
 An Introduction to
HTTP fingerprinting

Saumil Shah

saumil@net-square.com
30th November, 2003

Table of Contents

1. Abstract
2. Theory of Fingerprinting
3. Banner Grabbing
4. Applications of HTTP Fingerprinting
5. Obfuscating the server banner string
6. Protocol Behaviour
 6.1 HTTP Header field ordering
 6.2 HTTP DELETE
 6.3 Improper HTTP version response
 6.3 Improper protocol response
 6.5 Summary of test results
 6.6 Choosing the right tests
7. Statistical and Fuzzy analysis
 7.1 Assumptions
 7.2 Terms and Definitions
 7.3 Analysis Logic
8. httprint - the advanced HTTP fingerprinting engine
 8.1 httprint signatures
 8.2 httprint command line and GUI interfaces
 8.3 Running httprint
 8.4 The significance of confidence ratings
 8.5 httprint Reports
 8.6 Customising httprint
9. Trying to defeat HTTP Fingerprinting
10. Conclusion
11. References

1. Abstract

HTTP Fingerprinting is a relatively new topic of discussion in the context of application
security. One of the biggest challenges of maintaining a high level of network security is to
have a complete and accurate inventory of networked assets. Web servers and web
applications have now become a part of the scope of a network security assessment
exercise. In this paper, we present techniques to identify various types of HTTP servers. We
shall discuss some of the problems faced in inventorying HTTP servers and how we can
overcome them.

We shall also introduce and describe a tool, httprint, which is built using the concepts
discussed in this paper.

2. Theory of Fingerprinting

A fingerprint is defined as:

1. The impression of a fingertip on any surface; also: an ink impression of the lines
upon the fingertip taken for the purpose of identification.

2. something that identifies: as (a) a trait, trace, or characteristic revealing origin or
responsibility (b) analytical evidence that characterizes an object or substance.

The process of fingerprinting can be broken up into two sub processes, namely gathering
and classification of fingerprints, and comparision of unknown fingerprints with the stored
database of known fingerprints.

While gathering fingerprints, it is essential to capture all the key characteristics of the object
revealed in the fingerprint. Capturing more details and traits helps in the comparision
process. While comparing fingerprints, there may be chances that a fingerprint can be
improperly matched, because of subtle differences that can be easily mistaken.

Fingerprinting is a known technique in network security. Operating system fingerprinting is a
common task in any network assessment or inventorying exercise. There are many
techniques to perform operating system fingerprinting. What makes operating system
fingerprinting successful and accurate is the fact that each operating system implements the
TCP/IP stack slightly differently. The way a system responds to malformed packets, either
the presence of an error response, or absence thereof, is one example of an implementation
difference. A detailed discussion on operating system fingerprinting, or TCP/IP stack
fingerprinting, is presented in Fyodor's paper, titled "Remote OS detection via TCP/IP Stack
Fingerprinting" [1]

The theory behind HTTP fingerprinting is more or less on the same lines - identifying HTTP
servers by their implementation differences in the HTTP protocol. HTTP fingerprinting gets
slightly more complicated than TCP/IP stack fingerprinting. The reason being that it is easily
possible to customize the responses of an HTTP server by just changing its configuration file,
or adding plug-ins or modules, whereas customising the behaviour of the TCP/IP stack
requires access to the network code at the kernel layer. Despite this difficulty, it is possible to
devise tests to overcome the various customizable features of a web server.

3. Banner grabbing

The simplest and most basic form of identifying HTTP servers is to look at the Server field in
the HTTP response header [2]. Using a TCP client like netcat [3], it is possible to send an
HTTP request to return the HTTP response header of the server, as shown below:

 $ nc 202.41.76.251 80 HEAD / HTTP/1.0 HTTP/1.1 200 OK Date:
Mon, 16 Jun 2003 02:53:29 GMT Server: Apache/1.3.3 (Unix) (Red
Hat/Linux) Last-Modified: Wed, 07 Oct 1998 11:18:14 GMT ETag:
"1813-49b-361b4df6" Accept-Ranges: bytes Content-Length: 1179
Connection: close Content-Type: text/html $

Three examples of the HTTP response header are shown below:

From an Apache 1.3.23 server:

 HTTP/1.1 200 OK Date: Sun, 15 Jun 2003 17:10:49 GMT Server:
Apache/1.3.23 Last-Modified: Thu, 27 Feb 2003 03:48:19 GMT ETag:
"32417-c4-3e5d8a83" Accept-Ranges: bytes Content-Length: 196
Connection: close Content-Type: text/html

From a Microsoft IIS 5.0 server:

 HTTP/1.1 200 OK Server: Microsoft-IIS/5.0 Expires: Tue, 17 Jun
2003 01:41:33 GMT Date: Mon, 16 Jun 2003 01:41:33 GMT Content-
Type: text/html Accept-Ranges: bytes Last-Modified: Wed, 28 May
2003 15:32:21 GMT ETag: "b0aac0542e25c31 :89d" Content-Length:
7369

From a Netscape Enterprise 4.1 server:

 HTTP/1.1 200 OK Server: Netscape-Enterprise/4.1 Date: Mon, 16
Jun 2003 06:19:04 GMT Content-type: text/html Last-modified: Wed,
31 Jul 2002 15:37:56 GMT Content-length: 57 Accept-ranges: bytes
Connection: close

4. Applications of HTTP fingerprinting

From a network management standpoint, HTTP fingerprinting comes in very handy when
keeping track of the various web servers on a network. HTTP fingerprinting can also be used
to automate information systems and security audits. Automated security testing tools can
use HTTP fingerprinting to narrow down the set of tests required, based on the specific
platform or the specific web server being audited.

