assemble teams of spe-

cialists with related and complementary skills backed by great funding re-

sources. They are capable of in-depth analysis of the system, designing

sophisticated attacks, and using the most advanced analysis tools. They

may use Class II adversaries as part of the attack team.

In this paper, we present and develop a number of techniques that can make

smartcards and other tamper resistant devices vulnerable to class II or even class

I attackers.

2 Di�erential Fault Analysis

In [5], Biham and Shamir announced an attack on DES based on 200 ciphertexts

in which one-bit errors have been induced by environmental stress. The fault

model they used had been proposed by Boneh and others in [11] and its e�ects

investigated further in [16, 10]. It assumes that by exposing a processor to a low

level of ionising radiation, or some other comparable insult, that one-bit errors

can be induced in the data used and speci�cally in the key material fed into the

successive rounds.

In [6], it is shown how this method could be extended to reverse engineer

algorithms whose structure is unknown. In each case, the critical observation is

that errors that occur in the last few rounds of the cipher leak information about

the key, or algorithm structure, respectively. In [7], a number of further results

are given; if faults can be induced in the last one or two rounds of the algorithm,

then fewer faulty ciphertexts are needed. In [11], it was shown that on a similar

fault model, attacks could be carried out on public key systems. In particular,

an RSA modulus could be factored given a number of faulty signatures.

The problem with these proposed attacks is that no-one has demonstrated

the feasibility of the fault model. Indeed, with many security processors, the

key material is held in EEPROM together with several kilobytes of executable

code; so it is likely that a random one-bit error which did have an e�ect on

the device's behaviour would be more likely to crash the processor or yield an

uninformative error than to produce a faulty ciphertext of the kind required for

the above attacks.

In this section, we show that a di�erent, and more realistic, fault model gives

signi�cantly better attacks. In the following sections, we will discuss some other

faults that can be induced by low budget attackers and show that they, too, lead

to feasible attacks. Many of these attacks can also be extended to cases in which

we do not initially know the algorithm in use, or where our knowledge of the

system is otherwise imperfect. They fall squarely within the de�nition of what

a class I opponent might do.

2.1 A Realistic Di�erential Attack

In [2], we discussed an attack that has been used by amateur hackers in assaults

on pay-TV smartcards. The idea is to apply a glitch | a rapid transient | in

either the clock or the power supply to the chip. Typical attacks had involved

replacing a 5 MHz clock pulse to a smartcard with one or more 20 MHz pulses.

Because of the di�erent number of gate delays in various signal paths and the

varying RC parameters of the circuits on the chip, this a�ects only some signals,

and by varying the precise timing and duration of the glitch, the CPU can be

made to execute a number of completely di�erent wrong instructions. These will

vary from one instance of the chip to another, but can be found by a systematic

search using hardware that can be built at home.

We do not claim to have invented this attack; it appears to have originated in

the pay-TV hacking community, which has known about it for at least a year. In

the form described in [2], it involved a loop that writes the contents of a limited

memory range to the serial port:

1 b = answer_address

2 a = answer_length

3 if (a == 0) goto 8

4 transmit(*b)

5 b = b + 1

6 a = a - 1

7 goto 3

8 ...

The idea is to �nd a glitch that increases the program counter as usual but

transforms either the conditional jump in line 3 or the loop variable decrement

in line 6 into something else. Then, by repeating the glitch, the entire contents

of memory can be dumped.

When applied at the algorithm level rather than at the level of control code,

this attack is also highly e�ective, as we shall now see. The import of this work

is that attacks based on inducing errors in instruction code are easier, and more

informative, than attacks based on inducing errors in data.

2.2 Attacking RSA

The Lenstra variant of the attack on RSA goes as follows: if a smartcard com-

putes an RSA signature S on a message M modulo n = pq by computing it

modulo p and q separately and then combining them using the Chinese Remain-

der Theorem, and if an error can be induced in either of the former computations,

then we can factor n at once. If e is the public exponent, and the `signature'

S =Md(mod pq) is correct modulo p but incorrect modulo q, then we will have

p = gcd(n; Se
�M) (1)

This is ideal for a glitch attack. As the card spends most of its time calcu-

lating the signature mod p and mod q, and almost any glitch that a�ects the

output will do, we do not have to be selective about where in the instruction

sequence the glitch is applied. Since only a single signature is needed, the attack

can be performed online: a Ma�a shop's point-of-sale terminal can apply the

glitch, factor the modulus, calculate what the correct signature should be, and

send this on to the bank, all in real time.

