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Abstract 
 
Active Directory (AD) object security descriptors are an untapped offensive landscape, often 
overlooked by attackers and defenders alike. While AD security descriptor misconfigurations 
can provide numerous paths that facilitate elevation of domain rights, they also present a unique 
chance to covertly deploy Active Directory persistence. It's often difficult to determine whether a 
specific AD security descriptor misconfiguration was set intentionally or implemented by 
accident. We present a taxonomy of control relationships that allow for specific node takeover, 
approaches for using BloodHound to help plan backdoor strategies, stealth primitives that 
include hiding discretionary access control list (DACL) enumeration rights and the existence of 
principals, and a series of backdoor case studies that chain multiple primitives for subtle domain 
persistence. “If you can imagine it, it’s likely already been done” applies here- these backdoors 
have likely been deployed in environments for years without administrator knowledge. By 
bringing light to this persistence approach, we hope to raise awareness for both attackers and 
defenders alike of the persistence opportunities available through Active Directory security 
descriptor manipulation. 

Introduction 
With the increasing awareness of Golden1 and Silver2 tickets, the industry has started to 
become aware of “malware-less” persistence techniques. That is, persistence strategies that 
don’t involve code execution on systems in order to preserve future access to environments. 
While Golden and Silver Kerberos ticket attacks can provide persistence without any 
modifications or code execution in an environment, another avenue exists for facilitating Active 
Directory persistence. The security descriptor persistence approach does involve some type of 
modification to the environment, however code modification is not required, and the changes will 
often survive operating system and domain functional level upgrades. This means that Active 
Directory security descriptor modifications provide an excellent opportunity for persistence in a 
domain with a minimal forensic footprint. 
 
Active Directory objects are a class of securable object3, meaning they contain a security 
descriptor4. In terms of persistence and privilege escalation in AD environments, we are 
particularly interested in analyzing the object owner and DACL fields of AD security descriptors.   
 
Object owners can modify an object’s DACL. A DACL is a list of Access Control Entries (ACEs) 
that mandate what principals (or “trustees”) have what control rights over the object in question. 
Object owner and DACL control relationships can quickly explode in complexity for a modern 
domain, and combined with a lack of easy auditing opportunities mean that some type of 
security descriptor misconfiguration exists in most environments. The limited amount of previous 

                                                
1 http://passing-the-hash.blogspot.com/2014/08/mimikatz-and-golden-tickets-whats-bfd.html 
2 https://adsecurity.org/?p=2011 
3 https://msdn.microsoft.com/en-us/library/windows/desktop/aa379557(v=vs.85).aspx 
4 https://msdn.microsoft.com/en-us/library/cc230366.aspx 



work has mostly focused on the enumeration of these control relationships for domain privilege 
escalation; here we are covering the use of these misconfigurations for persistence purposes. 
This touches on another advantage of this approach- it’s often difficult to tell if a security 
descriptor “misconfiguration” was implemented maliciously or implemented by accident. It goes 
without saying that in order to implement these changes, some type of domain elevated access 
is already needed, most commonly “Domain Admin” or equivalent access. 
 
In order to build backdoors comprised of one or more chains of misconfigured security 
descriptors, this paper provides the proper technical background on object ownership, 
DACLs/ACEs, an easy way for domain-authenticated (but otherwise unprivileged) users to 
enumerate these ACEs, how to use BloodHound to map “normal” for an environment, a 
taxonomy of object takeover relationships, “stealth” primitives for use in backdoor chains, and 
several case studies that demonstrate an increasing complexity of security descriptor attack 
chains. We cap off with some defensive reflections and a look towards future research 
opportunities. 
 
The control rights we’re interested in are generally broken into three main categories: generic 
rights, standard/“control” rights that allow for taking control of an object itself, and object-specific 
rights that apply in specific ways for nodes we care about. Generic rights include GenericAll and 
GenericWrite, which are implicitly grant particular object-specific rights. The control rights we 
care about are WriteDacl and WriteOwner, which allow for the modification of the DACL and 
owner of an object, respectively. Since the owner of an Active Directory object implicitly grants 
complete control of an object, ownership modification is a valuable object takeover primitive. 
Object-specific rights are also a valuable persistence primitive, but which specific right varies 
based on the target AD object. The AD objects focused on in the scope of this whitepaper are 
users, groups, computers, containers (e.g. OUs and domain objects), and GPOs. 
 
The main two stealth primitives developed during our research include hiding the security 
descriptor (including the DACL) and hiding the principal from existing privileged users. By 
modifying object ownerships and setting specific “read Deny” ACE entries on AD objects, we 
can complicate the retrieval of backdoored objects’ security descriptors by privileged users such 
as members of “Domain Admins”. While potentially still recoverable, this complicates defenders’ 
abilities to find these purposely implemented backdoors. Likewise, we can modify permissions 
of the AD container holding the principal, preventing easy triage of the user (the 
trustee/principal) holding the malicious rights. 
 