Some of the applications of HTTP fingerprinting are:

• Network management: Web server inventory
• Penetration testing / Auditing: Selecting the right attacks or audit tests for web servers
• Wireless networks: Detecting 802.11x access points from the wired network, since

most APs have a web enabled interface
• Web enabled devices: Printers, storage servers, switches, etc. Many times, web

enabled devices do not return a server banner string at all, making it difficult to
identify and track them.

5. Obfuscating the server banner string

Banner grabbing proves to be a good method of HTTP fingerprinting in many cases.
However, many times, server administrators chose to disguise the server banner string, by
providing one of their own. Such, "security-by-obscurity" methods help thwart a lot of
automated attacks against web servers.

It is easy to configure servers to return different server banner strings. In open source
servers such as Apache, one can change the banner string in the source code and re-
compile the server. For non-open source servers such as Microsoft IIS or Netscape
Enterprise, it is possible to "patch" the binary by opening it up in a hex editor and changing
the string embedded in the binary. It is not so easy to do this always, but it has been done
successfully. Another way of obscuring the server banner string is to write a custom plug-in
for the web server, which can provide customized HTTP responses. A commercial product,
called ServerMask [4] from Port 80 Software performs such obfuscation on HTTP responses.

The example below shows the response from an HTTP server with a customized server
banner string:

Apache Server recompiled with "Unknown-Webserver/1.0" as the server banner string

 HTTP/1.1 403 Forbidden Date: Mon, 16 Jun 2003 02:41:27 GMT
Server: Unknown-Webserver/1.0 Connection: close Content-Type:
text/html; charset=iso-8859-1

The example below shows the response from an HTTP server using ServerMask:

IIS Server using the ServerMask plug-in

 HTTP/1.1 200 OK Server: Yes we are using S erverMask Date: Mon,
16 Jun 2003 02:54:17 GMT Connection: Keep-Alive Content-Length:
18273 Content-Type: text/html Set-Cookie: It works on cookies
too=82.3S3.O12.NT2R0RE,4147ON3P,.4OO.; path=/ Cache-control:
private

As we can see from the above examples, relying purely upon the contents of the server
banner string is not enough for identifying the type of HTTP server.

6. Protocol behaviour

Almost all HTTP servers differ in the way they implement the HTTP protocol. In the case
where the HTTP request is well formed and legitimate, the response returned by all HTTP
servers is more or less compliant with the specifications laid out in the RFCs for HTTP[5].
However, when confronted with malformed HTTP requests, these servers differ in their
responses. Differences in the way the HTTP protocol is handled by various HTTP servers
forms the basis of the HTTP fingerprinting technique.

Let us illustrate these differences with examples. We shall analyse the response to four
HTTP requests, coming from an Apache 1.3.23 server, a Microsoft IIS 5.0 server and a
Netscape Enterprise 4.1. The requests are:

HTTP Test What to expect

HEAD / HTTP/1.0 Normal HTTP header response

DELETE / HTTP/1.0 Response when operations such as DELETE aren't generally allowed

GET / HTTP/3.0 Response to a request with an improper HTTP protocol number

GET / JUNK/1.0 Response to a request with an improper protocol specification

In each of these responses, we shall identify key differences between the responses of
Apache 1.3.23, IIS 5.0 and Netscape Enterprise 4.1. We shall not take into consideration
differences in customizable parameters such as the server banner string.

6.1 HTTP header field ordering

Taking the first request HEAD / HTTP/1.0, we shall analyse the HTTP response header and
inspect the order of appearance of the various fields returned within it.

Response from Apache 1.3.23

 $ nc apache.example.com 80 HEAD / HTTP/1.0 HTTP/1.1 200 OK
Date: Sun, 15 Jun 2003 17:10:49 GMT Server: Apache/1.3.23 Last-
Modified: Thu, 27 Feb 2003 03:48:19 GMT ETag: "32417-c4-3e5d8a83"
Accept-Ranges: bytes Content-Length: 196 Connection: close
Content-Type: text/html

Response from IIS 5.0

 $ nc iis.example.com 80 HEAD / HTTP/1.0 HTTP/1.1 200 OK Server:
Microsoft-IIS/5.0 Content-Location:
http://iis.example.com/Default.htm Date: Fri, 01 Jan 1999
20:13:52 GMT Content-Type: text/html Accept-Ranges: bytes Last-
Modified: Fri, 01 Jan 1999 20:13:52 GMT ETag:
W/"e0d362a4c335be1:ae1" Content-Length: 133

Response from Netscape Enterprise 4.1

 $ nc netscape.example.com 80 HEAD / HTTP/1.0 HTTP/1.1 200 OK
Server: Netscape-Enterprise/4.1 Date: Mon, 16 Jun 2003 06:01:40
GMT Content-type: text/html Last-modified: Wed, 31 Jul 2002
15:37:56 GMT Content-length: 57 Accept-ranges: bytes Connection:
close

If we observe the ordering of the response header fields Server and Date, we notice that
Apache orders the fields differently than IIS and Netscape.