Thus the Ma�a can harvest RSA secret keys without the customer or his

bank noticing anything untoward about the transaction performed at their shop.

Given that implementers of the new EMV electronic purse system propose to

have only 10,000 di�erent RSA secret keys per issuing bank [14], the Ma�a may

soon be able to forge cards for a substantial proportion of the user population.

2.3 Attacking DES

When we can cause an instruction of our choice to fail, then there are several

fairly straightforward ways to attack DES. We can remove one of the 8-bit xor

operations that are used to combine the round keys with the inputs to the S-

boxes from the last two rounds of the cipher, and repeat this for each of these key

bytes in turn. The erroneous ciphertext outputs that we receive as a result of this

attack will each di�er from the genuine ciphertext in the output of usually two,

and sometimes three, S-boxes. Using the techniques of di�erential cryptanalysis,

we obtain about �ve bits of information about the eight keybits that were not

xor'ed as a result of the induced fault. So, for example, six ciphertexts with faulty

last rounds should give us about 30 bits of the key, leaving an easy keysearch.

An even faster attack is to reduce the number of rounds in DES to one or

two by corrupting the appropriate loop variable or conditional jump, as in the

protocol attack described above. Then the key can be found by inspection. The

practicality of this attack will depend on the implementation detail.

Thus DES can be attacked with somewhere between one and ten faulty ci-

phertexts. But how realistic is it to assume that we will be able to target

particular instructions?

In most smartcards, the manufacturer supplies a number of routines in ROM.

Though sometimes presented as an `operating system', the ROM code is more

of a library or toolkit that enables application developers to manage commu-

nications and other facilities. Its routines usually include the DES algorithm

(or a proprietary algorithm such as Telepass), and by buying the manufacturer's

smartcard development toolkit (for typically a few thousand dollars) an attacker

can get full documentation plus real specimens for testing. In this case, individ-

ual DES instructions can be targeted.

When confronted with an unfamiliar implementation, we may have to ex-

periment somewhat (we have to do this anyway with each card in order to �nd

the correct glitch parameters). However the search space is relatively small, and

on looking at a few DES implementations it becomes clear that we can usually

recognise the e�ects of removing a single instruction from either of the last two

rounds. (In fact, many of these instructions yield almost as much information

when removed from the implementation as the key xor instructions do.)

2.4 Reverse Engineering an Unknown Block Cipher

We can always apply clock and power glitches until simple statistical tests sud-

denly show a high dependency between the input and output bits of the en-

cryption function, indicating that we have succeeded in reducing the number

of rounds. This may be practical even where the implementation details are

unknown, which leads us to ask whether we can use our attack techniques to

reverse engineer an unknow algorithm, such as Skipjack, without needing to use

expensive chip testing equipment.

In [6, 7], Biham and Shamir discuss this problem in their fault model of one-

bit random data errors. As before, they identify faults that a�ected only the last

round or rounds; this can be done by looking for ciphertexts at a low Hamming

distance from each other. They then identify which output bits correspond to

the left and right halves, and next look at which bits in the left half are a�ected

by one bit changes in the last-but-one right half. In the case of a cipher such

as DES with S-boxes, the structure will quickly become clear and with enough

ciphertexts the values of the S-boxes can be reconstructed. They report that with

500 ciphertexts the gross structure can be recovered, and with about 10,000 the

S-box entries themselves can be found.

Our technique of causing faults in instructions rather than in data bits is

more e�ective here, too. We can attack the last instruction, then the second

last instruction, and so on. The number of ciphertexts required for this attack

is about the same as for Biham and Shamir's.

Let us now consider an actual classi�ed algorithm. `Red Pike' was designed

by GCHQ for encrypting UK government tra�c classi�ed up to `Restricted',

and the Department of Health wishes to use it to encrypt medical records. The

British Medical Association preferred that an algorithm be chosen that had been

in the open literature for at least two years and had withstood serious attempts

to �nd shortcut attacks (3DES, Blow�sh, SAFER K-128, WAKE, ...).