Throughout this paper, please keep this quote from Matt Graeber’s 2015 BlackHat talk “Abusing 
Windows Management Instrumentation (WMI) to Build a Persistent, Asynchronous, and Fileless 
Backdoor5” in mind: 
 

As an offensive researcher, if you can dream it, someone has likely already done it… 
and that someone isn’t the kind of person who speaks at security cons. 

                                                
5 https://www.blackhat.com/docs/us-15/materials/us-15-Graeber-Abusing-Windows-Management-Instrumentation-
WMI-To-Build-A-Persistent Asynchronous-And-Fileless-Backdoor-wp.pdf 



 
While we are not aware of any public examples of these types of backdoors being used “in the 
wild,” we fully believe that we are not the first group to think of this idea. Our belief is that at 
least some advanced adversaries have likely been using security-descriptor-based persistence 
approaches for as long as access control has existed in Windows domains. These may have 
been in your environment for years. 

Background 

Previous Work 
There is comparatively little existing security research concerning Active Directory security 
descriptors, and nearly none that examines the possibility of using them as a persistence 
approach. One of the first projects to ever cover these types of control relationships was the 
“Chemins de contrôle en environnement Active Directory6” (translated: “Control Paths in an 
Active Directory Environment”) presentation at the 2014 Symposium on Information and 
Communications Technology Security (SSTIC) by Emmanuel Gras and Lucas Bouillot. Their 
whitepaper7 (in French) breaks down many of the same control relationships we will cover here. 
 
Their AD-control-paths8 project grants one method for collecting, visualizing, and analyzing 
these control relationships. The project includes a collection of binaries to enumerate the ACEs 
of domain objects, as well a defined schema and Neo4j graph database approach for 
visualization: 

 
Above: Figure 19 on page 71 of the “Chemins de contrôle en environnement Active Directory” 

whitepaper. 
                                                
6 https://www.sstic.org/2014/presentation/chemins_de_controle_active_directory/ 
7 https://www.sstic.org/media/SSTIC2014/SSTIC-actes/chemins_de_controle_active_directory/SSTIC2014-Article-
chemins_de_controle_active_directory-gras_bouillot.pdf 
8 https://github.com/ANSSI-FR/AD-control-paths 



 
This 2014 work was groundbreaking, and remains one of the only public coverages of this 
subject area. However, it is not without some issues: 
 

● It also requires that a series of binaries be on disk during the collection process. From  
offensive and (to an extent) defensive perspectives, our general philosophy is to remain 
off of disk as much as possible in order to minimize artifacts. 

● As the project is based heavily on raw Neo4j and has several setups steps, there are 
issues with the usability of the project, which has potentially hindered adoption. While its 
technical capabilities are phenomenal, the use of the project is difficult for newcomers to 
grasp. 

 
The second project that covers ACL auditing and analysis is “Forensics: Active Directory ACL 
investigation9” by Robin Granberg, as well as his associated “AD ACL Scanner10” toolset. The 
article covers many dangerous permissions in the “What kind of permissions are more of a risk 
than others?” section, which includes all of the specific control relationships we will cover in this 
paper. The AD ACL Scanner is a PowerShell-based GUI toolset that allows for easy 
enumeration of object rights: 
 

 
Above: The AD ACL scanner interface enumerating DACLs in a domain. 

                                                
9 https://blogs.technet.microsoft.com/pfesweplat/2017/01/28/forensics-active-directory-acl-investigation/ 
10 https://github.com/canix1/ADACLScanner 



 
AD ACL Scanner also includes a diff-ing capability where templates of standard DACL 
configurations for specific object types are used to help filter out standard settings and make it 
easier to find misconfigurations. This project appears to be fairly comprehensive and actively 
maintained; however, it misses out on the ability to visualize these control relationships in terms 
of risk or chains of misconfigurations. If we take the “Defenders think in lists. Attackers think in 
graphs”11 philosophy as an approach to this problem, then a graph-based solution allows us to 
better visualize how these control relationships factor into attack chains. 
 
One of the only references we could find related to offensive use of AD ACLs was the 2010 
Russian post “Бэкдор в active directory своими руками12” (roughly translated: “Backdoor in 
active directory with their own hands.”) As neither of us speak Russian, we had to depend on 
Google Translate to examine the post. From what we can tell, the approach described a method 
for creating an invisible, privileged user within Active Directory. The methodology starts by 
creating a new domain user account with an account name that appears to be legitimate, or 
otherwise difficult to identify as malicious based on name only: “ExchangeLegacyReceiver.” 
Then, the password on the account is set to never expire and the object owner is set to itself. 
Next, the user is put into a high privilege security group, with the given examples being either 
“Remote Desktop Users” or “Enterprise Admins”. The stealth mechanism used by the Russian 
work is to place the user into a group that is not displayed by default within Active Directory 
Users and Computers (ADUC). Finally, the writer states that the privileged, backdoor account 
should be invisible both in ADUC and with ads.exe. 
 