6.2 HTTP DELETE (forbidden operation) response

Next, we shall take the request DELETE / HTTP/1.0 and observe what the response of each
of the servers is, when the requested operation is generally forbidden.

Response from Apache 1.3.23

 $ nc apache.example.com 80 DELETE / HTTP/1.0 HTTP/1.1 405
Method Not Allowed Date: Sun, 15 Jun 2003 17:11:37 GMT Server:
Apache/1.3.23 Allow: GET, HEAD, POST, PUT, DELETE, CONNECT,
OPTIONS, PATCH, PROPFIND, PROPPATCH, MKCOL, COPY, MOVE, LOCK,
UNLOCK, TRACE Connection: close Content-Type: text/html;
charset=iso-8859-1

Response from IIS 5.0

 $ nc iis.example.com 80 DELETE / HTTP/1.0 HTTP/1.1 403
Forbidden Server: Microsoft-IIS/5.0 Date: Fri, 01 Jan 1999
20:13:57 GMT Content-Type: text/html Content-Length: 3184

Response from Netscape Enterprise 4.1

 $ nc netscape.example.com 80 DELETE / HTTP/1.0 HTTP/1.1 401
Unauthorized Server: Netscape-Enterprise/4.1 Date: Mon, 16 Jun
2003 06:03:18 GMT WWW-authenticate: Basic realm="WebServer
Server" Content-length: 223 Content-type: text/html Connection:
close

Apache responds with a 405 "Method not allowed" response, IIS responds with a 403
"Operation on resource forbidden" response, and Netscape responds with a 401
"Authorization credentials required" response. Each of the servers differs in their response to
the DELETE request.

6.3 Improper HTTP version response

The next test consists of sending an HTTP request with an improper HTTP version number,
such as GET / HTTP/3.0, to the server. HTTP 3.0 is not even in existence as of this writing,
and none of the candidate servers implement it.

Response from Apache 1.3.23

 $ nc apache .example.com 80 GET / HTTP/3.0 HTTP/1.1 400 Bad
Request Date: Sun, 15 Jun 2003 17:12:37 GMT Server: Apache/1.3.23
Connection: close Transfer-Encoding: chunked Content-Type:
text/html; charset=iso-8859-1

Response from IIS 5.0

 $ nc iis.example.com 80 GET / HTTP/3.0 HTTP/1.1 200 OK Server:
Microsoft-IIS/5.0 Content-Location:
http://iis.example.com/Default.htm Date: Fri, 01 Jan 1999
20:14:02 GMT Content-Type: text/html Accept-Ranges: bytes Last-
Modified: Fri, 01 Jan 1999 20:14:02 GMT ETag:
W/"e0d362a4c335be1:ae1" Content-Length: 133

Response from Netscape Enterprise 4.1

 $ nc netscape.example.com 80 GET / HTTP/3.0 HTTP/1.1 505 HTTP
Version Not Supported Server: Netscape-Enterprise/4.1 Date: Mon,
16 Jun 2003 06:04:04 GMT Content-length: 140 Content-type:
text/html Connection: close

Apache responds with a 400 "Bad HTTP request" response, IIS ignores the improper HTTP
protocol number, and responds with a 200 "OK" along with the contents of the HTML data for
the root document, and Netscape responds with a 505 "HTTP version not supported"
response.

6.4 Improper protocol response

The next test involves observing the response to the request GET / JUNK/1.0.

Response from Apache 1.3.23

 $ nc apache.example.com 80 GET / JUNK/1.0 HTTP/1.1 200 OK Date:
Sun, 15 Jun 2003 17:17:47 GMT Server: Apache/1.3.23 Last-
Modified: Thu, 27 Feb 2003 03:48:19 GMT ETag: "32417-c4-3e5d8a83"
Accept-Ranges: bytes Content-Length: 196 Connection: close
Content-Type: text/html

Response from IIS 5.0

 $ nc iis.example.com 80 GET / JUN K/1.0 HTTP/1.1 400 Bad Request
Server: Microsoft-IIS/5.0 Date: Fri, 01 Jan 1999 20:14:34 GMT
Content-Type: text/html Content-Length: 87

Response from Netscape Enterprise 4.1

 $ nc netscape.example.com 80 GET / JUNK/1.0
<HTML><HEAD><TITLE>Bad request</TITLE></HEAD> <BODY><H1>Bad

request</H1> Your browser sent a query this server could not
understand. </BODY></HTML>

In this case, Apache ignores the improper protocol "JUNK", and responds with a 200 "OK"
along with the contents of the root document, IIS responds with a 400 "Bad Request"
response and Netscape does not even return an HTTP response header, but instead just
returns an HTML formatted error message stating that this request is a bad request.

6.5 Summary of test results

The following table summarizes the various tests and the responses from each of the HTTP
servers. It is easy to figure out how to distinguish HTTP servers from such tests.