In order to try and persuade the BMA that Red Pike was sound, the govern-

ment commissioned a study of it by four academics [18]. This study states that

Red Pike `uses the same basic operations as RC5' (p 4); its principal operations

are add, exclusive or, and left shift. It `has no look-up tables, virtually no key

schedule and requires only �ve lines of code' (p 4). Other hints include that `the

in
uence of each key bit quickly cascades' (p 10) and `each encryption involves

of the order of 100 operations' (p 19).

We can thus estimate the e�ort of reverse engineering Red Pike from a tamper

resistant hardware implementation by considering the e�ort needed to mount a

similar attack on RC5 [19].

Removing the last operation | the addition of key material | yields an

output in which the right hand side is di�erent (it is (B xor A) shl A where A

and B are the left and right halves respectively). This suggests, correctly, that

the algorithm is a balanced Feistel cipher without a �nal permutation. Removing

the next operation | the shift | makes clear that it was a 32 bit circular shift

but without revealing how it was parametrised. Removing the next operation

| the xor | is transparent, and the next | the addition of key material in

the previous round | yields an output with the values A and B in the above

expression. It thus makes the full structure of the data-dependent rotation clear.

The attacker can now guess that the algorithm is de�ned by

A = ((A xor B) shl B) op key

B = ((B xor A) shl A) op key

Reverse engineering RC5's rather complex key schedule (and deducing that

`op' is actually +) would require single-stepping back through it separately; but

if we guess that `op' is +, we can �nd the round key bits directly by working

back through the rounds of encryption.

So, apart from its key schedule, RC5 may be about the worst possible algo-

rithm choice for secret-algorithm hardware applications, where some implemen-

tations may be vulnerable to glitch attacks. If Red Pike is similar but with a

simpler key schedule, then it could be more vulnerable still. However, since the

government plans to make Red Pike available eventually in software, this is not

a direct criticism of the design or choice of that algorithm.

It does all suggest, though, that secret-hardware algorithms should be more

complex; large S-boxes kept in EEPROM (that is separate from the program

memory) may be one way of pushing up the cost of an attack. Other protective

measures that prudent designers would consider include error detection, multiple

encryption with voting, and designing the key schedule so that the keys from a

small number of rounds are not enough for a break.

3 Chip Rewriting Attacks

Where the implementation is familiar, there are a number of ways to extract

keys from the card by targeting speci�c gates or fuses or by overwriting speci�c

memory locations. Bovenlander has described breaking smartcards by using two

microprobe needles to bridge the fuse blown at the end of the card test cycle, and

using the re-enabled test routine to read out the memory contents [12]. Even

where this is not possible, memory cells can be attacked; this can also be done

on a relatively modest budget.

3.1 ROM overwrite attacks

Single bits in a ROM can be overwritten using a laser cutter microscope, and

where the DES implementation is well known, we can �nd one bit (or a small

number of bits) with the property that changing it will enable the key to be

extracted easily. The details will depend on the implementation but we might

well be able, for example, to make a jump instruction unconditional and thus

reduce the number of rounds to one or two. We can also progressively remove

instructions such as exclusive-or's of key material.

Where we have incomplete information on the implementation, ROM over-

writing attacks can be used in other ways. For example, DES S-boxes in ROM

can be identi�ed and a number of their bits overwritten such that the encryption

function becomes a linear transformation over GF(2); we can then extract the

key from a single plaintext/ciphertext pair.

3.2 EEPROM modi�cation attacks

Where the algorithm is kept in EEPROM, we can use two microprobing needles

to set or reset the target bit [17]. We can use this technique to carry out the

above attacks; but the fact that we can both set and reset bits opens up still

more opportunities.

Recall that the DES algorithm uses keys with odd parity, and a proper im-

plementation will require that a key with the wrong parity will cause an error

message to be returned (the VISA security module described below is an exam-

ple of such equipment). Suppose further that we know the location of the DES

key in memory but cannot read it directly; this could well be the case where the

key is kept in EEPROM at a known location (smartcard software writers often

locate keys at the bottom end of EEPROMmemory), but we lack the equipment

to carry out the attacks described in [2]. We can proceed as follows.

Set the �rst bit of the EEPROM containing the target DES key to 1 (or 0,

the choice doesn't matter) and operate the device. If it still works, the keybit

was a 1. If you get a `key parity error' message, then the bit was zero. Move

on to the next bit; set it to 1 and see if this changes the device's response (from

encryption to error or vice versa). Even where the protocol uses some form of

key redundancy that we do not understand, we can react to error messages by

simple changing the keybit back to its original value.