While the Russian blog post certainly sets a precedent for stealthy, agentless back-doors in 
Active Directory, several factors led us to conclude that the backdoor and stealth mechanisms 
could be further obscured. First, the writer acknowledges that the user will appear as a member 
of the privileged account it is added to. The approach relies on the name of the account to 
dissuade investigation. We would rather the stealth mechanism rely on hiding the AD object, or 
a mechanism that makes the existence of the object less obvious. Second, the directory 
container which the writer proposes moving the object into is visible when selecting “Advanced 
Features” under view in ADUC: 
 

                                                
11 https://blogs.technet.microsoft.com/johnla/2015/04/26/defenders-think-in-lists-attackers-think-in-graphs-as-long-as-
this-is-true-attackers-win/ 
12 https://habrahabr.ru/post/90990/ 



 
Before: The “Program Data” container is not visible. In ADUC, an administrator selects 

“Advanced Features” under “View”. 
 

 
After: The “Program Data” container is visible and its contents enumerable. 

 



During the development of this material, Sean Metcalf released a post titled “Scanning for Active 
Directory Privileges & Privileged Accounts13” In the rather comprehensive post, Sean breaks 
down enumeration AD ACL information, as well as several of the control relationships covered 
in this whitepaper. 

Securable Objects 
A securable object is defined by Microsoft14 as an object that can have a security descriptor. A 
security descriptor is a binary data structure that can vary in length and exact contents, but 
always contains, at a minimum, a header of control bits, the security identifier (SID) of the object 
owner, and the SID of the object’s primary group. Most modern AD environments ignore the 
primary group section of the security descriptor. The security descriptor can also contain a 
discretionary access control list (DACL) and/or system access control list (SACL), though these 
are not technically required. [MS-ADTS] 6.1.3 outlines the requirements for AD object security 
descriptors, some of which we outline here. 

 
Above: The definition of the SECURITY_DESCRIPTOR structure15. 

Header Control Bits 
The header control bits are defined by the 16-bit SECURITY_DESCRIPTOR_CONTROL16 data 
type. These bits control various aspects of inheritance and other settings and include two 
specific bits that are particularly interesting to us. The SE_DACL_PRESENT bit signals that a 
DACL is present in the security descriptor. As the documentation states, “If this flag is not set, or 
if this flag is set and the DACL is NULL, the security descriptor allows full access to everyone.17” 
The other bit of interest is the SE_DACL_PROTECTED bit (0x1000), which stops the included 
                                                
13 https://adsecurity.org/?p=3658 
14 https://msdn.microsoft.com/en-us/library/windows/desktop/aa379557(v=vs.85).aspx 
15 https://msdn.microsoft.com/en-us/library/windows/hardware/ff556610(v=vs.85).aspx 
16 https://msdn.microsoft.com/en-us/library/windows/desktop/aa379566(v=vs.85).aspx 
17 https://msdn.microsoft.com/en-us/library/windows/desktop/aa379566(v=vs.85).aspx 



object DACL from being modified by inheritable ACEs. We theorized that this would have 
allowed for an interesting method of hiding effective access through inheritance manipulation, 
but tests proved unsuccessful. See the “Future Research” section for more information. 
 
We also attempted to determine how to manually set these bits on AD objects, which would 
have had the same effect as a Null DACL; however, we were again unsuccessful. It appears 
that the Active Directory Service ignores some header control bits that clients specify when 
updating security descriptors via LDAP, which is an area for future research. It may be possible 
to manually set the bits through functions executed on the domain controller, or through raw 
editing of the NTDS.dit AD database. For a complete breakdown of all control bit functions, 
please refer to this Microsoft documentation18. 

Object Ownership 
All AD security descriptors must have an owner specified as a security identifier(SID). Active 
Directory implicitly grants object owners the WriteDACL and RIGHT_READ_CONTROL19, 
granting the owner full control of the security descriptor of the object.  As such, attackers 
wanting to gain access to an object can do so by compromising the target object’s owner or by 
compromising anyone who can grant ownership to the target object (e.g. principals with the 
WriteDACL/WriteOwner rights, or SeTakeOwnership and SeRestorePrivilege privileges). 

ACLs, DACLs, and SACLs 
When most documentation refers to the term “Access Control List” (ACL), it is referring to the 
discretionary access control list (DACL) and the system access control list (SACL) of a 
particular object’s security descriptor. An object’s DACL and SACL are both collections of 
access control entries (ACEs). 
 
The SACL is used to “specify the types of access attempts that generate audit records in the 
security event log of a domain controller.20” While SACLs have great defensive potential, they 
are outside of the scope of this paper. The ACEs in an object’s DACL define what security 
principals (also sometimes called a “trustee”) have what rights on the target object, and are 
what our work focuses on. Of note, there is a difference between a Null DACL and an empty 
DACL. A Null DACL effectively grants all rights to all users, while a DACL that is present but 
doesn’t contain any ACE entries denies rights to all users. NULL DACLs are not allowed in 
Active Directory per the spec (see MS-ADTS 6.1.321). 

