
PinDemonium
a DBI-based generic unpacker for Windows executables

Sebastiano Mariani - Lorenzo Fontana - Fabio Gritti - Stefano D’Alessio

Malware Analysis

22

● Dynamic analysis : Analyze
the malware while it is
executed inside a controlled
environment

● Static analysis : Analyze the
malware without executing it

Malware Analysis

33

● Dynamic analysis : Analyze
the malware while it is
executed inside a controlled
environment

● Static analysis : Analyze the
malware without executing it

Static Analysis

● Analysis of disassembled code
● Analysis of imported functions
● Analysis of strings

Maybe in a fairy tale...
What if the malware tries to hinder the analysis process?

Packed Malware
● Compress or encrypt the original code Code and strings analysis

impossible
● Obfuscate the imported functions Analysis of the imported

functions avoided

4

??

4

We can classify three packing techniques based on the location where the
payload is unpacked:

● Unpack on the Main Image: The deobfuscated code is written inside a
main Image section

● Unpack on the Heap: The deobfuscated code is written in a
dynamically allocated memory area

● Unpack inside remote process: The deobfuscated code is injected in
a remote process

Packing Techniques

55

Overriding the Main Image
Steps:

66

Packed Program
Memory space

Decryption StubOEP

1. Start the execution
of the decryption
stub

Encrypted Payload
Main

Image

Overriding the Main Image
Steps:

77

Packed Program
Memory space

Decryption Stub

2. The decryption stub
read data from an
encrypted and
decrypt it in place
inside a main
image sectionMain

Image Encrypted Payload

Performs the
decryption

Overriding the Main Image
Steps:

88

Packed Program
Memory space

Decryption Stub

3. At the end of the
decryption phase
the stub jumps into
the first instruction
of the decrypted
section

Decrypted Payload

Jumps into the
decrypted areaMain

Image

Steps:

99

Packed Program
Memory space

1. Start the execution
of the decryption
stub

Main
Image

Decryption StubOEP

Encrypted Payload

Unpacking on the Heap

Steps:

1010

Packed Program
Memory space

2. The decryption stub
read data from an
encrypted main
image section and
decrypt it on a
dynamically
allocated memory
area (heap)

Main
Image

Decrypt the
payload on the

heap

Decryption StubOEP

Encrypted Payload

Decrypted Payload

Unpacking on the Heap

Unpacking on the Heap
Steps:

1111

Packed Program
Memory space

3.

Main
Image

Jumps into the
decrypted area

Decryption StubOEP

Encrypted Payload

Decrypted Payload

At the end of the
decryption phase
the stub jumps into
the first instruction
of the decrypted
section

Steps:

1212

Packed Program
Memory space

1. Create remote
legitimate process in
a suspended state

StubOEP

Encrypted Payload

Process Injection
Other Program
Memory space

Main Image

CreateProcess

Steps:

1313

Packed Program
Memory space

2. Unmap the
legitimate code
section of the
process

Stub

Encrypted Payload

Process Injection
Other Program
Memory space

Main Image

UnmapView
OfSection

Steps:

1414

Packed Program
Memory space

3. Allocates and writes
the decrypted
payload in the
remote process
memory space.

Stub

Encrypted Payload

Process Injection
Other Program
Memory space

Main Image

VirtuallocEx/
WriteProcess

Memory

Decrypted Payload

Steps:

1515

Packed Program
Memory space

4. Modify the thread
context to execute
code from the newly
allocated are and
resume the thread
execution

Stub

Encrypted Payload

Process Injection
Other Program
Memory space

Main Image

SetContext
Thread/

ResumeThread

Decrypted Payload

OEP

Solutions

● Very time consuming

● Too many samples to be
analyzed every day

● Adapt the approach to deal
with different techniques

● Fast analysis

● Scale well on the number of
samples that has to be
analyzed every day

● Single approach to deals with
multiple techniques

Manual approach Automatic approach

1616

All hail

PinDemonium

17

What is a DBI?

1818

Trace

Control Flow Graph

Basic Block BB1

BB3 BB2

BB4

BB6

BB7 BB8

What is a DBI?

1919

Code Cache

Trace is copied in the code
cache

BB1

BB3 BB2

BB4

BB6

BB7 BB8

BB1

BB3 BB2

What is a DBI?

2020

Code Cache

DBI provides the possibility to
add user defined code after
each:

- Instruction
- Basic Block
- Trace

User Defined
Code

BB1

BB3 BB2

BB4

BB6

BB7 BB8

BB1

BB3 BB2

What is a DBI?

2121

Code Cache

DBI starts executing the
program from the code cache

BB1

BB3 BB2

BB4

BB6

BB7 BB8

User Defined
Code

BB1

BB3 BB2

How can an
unpacker be
generic?