Server
Field

Ordering
DELETE
Method

Improper HTTP
version

Improper
protocol

Apache/1.3.23 Date, Server 405 400 200

Microsoft-IIS/5.0 Server, Date 403 200 400

Netscape-Enterprise/4.1 Server, Date 401 505 no header

6.6 Choosing the right tests

In the above example, we discussed four HTTP tests, and observed the differences in the
responses from three popular HTTP servers. For an industrial strength HTTP fingerprinting
engine, we require more than four HTTP tests. The larger the number of HTTP tests, the
better the results of fingerprinting, and the greater the accuracy in matching fingerprints. On
the other hand, fewer HTTP tests imply faster execution time.

Fingerprinting tests are of two types

• Decision tree bases tests
• Statistical analysis tests

Decision tree based tests rely on the construction of a tree of tests, which eliminates
possibilities progressively, much in the same manner as testing for an unknown chemical
compound, based on the results of progressive chemical reaction tests. Decision tree based
tests are difficult to scale, and each HTTP server would have specific contributions to the
construction of the decision tree. Adding tests for a new HTTP server would involve re-writing
the entire decision tree.

Statistical analysis tests usually involve a fixed set of tests, which result in an array of
weights being generated for each type of HTTP server. The decision as to what the outcome
is, is based on comparing the various weights generated for each server. The accuracy of
statistical analysis tests depends on the algorithms used to assign and compare the weights
for each HTTP server. Statistical based models yield themselves quite easily to be adapted
into neural machines, which can be trained with a set of known values.

7. Statistical and Fuzzy analysis

The rest of the paper focusses on using statistical and fuzzy logic techniques in analysing the
responses from the HTTP tests. The technique consists in perfomrming signature analysis
with a set of stored signatures, and assigning a confidence rating to each candidate
signature. The signatures with the highest confidence rating are then reported as potential
matches for the unknown server being tested.

7.1 Assumptions

The fingerprinting engine operates with a known set of server signatures. It can therefore
only identify HTTP servers that it knows about. If a server's signature is not present in the set
of known signatures, the fingerprinting engine shall report the next closest server, in terms of
server behaviour and characteristics.

While performing HTTP fingerprint tests, there shall be no HTTP proxy server present
between the system running the fingerprinting engine and the target web server.

7.2 Terms and Definitions

Term Description

Signature Set S = {s1, s2, ..., sn}
n = number of web server signatures known to the fingerprinting
engine.
si = ith signature in the signature set.

Reported Signature sR

The signature that is derived from running HTTP fingerprinting tests
against an unknown web server.

Comparision function
and Weight

wi = fw(sR, si)
wi = Weight when reported signature sR is compared against the ith

signature in the signature set S.
fw(sa, sb) = Comparision function, which compares signature sa against
sb, and returns a resultant weight.

Weight Vector W = {w1, w2, ..., wn}

Confidence Rating ci = fc(wi, W)
ci = likelihood that signature si, with weight wi is the best match
amongst the entire signature set S, whose weight vector is
represented by W.
fc(wa, W) = Fuzzy logic function to calculate the likelihood, in
percentage terms, of wa being the best weight amongst the weight
vector W.

Confidence Vector C = {c1, c2, ..., cn}

Max Confidence cmax

Maximum confidence rating amongst all the confidence ratings in the

confidence vector C.

Best match Vector M = {smaxA, smaxB, ...}
smaxA, smaxB = signatures whose confidence ratings equal to cmax

7.3 Analysis Logic

The following piece of pseudo code outlines how the best match is chosen out of the
signature set.

1. Load the signature set S = {s1, ..., sn}
2. Run the fingerprinting tests and obtain sR for the unknown web server.
3. for i = 1 .. n

 wi = fw(sR, si)
next

4. for i = 1 .. n
 ci = fc(wi, W)
next

5. cmax = max(C)
6. M = {}
7. for i = 1 .. n

 if ci = cmax then
 M = M U {si}
 end if
next

8. print M

8. httprint - the advanced HTTP fingerprinting
engine

The httprint [6] fingerprinting engine uses statistical analysis, combined with fuzzy logic
techniques, to determine the type of HTTP server.

httprint can be used to both gather as well as analyse signatures generated from HTTP
servers.

Although httprint is not open source, it is available at no cost for personal, educational and
non-commercial use.

8.1 httprint signatures

HTTP signatures generated by httprint are hexadecimal encoded ASCII strings, as the ones
shown below:

 Microsoft-IIS/5.0
CD2698FD6ED3C295E4B1653082C10D64050C5D2594DF1BD04276E4BB811C9DC5
0D7645B5811C9DC52A200B4C9D69031D6014C217811C9DC5811C9DC52655F350
FCCC535BE2CE6923E2CE69232FCD861AE2CE69272576B769E2CE6926CD2698FD
6ED3C295E2CE692009DB9B3E811C9DC5811C9DC56ED3C2956ED3C295E2CE6923
6ED3C2956ED3C295811C9DC5E2CE69276ED3C295 Apache/2.0.x
9E431BC86ED3C295811C9DC5811C9DC5050C5D32505FCFE84276E4BB811C9DC5
0D7645B5811C9DC5811C9DC5CD37187C11DDC7D7811C9DC5811C9DC58A91CF57
FCCC535B6ED3C295FCCC535B811C9DC5E2CE6927050C5D336ED3C2959E431BC8
6ED3C295E2CE69262A200B4C6ED3C2956ED3C2956ED3C2956ED3C295E2CE6923
E2CE69236ED3C295811C9DC5E2CE6927E2CE6923

httprint maintains a set of signatures in a text file [7], and uses these to analyse the results
generated from an unknown server. It is easily possible to extend the signatures database,
by simply cutting-and-pasting the signature output of httprint, when used against a known
server whose fingerprint is not in the database. The next time httprint is run, the newly
added signature will be used in the comparision.