ACEs 
All ACEs include a 32-bit set of flags that control inheritance and auditing, an access mask that 
specifies the rights allowed on the object, and a security identifier (SID) that identifies the 
                                                
18 https://msdn.microsoft.com/en-us/library/windows/desktop/aa379566(v=vs.85).aspx 
19 [MS-ADTS] 5.1.3.3.1 “Null vs Empty DACLs”. https://msdn.microsoft.com/en-us/library/cc223515.aspx 
20 https://msdn.microsoft.com/en-us/library/ms677926(v=vs.85).aspx 
21 https://msdn.microsoft.com/en-us/library/cc223731.aspx 
 



principal/trustee that has the specified rights. There are two types of ACEs: generic ACEs and 
object-specific ACEs. Object-specific ACEs allow for more granular control of inheritance 
specifics and the object-specific access rights that can’t be captured with the generic right 
specification.  Object-specific ACEs are applicable only to AD objects. 
 
A generic ACE’s structure is as follows: 

 
Above: The layout of a generic ACE22. 

 
While an object-specific ACE’s structure is: 

 
Above: The layout of an object-specific ACE23. 

 
The “Object Type” contains a GUID that can be interpreted in one of three ways: 
 

1. A child object type: if the access mask grants the RIGHT_DS_CREATE_CHILD right, 
the ObjectType GUID specifies the type of child object that can be created in the 
container. A GUID of all 0s or a lack of a GUID indicates that all child object types can 
be created. 

2. A property/property set: If RIGHT_DS_READ_PROP or RIGHT_DS_WRITE_PROP 
are specified in the access mask, or if the property is a ‘confidential’ property and the 
RIGHT_DS_CONTROL_ACCESS is set, the ObjectType GUID refers to a specific 
property (or property set) that the principal is allowed to read/write, respectively. 

                                                
22 http://searchwindowsserver.techtarget.com/feature/The-structure-of-an-ACE 
23 http://searchwindowsserver.techtarget.com/feature/The-structure-of-an-ACE 



3. A specific extended right: If DS_CONTROL_ACCESS is set, and the ObjectType 
GUID maps to an extended right registered in the current forest schema, then that 
specific extended right (such as force-resetting a user’s password) is granted. 

The Access Mask 
The access mask is the 32-bit component of the ACE that actually what defines the rights on the 
object that the specified principal SID is granted. The generic structure for an access mask is: 
 

 
Above: The bit breakout of the general case access mask24. 

 
Here’s what the access masks for Active Directory objects looks like (X == Reserved bits): 
 

 
Above: The bit breakout of the Active Directory object-specific access mask25. 

 
For Active Directory objects, here are how generic AD rights are interpreted (section 5.1.3.2 of 
the [MS-ADTS]: Active Directory Technical Specification26): 
 

RIGHT_GENERIC_READ (GR, 
0x80000000)  

The right to read permissions and all properties 
of the object, and list the contents of the object in 
the case of containers. 
 
Equivalent to: RIGHT_READ_CONTROL | 
RIGHT_DS_LIST_CONTENTS | 
RIGHT_DS_READ_PROPERTY | 
RIGHT_DS_LIST_OBJECT 
 
Referred to as GenericRead elsewhere in this 
paper. 

                                                
24 https://msdn.microsoft.com/en-us/library/windows/desktop/aa374896(v=vs.85).aspx 
25 https://msdn.microsoft.com/en-us/library/cc223511.aspx 
26 https://msdn.microsoft.com/en-us/library/cc223511.aspx 



RIGHT_GENERIC_WRITE (GW, 
0x40000000) 

Includes the right to read permissions on the 
object, and the right to write all the properties on 
the object. 
 
Equivalent to: RIGHT_READ_CONTROL | 
RIGHT_DS_WRITE_PROPERTY | 
RIGHT_DS_WRITE_PROPERTY_EXTENDED 
 
Referred to as GenericWrite elsewhere in this 
paper. 

RIGHT_GENERIC_EXECUTE (GX, 
0x20000000) 

The right to read permissions/list the contents of 
a container object. 
 
Equivalent to: RIGHT_READ_CONTROL | 
RIGHT_DS_LIST_CONTENTS 
 
Referred to as GenericExecute elsewhere in 
this paper. 

RIGHT_GENERIC_ALL (GA, 
0x10000000) 

The right to create/delete child objects, 
read/write all properties, see any child objects, 
add and remove the object, and read/write with 
an extended right. 
 
Equivalent to: RIGHT_DELETE |  
RIGHT_READ_CONTROL | 
RIGHT_WRITE_DAC |  
|RIGHT_WRITE_OWNER | 
RIGHT_DS_CREATE_CHILD | 
RIGHT_DS_DELETE_CHILD | 
RIGHT_DS_DELETE_TREE | 
RIGHT_DS_READ_PROPERTY | 
RIGHT_DS_WRITE_PROPERTY | 
RIGHT_DS_LIST_CONTENTS | 
RIGHT_DS_LIST_OBJECT | 
RIGHT_DS_CONTROL_ACCESS | 
RIGHT_DS_WRITE_PROPERTY_EXTENDED) 
 
Referred to as GenericAll elsewhere in this 
paper. 