Key idea

Exploit the functionalities of the
DBI to identify the common

behaviour of packers:
they have to write new code in

memory and eventually execute
it

22

Our stairway to heaven
Packed

malware
Original
malware

D
et

ec
t w

ri
tt

en
 a

n
d

th
en

 e
xe

cu
te

d
m

em
or

y
re

gi
on

s

D
u

m
p

th
e

pr
oc

es
s

co
rr

ec
tl

y

D
eo

bf
u

sc
at

e
IA

T

R
ec

og
n

iz
e

th
e

co
rr

ec
t d

u
m

p

2323

We begin to build
the foundation of
our system

Our journey
begins

2424

Detect WxorX memory regions

Concepts:

● WxorX law broken:
instruction written by the
program itself and then
executed

● Write Interval (WI): range of
continuously written
addresses

Idea:

Track each instruction of the
program:

● Write instruction: get the target
address of the write and update
the write interval consequently.

● All instructions: check if the EIP
is inside a write interval. If the
condition is met then the WxorX
law is broken.

2525

Detect WxorX memory regions

Write set

Current
instr.

WRITE

0x401000
-

0x402000

WRITE

0x402000
-

0x403000

WRITE

0x412000
-

0x413000

EXEC

PinDemonium

EXEC

WRITE
Start addr.

-
End addr.

2626

Steps:

0x401004 0x425008 0x425004 0x425000

Legend:

Write instruction and its
ranges

Generic instruction

Detect WxorX memory regions

Write set

Current
instr.

WRITE

0x401000
-

0x402000

WRITE

0x402000
-

0x403000

WRITE

0x412000
-

0x413000

EXEC

PinDemonium

EXEC

WRITE
Start addr.

-
End addr.

2727

Steps:

0x401004 0x425008 0x425004 0x425000

Legend:

Generic instruction

Write instruction and its
ranges

Steps:

The current
instruction is a
write, no WI
present, create the
new WI

Detect WxorX memory regions

28

Write set

Current
instr.

0x401000 - 0x402000
Write interval 1

28

PinDemonium

WRITE

0x401000
-

0x402000

WRITE

0x402000
-

0x403000

WRITE

0x412000
-

0x413000

EXEC

0x401004 0x425008 0x425004 0x425000

EXEC

WRITE
Start addr.

-
End addr.

Legend:

Generic instruction

Write instruction and its
ranges

1.

Detect WxorX memory regions

29

Write set

Current
instr. PinDemonium

Write interval 1
0x401000 - 0x403000

29

WRITE

0x402000
-

0x403000

WRITE

0x412000
-

0x413000

EXEC

0x401004 0x425008 0x425004

EXEC

WRITE
Start addr.

-
End addr.

Legend:

Generic instruction

Write instruction and its
ranges

Steps:

2. The current
instruction is a
write, the ranges of
the write overlaps an
existing WI, update
the matched WI

Detect WxorX memory regions

30

Write set

Current
instr. PinDemonium

Write interval 1
0x401000 - 0x403000

0x412000 - 0x413000
Write interval 2

30

Steps:

WRITE

0x412000
-

0x413000

EXEC

0x401004 0x425008

EXEC

WRITE
Start addr.

-
End addr.

Legend:

Generic instruction

Write instruction and its
ranges

3. The current
instruction is a
write, the ranges of
the write don’t
overlap any WI,
create a new WI

Detect WxorX memory regions

31

Steps:

Write set

Current
instr. PinDemonium

Write interval 1
0x400000 - 0x403000

0x412000 - 0x413000
Write interval 2

31

EXEC

0x401004

EXEC

WRITE
Start addr.

-
End addr.

Legend:

Generic instruction

Write instruction and its
ranges

4. The EIP of the
current instruction
is inside a WI

WxorX RULE
BROKEN

… but we have just
scratch the
surface of the
problem. Let’s
collect the results
obtained so far...

Ok the core of
the problem
has been
resolved...

3232

Dump the program correctly
Steps:

1

3333

Instrumented
program memory

Main Module

Written MemoryIP

 PinDemonium

1. The execution of a
written address is
detected

Dump the program correctly

2

3434

1

Instrumented
program memory

Main Module

Written MemoryIP

 PinDemonium Steps:

2. PinDemonium get
the addresses of the
main module

Dump the program correctly

2

3535

1

Instrumented
program memory

Main Module

Written Memory

 PinDemonium Steps:

3

Main Module

Written Memory

PinDemonium
dumps these
memory range

3.

