
Android Security

Stuart O. Anderson
June 23, 2011

Stuart O. Anderson
- Background in robotics and applied math
- Fellow at the Institute for Disruptive Studies
- Co-founded Whisper Systems with Moxie

Marlinspike

Stuart O. Anderson

Stuart O. Anderson

What this talk covers

The Android System
Android's security model
Malware and exploit examples
Best practices for improving security

The Android System: Overview

Android is
– A system architecture
– A business and legal framework

Security is affected by both aspects

Android: Embedded and Consumer

Android's design is driven by
– Resource constraints

• Memory
• Battery

– Consumer market
• iPhone competition

Android System Architecture

Android Kernel

Modified for resource constrained environments
– Binder
– Ashmem and Pmem
– Logger
– Wakelocks
– Out-Of-Memory Handler

Android Userspace

Driven by resource and legal constraints
– Bionic (Non-POSIX libc)
– Prelinked system libraries
– Dalvik VM
– Native Libraries

Bionic: Android libc

BSD License
– No GPL in userspace

Small
– About 200K

Fast
– Especially pthreads

Apriori: Android Prelinker

System libraries are internally pre-linked
Must be loaded at specific vaddr
Look in /build/core/prelink*.map

Dalkvik

Virtual Machine runs most apps
DEX byte code compiles from Java
Register and not stack based

– i.e. trying real hard not to be a JVM

Native Libraries

Webkit
Media
SQLite
SurfaceManager
...

Android Framework

Components
– Activities
– Services
– Receivers
– ContentProviders

Android Framework
Intents connect components through Binder

– Action
– Data
– Categories
– Extras
– Flags – can grant permissions...

Android: Business Relationships
Google – Develops platform
Chipset vendors – Broad market
OEMs – Shorter time to market
Carriers – Easier to customize
Developers – Easy to publish, free SDK

OEMs

Chipset vendors are limited
– Qualcomm, TI (OMAP3), Ericsson,

Broadcomm
– Faster development cycle (9-12

months) for OEMs
– Budget goes to differentiation

Carriers

Slow updates
– Known webkit bugs linger

• M.J. Keith at Alert Logic

Google's Points of Control

- Access to latest source code
- Control of review process
- Proprietary apps (Market, Maps, …)
- Trademark
- AFA, CTS/CDD

Orphaned Devices

Last Google I/O
– 18 months support for new devices
– Verizon, HTC, Samsung, Sprint,

Sony Ericsson, LG, T-Mobile,
Vodafone, Motorola, and AT&T

Android: Future Directions

New Devices
– Tablets
– Readers
– PCs / Dockables

Android's Security Model

Linux Kernel
– Process separation
– Access to resources by UID/GID

Android Framework
– Signed packages
– Per-package Permissions

Android UID and GID

Most packages have their own UID
Some share a UID
GID is used for Kernel level resources

– Camera, bluetooth, display, ...

Android UID and GID

app_49 384 86 114796 33796 ffffffff 00000000 S com.android.launcher
app_37 385 86 94468 16152 ffffffff 00000000 S com.android.voicedialer
app_10 410 86 97044 19312 ffffffff 00000000 S com.android.vending
app_8 428 86 119840 23376 ffffffff 00000000 S com.google.process.gapps
app_27 480 86 97624 20496 ffffffff 00000000 S android.process.media
app_48 674 86 102452 20256 ffffffff 00000000 S com.google.android.apps.genie.geniewidget
app_26 686 86 97912 17880 ffffffff 00000000 S com.android.quicksearchbox
app_36 725 86 96092 18176 ffffffff 00000000 S com.cooliris.media
app_41 737 86 120740 22184 ffffffff 00000000 S com.google.android.apps.maps
app_18 764 86 103200 20160 ffffffff 00000000 S com.google.android.voicesearch
app_12 824 86 94336 15836 ffffffff 00000000 S com.whispersys.updater
app_9 832 86 97516 16112 ffffffff 00000000 S com.whispersys.monitor

Android Framework Security

Code Signing
– Links a package to a developer

Permissions
– Grants a package a capability

Code Signing

Packages are signed when published
– You trust the publisher with the security

of their private key
– If the keys don't match, app must be

manually removed and reinstalled
– Packages that share keys can share

UIDs

Remote Pull and Push

Google can add and remove packages
– GtalkService
– Malware may attempt to disable

these features

Permissions

Every UID has an associated set of
permissions it has been granted

android.permission.SEND_SMS
android.permission.WRITE_CALENDAR
android.permission.READ_PHONE_STATE

Permissions

Packages request permissions in their
manifest

User is prompted to approve these
permissions as a single block

– Only once, at install time
– Permissions not marked 'dangerous'

are not displayed

Permissions

Most permissions declared in
– /core/res/AndroidManifest.xml

Not all permissions require user approval
– Signature
– SignatureOrSystem

Permissions: Granularity

Granularity in the permissions themselves
– Internet is a single permission

Granularity in user control
– Can't approve a subset of the

requested permissions

Permissions: Granularity

Too fine granularity overloads users
Overloaded users stop paying attention

Permissions: Enforcement

Permission checks are performed in
PackageManagerService

public int checkUidPermission(String permName, int uid) {
 synchronized (mPackages) {