 
The bits of the ‘standard access’ section are interpreted as: 
 

RIGHT_WRITE_OWNER (WO, 0x00080000) The right to modify the owner section of the 
security descriptor. Of note, a user with this 
right can only change the owner to 
themselves - ownership cannot be transferred 
to other users with only this right. 



 
Referred to as WriteOwner elsewhere in this 
paper. 

RIGHT_WRITE_DAC (WD, 0x00040000) The right to modify the DACL for the object. 
 
Referred to as WriteDacl elsewhere in this 
paper. 

RIGHT_READ_CONTROL (RC, 0x00020000) The right to read all data from the security 
descriptor except the SACL. 
 
Referred to as ReadControl elsewhere in this 
paper. 

RIGHT_DELETE (DE, 0x00010000) The right to delete the object. 
 
Referred to as Delete elsewhere in this 
paper. 

 
The final object-specific access masks bits are interpreted as: 
 

RIGHT_DS_CONTROL_ACCESS (CR, 
0x00000100) 

A specific control access right (if the 
ObjectType GUID refers to an extended right 
registered in the forest schema) or the right to 
read a confidential property (if the ObjectType 
GUID refers to a confidential property). If the 
GUID is not present, then all extended rights 
are granted. 

RIGHT_DS_LIST_OBJECT (LO, 
0x00000080) 

The right to list an object. If the user does not 
have this right and also doesn’t have the 
RIGHT_DS_LIST_CONTENTS right on the 
object's parent container then the object is 
hidden from the user. 

RIGHT_DS_DELETE_TREE (DT, 
0x00000040) 

The right to perform a delete-tree operation. 

RIGHT_DS_WRITE_PROPERTY (WP, 
0x00000020) 

The right to write one or more properties of 
the object specified by the ObjectType GUID. 
If the ObjectType GUID is not present or is all 
0s, then the right to write all properties is 
granted. 

RIGHT_DS_READ_PROPERTY (RP, 
0x00000010) 

The right to read one or more properties of 
the object specified by the ObjectType GUID. 
If the ObjectType GUID is not present or is all 
0s, then the right to read all properties is 



granted. 

RIGHT_DS_WRITE_PROPERTY_EXTENDE
D (VW, 0x00000008) 

The right to execute a validated write access 
right. 

RIGHT_DS_LIST_CONTENTS (LC, 
0x00000004) 

The right to list all child objects of the object, 
if the object is a type of container. 

RIGHT_DS_DELETE_CHILD (DC, 
0x00000002) 

The right to delete child objects of the object, 
if the object is a type of container. If the 
ObjectType contains a GUID, the GUID will 
reference the type of child object that can be 
deleted. 

RIGHT_DS_CREATE_CHILD (CC, 
0x00000001) 

The right to create child objects under the 
object, if the object is a type of container. If 
the ObjectType contains a GUID, the GUID 
will reference the type of child object that can 
be created. 

 
Here’s what these rights actually look like in GUI form through Active Directory Users and 
Computers (ADUC): 
 

 
Above: The graphical view of an ACE being interpreted in Active Directory Users and 

Computers (ADUC). 



DS_CONTROL_ACCESS 
The RIGHT_DS_CONTROL_ACCESS right is a bit of a special case and can be interpreted in a 
few different ways. If the GUID specified ObjectType maps to an extended right registered in the 
forest schema, then the specific extended right (sometimes called a ‘control access right’) is 
granted. This approach is taken so more granular rights can be expanded in future domain 
schemas, and actions that don’t exactly map to the reading/writing of specific properties can be 
granted. For example, the User-Change-Password27 right (GUID: ab721a53-1e2f-11d0-9819-
00aa0040529b) enables a user to change his/her own password if the previous password value 
is known, versus the User-Force-Change-Password28 right (GUID: 00299570-246d-11d0-a768-
00aa006e0529) which permits the forceful reset of a user’s password without knowing the 
previous value. 
 
The ObjectType GUID can also refer to a property or property set. In this case, if the property or 
property set identified by the GUID is marked as confidential29, then the 
DS_CONTROL_ACCESS grants the ability to read the attribute ( 
RIGHT_DS_READ_PROPERTY does not grant access to confidential attributes). For example, 
this is the case with the Local Administrator Password Solution (LAPS)30, which extends the 
forest schema to include the ms-Mcs-AdmPwd and ms-mcs-AdmPwdExpirationTime properties. 
The ms-Mcs-AdmPwd property is marked as confidential and stores the plaintext of the 
randomized local administrator password for the machine represented by the computer object. 
So, in order to enumerate users who have read access to this attribute, we search for ACE 
entries with DS_CONTROL_ACCESS flipped and the ObjectType GUID referring to the 
randomized GUID pointing to ms-Mcs-AdmPwd that is specific to the environment. 

The Security Reference Monitor 
In Windows and Active Directory, access requests decisions are made by the Kernel-Mode 
Security Reference Monitor (SRM). Since Windows 2000, the SRM has supported object-based 
access control lists, property and property-set based read/write/modify privileges, and the logic 
for evaluating canonically-ordered ACEs when making access decisions (i.e., allow or deny a 
requested privilege). For example, consider the “Domain Admins” group, which will have the 
“Full Control” access privilege by default to every securable Active Directory object. When a 
member of the “Domain Admins” group requests the ability to change a user password, the 
SRM must decide whether that request should be granted or not. The SRM evaluates the DACL 
on the target user, determines that the “Domain Admins” group (and in turn, members of this 
group) has full control of the user, and then allows the change password process to continue. 
 