IP

Dump the program correctly

2

3636

1

Instrumented
program memory

Main Module

Written MemoryIP

 PinDemonium Steps:

3

Main Module

Written Memory

4
OEP

4. Scylla to reconstruct
the PE and set the
Original Entry Point

Nope...

Have we
already
finished?

3737

Unpacking on the heap

Steps:

3838

What if the original code is written on the heap?

Instrumented
program memory

 PinDemonium

Written Memory
Heap

Main Module

IP

Main Module

What if the original code is written on the heap?

Unpacking on the heap

3939

21

Instrumented
program memory

 PinDemonium

3

4
OEP
???

Steps:

1. The execution of a
written address is
detected

2. PinDemonium get the
addresses of the main
module

3. PinDemonium dumps
these memory range

4. Scylla to reconstruct
the PE and set the
Original Entry Point

IP Written Memory
Heap

Main Module

The OEP doesn’t make sense!

Unpacking on the heap

4040

Unpacking on the heap

Solution

Add the heap memory range in
which the WxorX rule has been
broken as a new section inside the
dumped PE!

1. Keep track of write- intervals
located on the heap

2. Dump the heap-zone where
the WxorX rule is broken

3. Add it as a new section inside
the PE

4. Set the OEP inside this new
added section

4141

Unpacking on the heap

4242

The OEP is correct!

Unpacking on the heap

4343

However, the dumped heap-zone can contain references to addresses
inside other not dumped memory areas!

Unpacking on the heap

Solution

Dump all the heap-zones and load
them in IDA in order to allow
static analysis!

1. Retrieve all the currently
allocated heap-zones

2. Dump these heap-zones

3. Create new segments inside
the .idb for each of them

4. Copy the heap-zones content
inside these new segments!

4444

Unpacking on the heap

4545

Reverser we are
coming for you!
Let’s deobfuscate
some imported
functions...

Two down,
two still
standing!

4646

Extended Scylla functionalities:

● IAT Search : Used Advanced and Basic IAT search
functionalities provided by Scylla

● IAT Deobfuscation : Extended the plugin system of Scylla for
IAT deobfuscation

Deobfuscate the IAT

4747

Too many dumps,
too many programs
making too many
problems… Can’t
you see? This is the
land of confusion

One last step...

4848

Recognize the correct dump
We have to find a way to identify the correct dump

4949

Idea

Give for each dump a “quality”
index using the heuristics
defined in our heuristics
module

1. Entropy difference

Recognize the correct dump
We have to find a way to identify the correct dump

5050

Idea

Give for each dump a “quality”
index using the heuristics
defined in our heuristics
module

1. Entropy difference

2. Far jump

Recognize the correct dump

Idea

Give for each dump a “quality”
index using the heuristics
defined in our heuristics
module

We have to find a way to identify the correct dump

5151

1. Entropy difference

2. Far jump

3. Jump outer section

Recognize the correct dump

1. Entropy difference

2. Far jump

3. Jump outer section

4. Yara rules

We have to find a way to identify the correct dump

5252

Idea

Give for each dump a “quality”
index using the heuristics
defined in our heuristics
module

Yara Rules

5353

Detecting Evasive code

● Anti-VM

● Anti-Debug

5353

Identifying malware family

● Detect the Original Entry Point

● Identify some malware
behaviours

Yara is executed on the dumped memory and a set of rules is
checked for two main reasons:

Advanced Problems

Exploit PIN functioning
to break PIN

A.k.a. Self modifying
trace

You either die a
hero or you live
long enough to see
yourself become
the villain

5555

Self modifying trace

5656

ins_1
ins_2

wrong_ins_3
ins_4
ins_5

Code
Cache

Main
module of

target
program

Steps:

Self modifying trace

5757

ins_1
ins_2

crash_ins_3
ins_4
ins_5

ins_1
ins_2

crash_ins_3
ins_4

Collected
trace

Steps:

1. The trace is
collected in the
code cache

Self modifying trace

5858

ins_1
ins_2

crash_ins_3
ins_4
ins_5

ins_1
ins_2

crash_ins_3
ins_4

Execution
starts

Steps:

2. Execute the
analysis routine
before the write

Self modifying trace

5959

ins_1
ins_2
ins_3
ins_4
ins_5

ins_1
ins_2

crash_ins_3
ins_4

Patch

Steps:

3. The wrong
instruction is
patched in the
main module

Execution
starts

Self modifying trace

6060

ins_1
ins_2
ins_3
ins_4
ins_5

ins_1
ins_2

crash_ins_3
ins_4

Execute
here

Steps:

4. The wrong_ins_3
is executed

CRASH!