 Object obj = mSettings.getUserIdLP(uid);
 if (obj != null) {
 GrantedPermissions gp = (GrantedPermissions)obj;
 if (gp.grantedPermissions.contains(permName)) {
 return PackageManager.PERMISSION_GRANTED;
 }
 } else {
 HashSet<String> perms = mSystemPermissions.get(uid);
 if (perms != null && perms.contains(permName)) {
 return PackageManager.PERMISSION_GRANTED;
 }
 }
 }
 return PackageManager.PERMISSION_DENIED;
 }

Permissions: Services

Services must explicitly check permissions
at IPC entry points

 public void call(String number) {
 // This is just a wrapper around the ACTION_CALL intent, but we still
 // need to do a permission check since we're calling startActivity()
 // from the context of the phone app.
 enforceCallPermission();

 String url = createTelUrl(number);
 if (url == null) {
 return;
 }

 Intent intent = new Intent(Intent.ACTION_CALL, Uri.parse(url));
 intent.addFlags(Intent.FLAG_ACTIVITY_NEW_TASK);
 intent.setClassName(mApp, PhoneApp.getCallScreenClassName());
 mApp.startActivity(intent);
 }

Permissions: ContentProviders

Read and Write permissions handled by
system

Must implement per-URI permission
granting

Malware and Exploit Examples

Getting root
Remote exploits
Protocol weaknesses
Making money

Leaky Apps

Content Providers, SD/Card
Network communication

– Spoofed http responses
– Authtokens

Unreliable deputies

GSM Weaknesses

Well publicized attacks on GSM
– See Karsten Nohl

The cost of intercept equipment is marginal

Privilege Elevation

Send an Intent or Binder data to another
app that causes unexpected behavior

– Some critical services have very
complicated interfaces

Change your own uid or gid
– Kernel, zygote, etc

Android Exploit Examples
Sebastian Krahmer (stealth)

– Zimperlich
• Forkbomb to process limit
• Zygote will fail to change uid from

root on fork
– Gingerbreak

• Unchecked array index in vold
• Rewrite GOT entry for strcmp()

Android Remote Exploit Examples

Colin Mulliner
– NFC remote application crash
– NFC remote NFC service crash

Charlie Miller
– PacketVideo media library

Malware Threats

Jon Oberheide
– Rootstrap
– Download and execute exploits as

they become available

Malware Threats

Untargeted Monetization
– Premium SMS
– 1-900 Numbers

Persistence
– Remount /system r/w
– Turn off AV tools

Solutions and Best Practices

System Level Changes
Security Applications
Auditing Applications

System Level Changes

Full disk encryption
Dynamic egress filtering
Selective permissions
Extended code signing

Disk Encryption

Honeycomb
– MTD devices only
– Tied to screen lock

WhisperCore
– yaffs variant supports MTD and block

devices
– Enhanced screenlock

Dynamic Information Flow Tracking

DIFT inside the Dalvik VM
TaintDroid: An Information-Flow Tracking System for Realtime Privacy Monitoring on

Smartphones
– William Enck, Peter Gilbert, Byung-gon Chun, Landon P. Cox, Jaeyeon Jung,

Patrick McDaniel, and Anmol N. Sheth. In Proc. of the USENIX
Symposium on Operating Systems Design and Implementation (OSDI),
October 2010 in Vancouver

Dynamic Information Flow Tracking

Variable tracking in Dalvik
Message tracking in Binder
Method tracking in system libraries
File tracking via file-system extension

Dynamic Egress Filtering

Monitor outgoing network
connections.

Filter connections by:
– Initiating app.
– Destination.
– Network type and location.

Prompts when connections are
initiated

Selective Permissions

Remove specific permissions
Create temporary and isolated

copies of requested resources

Selective Permissions

Remove specific permissions
Create temporary and isolated

copies of requested resources

Exploit Mitigation
Address Space Randomization for Mobile Devices

– Hristo Bojinov, Dan Boneh, Rich Cannings,
Iliyan Malchev – WiSec 2011

– Randomizes addresses
• Even with prelinked libraries

– Android moving to ld.so
– Still forking zygote?

Extended Code Signing

Management of which apps can run
– Whitelist or blacklist
– Installed apps can be blocked

Lets administrators sign, update, install,
and remove apps remotely

Security Applications

Secure backup
Secure communications
Secure storage

Secure Backup

Secure incremental backup
Cloud or backend storage
Remote image management
Remote wipe

Secure Communication

Voice calls
– VoIP solutions: RedPhone, PrivateWave,

Cellcrypt
Messaging

– SMS/MMS/IM
Email

– Good, MobileIron, TouchDown

Malware Detection

Google
– Can remove malware from Market
– Can remotely disable and update

Lookout
– At the endpoint, limited access
– Can be disabled by malware

Auditing an Application

Examine the Manifest
Decompilers
Other Tools

Auditing an Application

ISEC's
 Manifest Explorer

Author: Jesse Burns

Auditing an Application

Use adb to pull the apk from the phone

 adb pull /data/app/packagename.apk
 adb pull /system/app/packagename.apk

Auditing an Application

Use dedex (Nathan Keynes) and jd-gui to
inspect DEX code

unzip package.apk

dedex classes.dex

jd-gui classes.jar

JD-GUI

Other Audit Tools
– Dynamic Information Flow Tracking

• TaintDroid

– Mandatory Access Control

• TOMOYO Linux

– Emulator

• Scott Dunlop's JDWP->JDP method

– Network Monitoring

• WhisperMonitor

• Wireshark

Summary: Android Security

Embedded and consumer
Tradeoffs made against security
Divided responsibility for security
System and application layer solutions

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65