 
 

                                                
27 https://msdn.microsoft.com/en-us/library/ms684413(v=vs.85).aspx 
28 https://msdn.microsoft.com/en-us/library/ms684414(v=vs.85).aspx 
29 https://msdn.microsoft.com/en-us/library/cc223153.aspx 
30 https://www.microsoft.com/en-us/download/details.aspx?id=46899 



When evaluating an object’s DACL, the SRM will read the ACEs in canonical order, which 
orders ACEs as follows: 
 

1. Explicitly defined DENY ACEs. 
2. Explicitly defined ALLOW ACEs. 
3. Inherited DENY ACEs. 
4. Inherited ALLOW ACEs. 

 
Inherited ACEs, which are by far the most common ACEs we’ve encountered, are further 
complicated by being evaluated based on generational degrees of separation from the affected 
object. Consider the following OU tree structure: 
 

 
Above: The “contoso.com” domain contains the OU “Contoso Users”, which contains the OU 

“IT”, which contains the OU “Exchange Groups”, which contains the user “Jason Frank”. 
 

The Jason Frank user may inherit ACEs from the objects above it, including the domain object 
and the user’s parent, grandparent, and great grandparent OUs. Because ACEs inherited from 
generationally closer objects are given precedence, ACEs inherited from the “Exchange 
Groups” OU will effectively override ACEs inherited from the “IT” OU, even if this means a 
conflicting ALLOW ACE takes precedence over a DENY ACE. 
 



Through understanding the order of evaluation the SRM uses for these access decisions, an 
attacker may more effectively hide malicious ACEs or even entire security principals from 
defenders. We discuss the implications of the SRM’s evaluation of ACEs and its impact on an 
attacker’s ability to more effectively hide objects in Active Directory in the section of this paper 
titled “Stealth Primitive - Hiding the Principal”. 

Security Descriptor Enumeration 
During the backdoor planning and execution process, it’s essential to have the ability to easily 
and programmatically enumerate the security descriptors of various objects, as well as the 
object owner. Luckily, one of the .NET classes to execute LDAP searches, DirectorySearcher31, 
contains a property named SecurityMasks32, which allows us to enumerate parts of the 
ntSecurityDescriptor property of an Active Directory object. Here are the available values for 
SecurityMasks: 
 

Dacl Return the discretionary access control list (DACL). 

Group Return primary group data, not applicable for modern domains. 

None Don’t return any security data (default behavior). 

Owner Return the security identifier (SID) of the object owner. 

Sacl Return the system access-control list (SACL). 

 
These values can be combined to return multiple parts of the security descriptor. For example, 
here is how to retrieve the DACL and Owner fields from objects returned by an LDAP search in 
C#33:

 
 
 
 
 
 
 
                                                
31 https://msdn.microsoft.com/en-us/library/system.directoryservices.directorysearcher(v=vs.110).aspx 
32 https://msdn.microsoft.com/en-us/library/system.directoryservices.directorysearcher.securitymasks(v=vs.110).aspx 
33 https://msdn.microsoft.com/en-us/library/system.directoryservices.directorysearcher.securitymasks(v=vs.110).aspx 



 
And here is how to enumerate the same information in PowerShell: 
 

 
Above: PowerShell retrieval of the security descriptor binary blob for the “victim” user, 

containing the owner and DACL information for the object. 
 
As you can see above, the security descriptor information will be returned as a binary blob 
stored in the ntSecurityDescriptor property of the resulting object. This information needs to 
be parsed into a human-readable form, which can be done one of two ways. One option is to 
create a new Security.AccessControl.RawSecurityDescriptor34: 
 

 
Above: PowerShell parsing of the security descriptor binary blob for the “victim” user into a 

‘RawSecurityDescriptor’. 
 

                                                
34 https://msdn.microsoft.com/en-us/library/system.security.accesscontrol.rawsecuritydescriptor(v=vs.110).aspx 



The alternative method is to use the more specific 
System.DirectoryServices.ActiveDirectorySecurity35 class: 
 

 
Above: PowerShell parsing of the security descriptor binary blob for the “victim” user into an 

‘ActiveDirectorySecurity’ object’. 
 
With this second approach, you can specify whether to return the security identifier or a 
resolved short name for the security principal/trustee listed in each ACE. This is accomplished 
with a specific call to the GetAccessRules() method36: 
 

 
Above: Retrieving ACEs for the specified object through the GetAccessRules() method, 
specifying that security identifiers (SIDs) should be returned for the identity reference. 