Solution

Self modifying trace

6262

ins_1
ins_2

crash_ins_3
ins_4
ins_5

ins_1(write)
ins_2

crash_ins_3
ins_4

Steps:

List of written
addresses

Self modifying trace

6363

ins_1
ins_2

crash_ins_3
ins_4
ins_5

CheckEipWritten()
MarkWrittenAddress()

ins_1 (write)
CheckEipWritten()

ins_2
CheckEipWritten()

crash_ins_3
CheckEipWritten()

ins_4

1
List of written

addresses

Steps:

1. Insert one
analysis routine
before each
instruction and
another one if the
instruction is a
write

ins_1
ins_2

crash_ins_3
ins_4
ins_5

CheckEipWritten()
MarkWrittenAddress()

ins_1 (write)
CheckEipWritten()

ins_2
CheckEipWritten()

crash_ins_3
CheckEipWritten()

ins_4

Self modifying trace

6464

crash_ins_3_addr
2

IP

Steps:

2. Execute the
analysis routine
before the writeList of written

addresses

ins_1
ins_2

crash_ins_3
ins_4
ins_5

CheckEipWritten()
MarkWrittenAddress()

ins_1 (write)
CheckEipWritten()

ins_2
CheckEipWritten()

crash_ins_3
CheckEipWritten()

ins_4

Self modifying trace

6565

crash_ins_3_addr3

IP

Steps:

3. The crash_ins_3 is
patched in the
main moduleList of written

addresses

ins_1
ins_2

crash_ins_3
ins_4
ins_5

CheckEipWritten()
MarkWrittenAddress()

ins_1 (write)
CheckEipWritten()

ins_2
CheckEipWritten()

crash_ins_3
CheckEipWritten()

ins_4

Self modifying trace

6666

crash_ins_3_addr

4

IP

Steps:

4. Check if
crash_ins_3
address is inside
the list

YES!

List of written
addresses

CheckEipWritten()
MarkWrittenAddress()

ins_1 (write)
CheckEipWritten()

ins_2
CheckEipWritten()

crash_ins_3
CheckEipWritten()

ins_4

Self modifying trace

6767

crash_ins_3_addr

5

ins_1
ins_2

crash_ins_3
ins_4
ins_5

Steps:

5. Stop the execution

List of written
addresses

Self modifying trace

6868

ins_1
ins_2
ins_3
ins_4
ins_5

CheckEipWritten()
MarkWrittenAddress()

ins_1 (write)
CheckEipWritten()

ins_2
CheckEipWritten()

ins_3
CheckEipWritten()

ins_4
crash_ins_3_addr

6

Steps:

6. Recollect the new
trace

List of written
addresses

Process Injection

Are there
other ways to
break the
WxorX rule?

6969

Process Injection
Inject code into the memory space of a different process

and then execute it

OUR WxorX TRACKER IS NO MORE SUFFICIENT!

7070

● Dll injection

● Reflective Dll injection

● Process hollowing

● Entry point patching

Solution

Process Injection
Identify remote writes to other processes by hooking system calls:

● NtWriteVirutalMemory
● NtMapViewOfSection

Identify remote execution of written memory by hooking system
calls:

● NtCreateThreadEx
● NtResumeThread
● NtQueueApcThread

7272

Finally for the SWAG!

Experiments

➔ Test 1 : test our tool against the same binary
packed with different known packers.

➔ Test 2 : test our tool against a series of packed
malware sample collected from VirusTotal.

7474

Experiment 1 : known packers

Upx FSG Mew mpress PeCompact Obsidium ExePacker ezip

MessageBox

WinRAR

Xcomp PElock ASProtect ASPack eXpressor exe32packer beropacker Hyperion PeSpin

MessageBox

WinRAR

75

Original code dumped but Import directory not reconstructed
75

Experiment 2 : wild samples

N° % of all

Unpacked and working 519 49

Unpacked but Different
behaviour 150 14

Unpacked but not working 139 13

Not unpacked 258 24

76

Number of packed (checked manually) samples
 1066

76

Experiment 2 : wild samples

N° % of all

Unpacked and working 519 49

Unpacked but Different
behaviour 150 14

Unpacked but not working 139 13

Not unpacked 258 24

7777

63%

Number of packed (checked manually) samples
 1066

Packers which
re-encrypt / compress
code after its execution
are not supported

Evasion techniques are
not handled

Limitations

78

Performance issues due
to the overhead
introduced by PIN

Able to reconstruct a working
version of the original binary

Able to deal with IAT
obfuscation and dumping on
the heap

Conclusions

Generic unpacker based on a
DBI

79

17 common packers defeated

Conclusions
63% of random samples
correctly unpacked (known
and custom packers
employed)

80

DEMO

The source code is available at

https://github.com/PINdemonium

Thank you!