Both microprobes and laser cutter microscopes are often found in universities

| the former in electrical engineering departments, and the latter in cellular

biology laboratories. Undergraduates can obtain unsupervised access to them;

other class I attackers can purchase them for at most a few thousand dollars.

3.3 Gate destruction attacks

At the rump session of the 1997 workshop on Fast Software Encryption, Eli Bi-

ham and Adi Shamir presented a novel and interesting attack on DES. The idea

is to use a laser cutter to destroy an individual gate in the hardware implemen-

tation of a known block cipher.

The example they gave was DES, which is typically implemented with hard-

ware for a single round, plus a register that holds the output of round k and

sends it back as the input to round k+1. Biham and Shamir pointed out that if

the least signi�cant bit of this register is stuck, then the e�ect is that the least

signi�cant bit of the output of the round function is set to zero. By comparing

the least signi�cant six bits of the left half and the right half, several bits of

key can be recovered; given about ten ciphertexts from a chip that has been

damaged in this way, information about the round keys of previous rounds can

be deduced using the techniques of di�erential cryptanalysis, and enough of the

key can be recovered to make keysearch easy.

This is an extremely impressive attack, and in fact the �rst one that works

against ciphers such as DES when the plaintext is completely unknown. (This is

the case in many smartcard applications where the card uses successive payment

transactions to report its internal state to the issuer.)

We observe that there is a simple countermeasure to this new attack: a chip

modi�ed in this way will have the property that encryption and decryption are

no longer inverses. So a simple self-test procedure can be added that takes an

arbitrary input, encrypts and decrypts under an arbitrary key, and compares

the result with the original block. (This test is already being implemented by

one of our clients in a chip currently under development.)

4 Memory Remanence Attacks

In a brilliant USENIX paper [15], Gutman described the mechanisms that cause

both static and dynamic RAM to `remember' values that they have stored for a

long period of time. A prudent security engineer will ask what the e�ect of this

is in the real world.

We looked at a security module used in a bank. Many banks use a system

devised by IBM and re�ned by VISA to manage the personal identi�cation

numbers (PINs) issued to customers for use with automatic teller machines [4].

The PIN is derived from the account number by encrypting it with a `PIN key',

decimalising the result and adding a decimal `o�set' (without carry) to get the

PIN the customer must enter. (The o�set's function is to enable the customer

to choose his own PIN.) An example of the calculation is [4]:

Account number: 8807012345691715

PIN key: FEFEFEFEFEFEFEFE

Result of DES: A2CE126C69AEC82D

Result decimalised: 0224126269042823

Natural PIN: 0224

Offset: 6565

Customer PIN: 6789

The function of the security module is to perform all these cryptographic

operations, plus associated key management routines, in trusted hardware, so

as to support a dual control policy: no single member of any bank's sta� should

have access to a customer PIN [20]. Thus, for example, the module will only

perform a `verify PIN' command if the PIN is supplied encrypted under a key

allocated to an automatic teller machine or to a corresponding bank. In this way,

bank programmers are prevented from using the security module as an oracle to

perform exhaustive PIN search.

In order to enforce this, the security module needs to be able to mark keys

as belonging to a particular functionality class. It does this by encrypting them

with 3DES under one of 12 pairs of DES master keys that are stored in low

memory. Thus for example ATM keys are stored encrypted under master keys

14 and 15, while the working keys used to communicate with other banks are

stored encrypted under master keys 6 and 7. The encrypted values of long term

keys such as the PIN key are often included inline in application code and are

thus well known to the bank's programming sta�.

So security depends on the module's tamper resistance, and this is provided

for by lid switches that cut power to the key memory when the unit is opened (it

needs servicing every few years to change the battery). Master keys are loaded

back afterwards in multiple components by trusted bank sta�.

We looked at one such device, which dated from the late 1980's, and found

that the master key values were almost intact on power-up. The number of

bits in error was of the order of 5-10%. We cannot give more accurate �gures

as we were not permitted to copy either the correct master key values, nor the

almost-correct values that had been `burned in' to the static RAM chips. We

are also not permitted to name the bank at which these modules are installed,

and do not consider it prudent to name their manufacturer.