 

                                                
35 https://msdn.microsoft.com/en-us/library/system.directoryservices.activedirectorysecurity(v=vs.110).aspx 
36 https://msdn.microsoft.com/en-
us/library/system.security.accesscontrol.directoryobjectsecurity.getaccessrules(v=vs.110).aspx 



PowerView37 is a PowerShell 2.0-compatible toolkit written by one of the whitepaper authors 
that facilitates various domain/network reconnaissance tasks, and is a part of the PowerSploit 
project38. More information about PowerView can be found in a series of posts39 written by its 
author. We will use PowerView throughout this paper to demonstrate security descriptor 
enumeration and backdoor weaponization. For DACL enumeration, PowerView’s Get-
DomainObjectACL function will return the ACEs for a particular object. The optional -
ResolveGUIDs flag will first perform a mapping of all right GUIDs currently registered in the 
domain and will translate all ObjectType GUIDs in resulting ACEs to their human-readable form. 
 

 
Above: Using PowerView’s Get-DomainObjectAcl function to retrieve the ACEs for the harmj0y 

user with GUIDs for the ObjectAceType translated. 
 
Of note, any domain authenticated user can enumerate the security descriptor of most objects 
in a default domain. While this is not relevant for our assumed case of elevated access, it is 
useful when enumerating control relationships for domain escalation. 

DACL (Mis)configurations 
Our work was first motivated by a desire to find security descriptor misconfigurations to facilitate 
domain escalation. This was the original intent for ACL-based ingestion into the BloodHound40 
analysis platform. As we began to realize the potential for offensive backdooring, we realized 
that the same control relationships that we search for from a domain escalation perspective 
could form the building blocks of security descriptor backdoors. Of note, again, is that an 
attacker must to have the ability to modify the security descriptor of the objects to which the 

                                                
37 https://github.com/PowerShellMafia/PowerSploit/blob/dev/Recon/PowerView.ps1 
38 https://github.com/PowerShellMafia/PowerSploit 
39 http://www.harmj0y.net/blog/tag/powerview/ 
40 https://github.com/bloodHoundAD/ 



backdoors are added. Gaining the required rights usually means needing some type of elevated 
access, often “Domain Admins” or something equivalent. 
 
Here, we present our control relationship and object takeover taxonomy. Some of the 
relationships we care about vary based on the target object we’re trying to compromise. We will 
start this breakdown first with rights that apply to all target object types (generic and control 
rights) and then will break out each object type we’re targeting with the additional appropriate 
control relationships highlighted. 

AD Generic Rights 
GenericAll (fully defined in the “Access Mask” section) grants complete control over a target 
object, including the “control rights” outlined below. This includes the WriteDacl and 
WriteOwner privileges, as well as any specific extended rights. 
 
GenericWrite (also fully defined in the “Access Mask” section) is a combination of 
RIGHT_READ_CONTROL (the right to read the DACL), RIGHT_DS_WRITE_PROPERTY, and 
RIGHT_DS_WRITE_PROPERTY_EXTENDED applied to all properties.  
 
WriteProperty with an ObjectType that doesn’t contain a GUID also means that the principal 
has the right to modify all properties. While this case is technically not the equivalent of 
GenericWrite, in practice they are basically equivalent in most cases. 
 
These generic rights can be abused with PowerView’s Set-DomainObject. The -Set parameter 
allows for field modification (-Set @{“property1”=”value1”;“property2”=”value2”}) while the -Clear 
parameter will clear a property’s value. Here’s an example of setting a target user’s 
servicePrincipalName, Kerberoasting the account, and resetting the servicePrincipalName: 
 

 
Above: Using PowerView’s Set-DomainObject function to manipulate the servicePrincipalName 

property of the ‘victim’ user. 



AD Control Rights 
Two specific rights allow a principal to gain modify the security descriptor of a target object, 
even though the rights don’t allow for any property modification or extended right access. These 
rights require a modification to the target object’s security descriptor before performing the next 
step of the intended chain (e.g., The attacker would have to add ACEs to allow property 
modification or the execution of a specific extended right.) 
 
WriteDacl (formally RIGHT_WRITE_DAC) allows the principal to modify the DACL of the 
affected object. This means that an attacker can add or remove specific access control entries, 
allowing for them to grant themselves complete access to the object. Thus, WriteDacl is a right 
that enables additional rights in the chain. 
 
WriteOwner (formally RIGHT_WRITE_OWNER) allows the principal to modify the owner 
section of the object’s security descriptor. Since the object owner has implicit GenericAll rights 
over the object, the principal can gain complete access to the object by modifying the object’s 
owner. A user with this right can only change the owner to themselves - ownership cannot be 
transferred to other users. If the user has the SE_RESTORE_PRIVILEGE, however, the user 
with this right can change the owner to any object. 
 
The WriteDacl control relationship can be abused with PowerView’s Add-DomainObjectAcl 
function. This function has a -Rights parameter that currently accepts 'All', 'ResetPassword', 
'WriteMembers', and 'DCSync' as aliases. The -RightsGUID parameter will accept a manual 
GUID representing the right to add to the target: 
 

 
Above: Using PowerView’s Add-DomainObjectACL function to grant the ‘harmj0y’ user force 

reset password rights over the ‘victim’ user. 
 