8.2 httprint command line and GUI interfaces

httprint is available in both command-line and GUI versions, running on Windows, Linux,
Mac OS X and FreeBSD for this release - v200.

httprint's command line options are as under:

 # ./httprint httprint v0.200 (be ta) - web server fingerprinting
tool (c) 2003, net-square solutions pvt. ltd. - see readme.txt
http://net-square.com/httprint/ httprint@net-square.com Usage:
httprint {-h <host> | -i <input file> -s <signatures> [...
options] -h <host> host can be either an IP address,
a symbolic name, an IP range or a URL. -i

<input text file> file containing list of hosts as described
above in text format. -x < nmap xml file>
Nmap -oX option generated xml file as input file.
Ports which can be considered as http ports are taken
from the nmapportlist.txt file. -s <signatures> file
containing http fingerprint signatures. Options: -o <output
file> Default output file is "httprintoutput.html". Use this
option to override the output filename. -oc <output file>
output in csv format -ox <output file> output in xml format -
tp <ping timeout> Ping timeout in milliseconds.
Default is 1000 ms. Maximum 30000 ms. -t <timeout>
Connection/read timeout in milliseconds.
Default is 10000 ms. Maximum 100000 ms. -r <retry>
Number of retries. Default is 3. Maximum 30. -P0
Turn ping off. -? Displays this message.
Examples: httprint -h www1.example.com -s signatures.txt
httprint -h https://www2.example.com/ -s signatures.txt httprint
-h http://www3.example.com :8080/ -s signatures.txt httprint -h
10.0.1.1-10.0.1.254 -s signatures.txt -o 10_0_1_x.html httprint -
x nmap.xml -s signatures.txt -oc report.csv httprint -x nmap.xml
-s signatures.txt -ox report.xml httprint -i input.txt -s
signatures.txt -o output.html

The options are self-explanatory.

For the Win32 platform, httprint is also available in a GUI interface. The screenshot of the
GUI version is shown below:

8.3 Running httprint

An example of the output generated by httprint is shown below:

 # ./httprint -s signatures.txt -o apache1.html -h
apache.example.com httprint v0.200 (beta) - web server
fingerprinting tool (c) 2003, net-square solutions pvt. ltd. -
see readme.txt http://net-square.com/httprint/ httprint@net-
square.com --
Finger Printing on http://apache.example.com:80/ Derived
Signature: Apache-AdvancedExtranetServer/2.0.44 (Mandrake
Linux/11mdk) mod_perl/1.99_08 Perl/v5.8.0 mod_ssl/2.0.44
OpenSSL/0.9.7a PHP/4.3.1
9E431BC86ED3C295811C9DC5811C9DC5050C5D32505FCFE84276E4BB811C9DC5
0D7645B5811C9DC5811C9DC5811C9DC511DDC7D7811C9DC5811C9DC58A91CF57
FCCC535B6ED3C295FCCC535B811C9DC56ED3C295050C5D336ED3C2959E431BC8
6ED3C295E2CE69262A200B4C6ED3C2956ED3C2956ED3C2956ED3C295E2CE6923
E2CE69236ED3C295811C9DC56ED3C295E2CE6923 Banner Reported:
Apache-AdvancedExtranetServer/2.0.44 (Mandrake Linux/11mdk)
mod_perl/1.99_08 Perl/v5.8.0 mod_ssl/2.0.44 OpenSSL/0.9.7a
PHP/4.3.1 Banner Deduced: Apache/2.0.x Scores: Apache/2.0.x: 126
81.29 Apache/1.3.[4-24]: 118 64.73 Apache/1.3.27: 117 62.83
Apache/1.3.26: 116 60.96 Apache/1.2.6: 113 55.59 Apache/1.3.[1-
3]: 113 55.59 Stronghold/4.0-Apache/1.3.x: 66 6.89 Netscape-
Enterprise/4.1: 59 4.07 Com21 Cable Modem: 56 3.11 Oracle
Servlet Engine: 55 2.82 Microsoft-IIS/5.0 ASP.NET: 55 2.82
Microsoft-IIS/5.1: 55 2.82 Microsoft-IIS/6.0: 55 2.82 Lotus-
Domino/6.x: 51 1.81 Netscape-Enterprise/3.6 SP2: 50 1.60
EMWHTTPD/1.0: 50 1.60 dwhttpd (Sun Answerbook): 49 1.39
Netscape-Enterprise/6.0: 49 1.39 thttpd: 48 1.20 Netscape-
Enterprise/3.5.1G: 46 0.85 Microsoft-IIS/4.0: 45 0.70
Microsoft-IIS/5.0: 45 0.70 Zeus/4.0: 26 0.53 Zeus/4.1: 25 0.52
Xerver_v3: 25 0.52 CompaqHTTPServer-SSL/4.2: 23 0.50
Orion/2.0x: 23 0.50 AOLserver/3.4.2-3.5.1: 23 0.50 Jana
Server/1.45: 23 0.50 Netscape-Enterprise/3.6: 20 0.45
Microsoft-IIS/URLScan: 20 0.45 N etWare-Enterprise-Web-
Server/5.1: 20 0.45 HP-ChaiServer/3.0: 32 0.43 Oracle XML
DB/Oracle9i: 17 0.38 Hewlett Packard xjet: 16 0.35 Domino-Go-
Webserver/4.6.2.8: 35 0.30 Linksys AP2: 14 0.29
CompaqHTTPServer/1.0: 36 0.24 Zeus/4_2: 36 0.24 Netscape-
Enterprise/3.5.1: 36 0.24 Stronghold/2.4.2-Apache/1.3.x: 36
0.24 TightVNC: 36 0.24 SunONE WebServer 6.0: 12 0.23 Netscape-
Enterprise/4.1: 12 0.23 Lotus-Domino/5.x: 11 0.20 Cisco-HTTP:
11 0.20 MiniServ/0.01 Webmin: 37 0.18 fnord: 10 0.17 WebLogic
Server 8.1: 10 0.17 RemotelyAnywhere: 10 0.17 WebLogic Server
8.x: 10 0.17 3Com/v1.0: 10 0.17 CompaqHTTPServer/4.2: 40 0.08
Snap Appliances, Inc./3.x: 1 0.00 Linksys Router: 0 0.00