This level of memory remanence would be alarming enough. However, it has

a particularly pernicious and noteworthy interaction with DES key parity in this

common application.

If each DES key is wrong by �ve bits, then the e�ort involved in searching

for the 10 wrong bits in a double DES key might be thought to be 112-choose-10

operations. Each operation would involve (a) doing a 2-key 3DES decryption of

a 56 bit PIN key whose enciphered value is, as we noted, widely known (b) in

the 2�8 of cases where this result has odd parity, enciphering an account number

with this as a DES key to see if the (decimalised) result is the right PIN. The

e�ort is about 3 times 112-choose-10 DES operations | say 250. But it would

probably be cheaper to do a hardware keysearch on the PIN key directly than to

try to implement this more complex 250 search in either hardware or software.

However, the bytewise nature of the DES key redundancy reduces the e�ort

by several orders of magnitude. If no key byte has a double error, then the e�ort

is seven tries for each even parity byte observed, or 3 times 710 | about 230,

which is easy. If there is one key byte with a double error, the e�ort is 238,

giving a search of 240 DES operations | which is feasible for a class I attacker.

This is not the �rst instance of DES parity being a hindrance rather than

a help. In one case, the Kerberos partity-checking DES implementation was

grafted into an encrypting telnet implementation that derived its key material

from a Di�e-Hellman exchange. As the Di�e-Hellman key bits were random,

only 1 in 256 exchanges resulted in a legal key; in all other cases, key loading

failed and (as the implementation didn't check the return code) the session would

continue using an uninitialised key [8]. In another, a misunderstanding led to

the PIN key used by a number of banks being chosen as a password made up

of ASCII characters with odd parity; and in other applications, it is common

for an ASCII password to have parity set and be used as a key. The problem

here is that ascii characters have a zero in the high order bit, while DES parity

operates on the low order bit; so the key diversity is less than 248, and in fact is

even less than the entropy of the chosen passwords [13].

5 Protocol Failure

Poorly designed protocols are a more common source of attacks than many

people recognise [3]. Many of them also require only very simple and cheap

equipment to exploit.

For example, satellite TV decoders typically have a hardware cryptoprocessor

that deciphers the video signal, and a microcontroller which passes messages

between the cryptoprocessor and the customer smartcard that contains the key

material. If a customer stops paying his subscription, the system typically sends

a message over the air which instructs the decoder to disable the card. In the

`Kentucky Fried Chip' hack, the microcontroller was replaced with one which

blocked this particular message [3].

Another example is given in [2], which describes an attack on the Dallas

Semiconductor DS5002FP secure microcontroller. This attack utilises a protocol

failure to circumvent the encryption system used to protect o�-chip memory.

Some protocol failures require no equipment at all to exploit, and one example

that has come to our attention arose from a modi�cation made to a bank security

module.

One bank was upgrading its systems and wished to change the format of

its customer account numbers. Changing the numbers meant that the `natural

PIN' calculated from the account number would change. But the bank did not

wish to inconvenience its customers by forcing new PINs on them; so it decided

to calculate suitable o�sets so that the customer PIN would be unchanged from

one card generation to the next.

The security module as supplied did not support such a transaction (for

reasons that will shortly become clear). The manufacturer was duly contacted

and asked to provide it; modi�ed software was duly supplied, but with a warning

that this should only be used for a batch run to calculate the necessary o�sets,

and then discarded, as it was dangerous. But the nature of the danger was not

spelled out, and due to personnel changes and project delays the card number

change could not be carried out at once. The e�ect was that the modi�ed

software was installed and left in place.

About a year later, one of the bank's programmers noticed a simple attack.

The additional transaction had the syntax: `given an initial account number of

X and o�set of Y , calculate an o�set which will enable this PIN to be used on

account number Z'. The programmer could input the account number and o�set

of a target as X and Y (the majority of o�sets were zero in any case) and his

own account number as Z. The returned value enabled him to trivially calculate

the target's PIN.

Fortunately for the bank, the programmer brought this vulnerability to the

attention of authority, rather than exploiting it.

6 Conclusions

We have improved on Di�erential Fault Analysis. Rather than needing about

200 faulty ciphertexts to recover a DES key, we need between one and ten. We

can factor RSA moduli with a single faulty ciphertext. We can also reverse

engineer completely unknown algorithms; this appears to be faster than Biham

and Shamir's approach in the case of DES, and is particularly easy with algo-

rithms that have a compact software implementation such as RC5. Unlike some

previous work, our attacks use a realistic fault model, which has actually been

implemented and can be used against �elded systems. The critical idea is to

cause errors in code rather than in data.