Linksys AP1: 0 0.00 EHTTP/1.1: 0 0.00 ------------------------
-------------------------- Dumping results in html file..

In the above example, httprint first displays the signature it generates from the server
"apache.example.com". It then proceeds to compare the signature with those stored in its
database, and assigns weights and confidence ratings for every fingerprint. The signature
with the highest confidence rating is chosen to be the best match. In this case, it is
"Apache/2.0.x" server with a confidence rating of 81.29%. The next best matches are
"Apache/1.3.[4-24]" with a confidence rating of 64.73% and "Apache/1.3.27" with a
confidence rating of 62.63%.

8.4 The significance of confidence ratings

We may ask ourselves, why do we need confidence ratings? Picking the highest weight
alone may seem to suffice in choosing the best match for the web server. The significance of
confidence ratings can be best illustrated by an example. Let us assume that there are no
signatures for any version of Apache present in the signature set. Therefore, if we run
httprint against an Apache server, it will never be able to identify the Apache server.
Instead, it will try and pick out the closest approximation to Apache, in terms of behaviour
and characteristics, from the signature set.

Given below is the output of httprint running against "apache.example.org" (as shown in
section 8.3), but this time, without any Apache signatures present in its signature set.

 # ./httprint -s reduced_signatures.txt -o apache2.html -h
apache.example.com httprint v0.200 (beta) - web server
fingerprinting tool (c) 2003, net-square solutions pvt. ltd. -
see readme.txt http://net-square.com/httprint/ httprint@net-
square.com --
Finger Printing on http://apache.example.com:80/ Derived
Signature: Apache-AdvancedExtranetServer/2.0.44 (Mandrake
Linux/11mdk) mod_perl/1.99_08 Perl/v5.8.0 mod_ssl/2.0.44
OpenSSL/0.9.7a PHP/4.3.1
9E431BC86ED3C295811C9DC5811C9DC5050C5D32505FCFE84276E4BB811C9DC5
0D7645B5811C9DC5811C9DC5811C9DC511DDC7D7811C9DC5811C9DC58A91CF57
FCCC535B6ED3C295FCCC535B811C9DC56ED3C295050C5D336ED3C2959E431BC8
6ED3C295E2CE69262A200B4C6ED3C2956ED3C2956ED3C2956ED3C295E2CE6923
E2CE69236ED3C295811C9DC56ED3C295E2CE6923 Banner Reported:
Apache-AdvancedExtranetServer/2.0.44 (Mandrake Linux/11mdk)
mod_perl/1.99_08 Perl/v5.8.0 mod_ssl/2.0.44 OpenSSL/0.9.7a
PHP/4.3.1 Banner Deduced: Netscape-Enterprise/4.1 Scores:
Netscape-Enterprise/4.1: 59 38.06 Com21 Cable Modem: 56 30.85
Microsoft-IIS/6.0: 55 28.65 Microsoft-IIS/5.1: 55 28.65
Microsoft-IIS/5.0 ASP.NET: 55 28.65 Ora cle Servlet Engine: 55
28.65 Lotus-Domino/6.x: 51 20.82 Netscape-Enterprise/3.6 SP2: 50
19.10 EMWHTTPD/1.0: 50 19.10 dwhttpd (Sun Answerbook): 49 17.46
Netscape-Enterprise/6.0: 49 17.46 thttpd: 48 15.91 Netscape-
Enterprise/3.5.1G: 46 13.06 Microsoft-IIS/4.0: 45 11.76
Microsoft-IIS/5.0: 45 11.76 CompaqHTTPServer/4.2: 40 6.36
MiniServ/0.01 Webmin: 37 3.94 TightVNC: 36 3.25 Netscape-