We have also shown how low cost and commonly available laboratory equip-

ment, such as microprobes and laser cutter microscopes, can be used to im-

plement chip-surface attacks to recover key material from supposedly secure

processors. Key redundancy, such as the key parity of DES, can be used to

facilitate such attacks. This work reinforces the lesson from [9] | that key re-

dundancy requires more careful consideration than has usually been accorded it

in the past.

An example of this is that the particular form of key redundancy used in

DES can interact quite lethally with the memory remanence properties of SRAM

chips commonly used in banking security modules. The e�ect is that master key

material can fairly easily be recovered from a discarded security module. Such

devices should as a matter of policy be destroyed carefully.

Finally, in addition to attacks involving non-obvious interactions of protocol

features with hardware features, there are many cases in which physical protec-

tion can be circumvented by pure protocol attacks. Tamper resistant devices

are not only much harder to build than many people realise; they are also much

harder to program and to use.

Acknowledgements

Mike Roe pointed out that the glitch attack on RSA can be done in real time

by a Ma�a owned point-of-sale terminal; Stefan Lucks the way to linearise DES.

References

1. DG Abraham, GM Dolan, GP Double, JV Stevens, \Transaction Security Sys-

tem", in IBM Systems Journal v 30 no 2 (1991) pp 206{229

2. RJ Anderson, MG Kuhn, \Tamper Resistance | a Cautionary Note", in The

Second USENIX Workshop on Electronic Commerce Proceedings (Nov 1996) pp

1{11

3. RJ Anderson, RM Needham, \Programming Satan's Computer", in `Computer

Science Today', Springer Lecture Notes in Computer Science v 1000 pp 426{441

4. RJ Anderson, \Why Cryptosystems Fail", in Proceedings of the 1st ACM Confer-

ence on Computer and Communications Security (November 1993) pp 215{227

5. E Biham, A Shamir, \A New Cryptanalytic Attack on DES", preprint, 18/10/96

6. E Biham, A Shamir, \Di�erential Fault Analysis: Identifying the Structure of

Unknown Ciphers Sealed in Tamper-Proof Devices", preprint, 10/11/96

7. E Biham, A Shamir, \Di�erential Fault Analysis: A New Cryptanalytic Attack

on Secret Key Cryptosystems", preprint, 21/11/96

8. M Blaze, personal communication

9. M Blaze, \Protocol Failure in the Escrowed Encryption Standard", in Proceedings

of the 2nd ACM Conference on Computer and Communications Security (2{4

November 1994), ACM Press, pp 59{67

10. F Bao, RH Deng, Y Han, A Jeng, AD Nirasimhalu, T Ngair, \Breaking Public

Key Cryptosystems in the Presence of Transient Faults", this volume

11. D Boneh, RA DeMillo, RJ Lipton, \On the Importance of Checking Computa-

tions", preprint, 11/96

12. E Bovenlander, invited talk on smartcard security, Eurocrypt 97

13. P Farrell, personal communication

14. L Guillou, comment from the
oor of Crypto 96

15. P Gutman, \Secure Deletion of Data from Magnetic and Solid-State Memory",

in Sixth USENIX Security Symposium Proceedings (July 1996) pp 77{89

16. M Joye, F Koeune, JJ Quisquater, \Further results on Chinese remainder-

ing", Universit�e Catholique de Louvain Technical Report CG-1997-1, available

at <http://www.dice.ucl.ac.be/crypto/tech_reports/CG1997_1.ps.gz>

17. O Kocar, \Hardwaresicherheit von Mikrochips in Chipkarten", in Datenschutz

und Datensicherheit v 20 no 7 (July 96) pp 421{424

18. C Mitchell, S Murphy, F Piper, P Wild, \Red Pike | An Assessment", Codes

and Ciphers Ltd 2/10/96

19. RL Rivest, \The RC5 Encryption Algorithm", in Proceedings of the Second In-

ternational Workshop on Fast Software Encryption (December 1994), Springer

LNCS v 1008 pp 86{96

20. `VISA Security Module Operations Manual', VISA, 1986