Enterprise/3.5.1: 36 3.25 Zeus/4_2: 36 3.25
CompaqHTTPServer/1.0: 36 3.25 Domino-Go-Webserver/4.6.2.8: 35
2.63 Netscape-Enterprise/3.6: 20 1.34 NetWare-Enterprise-Web-
Server/5.1: 20 1.34 Microsoft-IIS/URLScan: 20 1.34 Oracle XML
DB/Oracle9i: 17 1.29 Hewlett Packard xjet: 16 1.23
CompaqHTTPServer-SSL/4.2: 23 1.19 AOLserver/3.4.2-3.5.1: 23
1.19 Jana Server/1.45: 23 1.19 Orion/2.0x: 23 1.19 Linksys AP2:
14 1.09 HP-ChaiServer/3.0: 32 1.07 Xerver_v3: 25 0.95
Zeus/4.1: 25 0.95 SunONE WebServer 6.0: 12 0.90 Netscape-
Enterprise/4.1: 12 0.90 Cisco-HTTP: 11 0.80 Lotus-Domino/5.x:
11 0.80 Zeus/4.0: 26 0.78 3Com/v1.0: 10 0.70 fnord: 10 0.70
RemotelyAnywhere: 10 0.70 WebLogic Server 8.x: 10 0.70 WebLogic
Server 8.1: 10 0.70 Snap Appliances, Inc./3.x: 1 0.01 Linksys
Router: 0 0.00 Linksys AP1: 0 0.00 EHTTP/1.1: 0 0.00 --------
-- Dumping results in
html file..

In this example, we notice that httprint has reported the best match to be "Netscape-
Enterprise/4.1". However, if we look at the confidence ratings for each signature, we notice
that "Netscape-Enterprise/4.1" has a confidence rating of only 38.06%. The other close
candidates are "Com21 Cable Modem" with a confidence rating of 30.85% and "Microsoft-
IIS/6.0" with a confidence rating of 28.65%. Compare this with the confidence ratings
generated when the Apache signatures were present in httprint's signature set in section
8.3. These seem to indicate a much better level of confidence in the best match. Also, the
top three matches all belong to the Apache group of servers, which, again goes to re-assure
us of httprint's inference.

Looking at this, we can infer that httprint has not been effective in picking the best choice
out of what it knows from its signature set, and hence, the signature set needs to be updated.

Another tool, HMAP [8], uses a similar approach in sending HTTP tests but it does not
perform fuzzy fingerprint comparisions and confidence ratings calculations.

8.5 httprint Reports

httprint, by default, generates reports in HTML format, along with some verbose output
results embedded as HTML comments, which may be useful for further analysis. A sample
report is shown below:

With version 200, httprint can also generate reports in CSV and XML formats (available with
the enterprise version only).

8.6 Customising httprint

httprint uses ASCII text files for storing server signatures. It is possible to extend httprint's
set of signatures, for covering a wider variety of web servers, by simply running httprint
against the unknown server, and then including the generated signature in the signatures file.
For reporting, it is also possible to associate GIF files having server icons with each
signature, which will be then used when generating the HTML report.

9. Trying to defeat HTTP Fingerprinting

The technique of system fingerprinting is not yet as foolproof as human fingerprinting. It is
possible to disguise and customize HTTP servers quite sufficiently to ensure that they give
unexpected results for all HTTP tests.

The following is a list of some of the techniques that can be used to attempt to defeat HTTP
fingerprinting:

• Changing the HTTP server banner string
• Stripping or re-arranging the HTTP headers
• Customising HTTP error codes such as 404 or 500
• Using an HTTP server plug-in

Out of the above techniques, the first three techniques are quite obvious. The last one, using
a plug-in, is discussed a little more in detail.

One such product on the market is ServerMask [4], which is a plug-in to Microsoft IIS
servers. ServerMask not only obfuscates the server banner string, but also re-arranges the
HTTP response header field order, to mimic servers like Apache, obscures internal server
generated cookies, and even has the ability to pose as a random HTTP server for every
HTTP request.

However, ServerMask can yet be defeated by fingerprinting engines like httprint, which use
fuzzy logic analysis on the test results, as shown in the example below:

 # ./httprint -s signatures.txt -o unknown.html -h
unknown.example.com httprint v0.200 (beta) - web server
fingerprinting tool (c) 2003, net-square solutions pvt. ltd. -
see readme.txt http://net-square.com/http rint/ httprint@net-
square.com --
Finger Printing on http://unknown.example.com:80/ Derived
Signature: Yes we are using ServerMask
FACD41D36ED3C295811C9DC5811C9DC5811C9DC5505FCFE84276E4BB811C9DC5
0D7645B5811C9DC5811C9DC59D69031D6014C217811C9DC5811C9DC580FF2CD2
FCCC535BE2CE6923FCCC535B811C9DC5E2CE69272576B769E2CE6926811C9DC5
811C9DC5FCCC535B811C9DC56ED3C2956ED3C2956ED3C2956ED3C2956ED3C295
6ED3C2956ED3C295811C9DC568D17AAD68D17AAD Banner Reported: Yes we
are using ServerMask Banner Deduced: Microsoft-IIS/5.1,
Microsoft-IIS/5.0, Microsoft-IIS/4.0 Scores: Microsoft-IIS/5.1:
83 53.55 Microsoft-IIS/5.0 ASP.NET: 83 53.55 Microsoft-IIS/4.0:
83 53.55 Microsoft-IIS/5.0: 73 33.22 Apache/1.3.27: 69 26.74
Apache/1.3.[1-3]: 68 25.26 Apache/1.3.[4-24]: 68 25.26
Apache/1.2.6: 68 25.26 Apache/1.3.26: 68 25.26 Com21 Cable Modem:
66 22.46 Netscape-Enterprise/4.1: 63 18.63 Apache/2.0.x: 60 15.23
EMWHTTPD/1.0: 59 14.19 dwhttpd (Sun Answerbook): 56 11.34 SMC
Wireless Router 7004VWBR: 56 11.34 Agranat-EmWeb: 52 8.11
Microsoft-IIS/URLScan: 50 6.73 Oracle Servlet Engine: 48 5.49
Microsoft-IIS/6.0: 48 5.49 Netscape-Enterprise/3.6 SP2: 47 4.92
AOLserver/3.5.6: 46 4.39 TightVNC: 46 4.39 MiniServ/0.01

Webmin: 41 2.19 Netscape-Enterprise/3.5.1: 41 2.19 Microsoft-
IIS/5.0 Virtual Host: 22 0.78 Orion/2.0x: 21 0.78
AOLserver/3.4.2-3.5.1: 21 0.78 Xerver_v3: 23 0.78 Zeus/4_2: 23
0.78 Domino-Go-Webserver/4.6.2.8: 24 0.76 Jana Server/1.45: 24
0.76 Zope/2.6.0 ZServer/1.1b1: 18 0.72 Hewlett Packard xjet: 25
0.72 thttpd: 36 0.69 fnord: 17 0.69 Zeus/4.1: 16 0.65 HP-
ChaiServer/3.0: 27 0.62 Linksys AP2: 15 0.61 Cisco-HTTP: 15
0.61 Zeus/4.0: 15 0.61 Lotus-Domino/6.x: 28 0.55
Stronghold/2.4.2-Apache/1.3.x: 28 0.55 Oracle XML DB/Oracl e9i:
13 0.51 WebLogic Server 8.1: 11 0.40 Netscape-Enterprise/3.6:
11 0.40 WebLogic Server 8.x: 11 0.40 Microsoft ISA Server: 11
0.40 NetWare-Enterprise-Web-Server/5.1: 11 0.40
CompaqHTTPServer/4.2: 30 0.35 Stronghold/4.0-Apache/1.3.x: 30
0.35 CompaqHTTPServer-SSL/4.2: 10 0.35 3Com/v1.0: 10 0.35
RemotelyAnywhere: 10 0.35 Linksys Print Server: 10 0.35
CompaqHTTPServer/1.0: 31 0.23 Netscape-Enterprise/3.5.1G: 31
0.23 Netscape-Enterprise/6.0: 33 0.08 Snap Appliances, Inc./3.x:
4 0.07 Lotus-Domino/5.x: 2 0.02 Netscape-Enterprise/4.1: 2
0.02 SunONE WebServer 6.0: 2 0.02 EHTTP/1.1: 1 0.00 Linksys
Router: 0 0.00 Linksys AP1: 0 0.00 ServletExec: 0 0.00 ------
-- Dumping results in
html file..

Here, even though the server's responses were obfuscated by ServerMask, httprint still
accurately identifies it as a Microsoft-IIS/5.x or 4.0 web server.

Given below is an example of five servers using a combination of the techniques discussed
above, to disguise their HTTP server behaviour. httprint succeeds in identifying the correct
web server platform.

A detailed analysis and validation of the above report can be found here

10. Conclusion

This paper was meant to serve as an introduction to HTTP fingerprinting, and has provided
an overview of some of the techniques used. HTTP fingerprinting can be also extended to

various other areas of research, such as fingerprinting applications running on HTTP,
embedded devices that run an HTTP interface, etc.

11. References

[1] nmap OS fingerprinting http://www.insecure.org/nmap/nmap-fingerprinting-article.html
[2] Section 6.2 of RFC 2616 http://www.ietf.org/rfc/rfc2616.txt
[3] Netcat for Unix http://www.atstake.com/research/tools/network_utilities/nc110.tgz,
 Netcat for Windows http://www.atstake.com/research/tools/network_utilities/nc11nt.zip
[4] ServerMask http://www.port80software.com/products/servermask/
[5] HTTP/1.1 RFC 2616 http://www.ietf.org/rfc/rfc2616.txt
[6] httprint from Net-Square http://net-square.com/httprint/
[7] httprint signatures http://net-square.com/httprint/signatures.txt
[8] HMAP web server fingerprinter http://wwwcsif.cs.ucdavis.edu/~leed/hmap/

revised 30/11/03 - saumil

 httprint © 2003 net-square