The WriteOwner control relationship can be abused with PowerView’s Set-
DomainObjectOwner: 
 

 
Above: Changing the owner of the ‘victim’ user to the attacking user ‘dfm.a’ using PowerView’s 

Set-DomainObjectOwner function. 
 

It is also worth noting that principals granted SE_TAKE_OWNERSHIP_PRIVILEGE can change 
any object’s owner to themselves.  In addition, principals granted 
SE_TAKE_OWNERSHIP_PRIVILEGE and SE_RESTORE_PRIVILEGE can change any 
object’s owner to any other principal.  As such, these privileges are all AD control right 
primitives. 

Object-Specific Targeting 
Some control relationships will only allow for the takeover of specific objects. For example, the 
User-Force-Change-Password doesn’t make sense for a group policy object (GPO), but does 
make sense for a user object. This section will break down the objects in Active Directory that 
we care about for the purposes of our attack chains. Please note that what follows is a non-
exhaustive list of object targeting strategies. 

User Objects 
To assume the rights of a user object, the logon credentials for the user account needs to be 
known or recovered by the attacker. There are two attack primitives that allow a principal to 
recover these credentials. The first is force-resetting the user’s password without knowing the 
current password. This is granted by the User-Force-Change-Password right (GUID: 00299570-
246d-11d0-a768-00aa006e0529), i.e. the RIGHT_DS_CONTROL_ACCESS bit is set and the 
ObjectType contains the previous GUID. GenericAll as well as 



RIGHT_DS_CONTROL_ACCESS with no GUID specified (i.e. ‘all extended rights’) will also 
grant this ability. This action is “destructive” in that you’re making a reasonably loud change to 
the Active Directory environment- the user will be unable to log back into their account and will 
need to have their password reset by someone else in the organization. However, failed 
password attempts are not unheard of, and the user will likely believe that they just mistyped 
their password, not that it was reset maliciously. 
 
The second attack primitive is “Targeted Kerberoasting41” where a target user’s 
servicePrincipalName is set to a “nonsense” value, the account is Kerberoast’ed, the 
servicePrincipalName is reset to its original value, and the target user’s password is cracked 
offline. This is obviously dependent on the user account having a password simple enough to 
crack in a reasonable amount of time, but this primitive has the big advantage of not being 
destructive and can be executed without the target user being made aware of the change. A 
principal with WriteDacl or WriteOwner rights on a target user account can execute this attack 
as well. 
 
For execution with PowerView, Set-DomainObject can be used to set and unset a user’s 
servicePrincipalName for Kerberoasting, and Set-DomainUserPassword can be used to force 
reset a user’s password: 
 

                                                
41 http://www.harmj0y.net/blog/activedirectory/targeted-kerberoasting/ 



 
Above: Using PowerView’s Set-DomainObject to set the ‘victim’ user’s servicePrincipalName to 
a nonsense value, Kerberoasting the user so the password can be cracked offline, and clearing 
the servicePrincipalName property. We refer to this attack strategy as “Targeted Kerberoasting”. 
 
For more information on Kerberoasting, see Tim Medin’s SANS HackFest 2014 talk “Attacking 
Kerberos: Kicking the Guard Dog of Hades42” or Sean Metcalf’s blog post on the subject43. 

Group Objects 
Groups are also security principals in Active Directory, but act like pseudo-containers. The way 
to take advantage of the rights/access a group has, as well as its possible nested relationships, 
is by adding a controllable user to the group membership. This is done through the modification 
of the member property of the group. 
 
Specifically, we care about WriteProperty ACEs with the ObjectType being the GUID for the 
member property (GUID: bf9679c0-0de6-11d0-a285-00aa003049e2). Obviously, GenericAll 
and WriteProperty with no GUID (implies a properties) will implicitly grant this specific 
modification right as well, as do WriteDacl and WriteOwner. 
                                                
42 https://files.sans.org/summit/hackfest2014/PDFs/Kicking%20the%20Guard%20Dog%20of%20Hades%20-
%20Attacking%20Microsoft%20Kerberos%20%20-%20Tim%20Medin(1).pdf 
43 https://adsecurity.org/?p=2293 



 
To take advantage of this control relationship with PowerView, use the Add-
DomainGroupMember function to modify group membership: 
 

 
Above: Adding the ‘harmj0y’ user to the “Domain Admins” group using PowerView’s Add-

DomainGroupMember function. 

Computer Objects 
Unfortunately, we do not have a generic takeover primitive for computer objects. We believe this 
is likely possible and remains an open question for future research. Computer objects are a 
special type of user object, so force-resetting the machine’s password would allow us to 
technically assume the computer account’s rights; however, this causes the machine to 
effectively become disjoined from the domain until the machine password on the local system is 
resynced with the password for the account stored in Active Directory. Because this is not a 
relatively common occurrence(unlike user password resets are), we do not view this approach 
as a viable primitive. 
 
There is one exception to the above lack of attack primitives, but it’s not present in the default 
schema of a forest. If Microsoft’s Local Administrator Password Solution (LAPS) is installed, the 
plaintext password of the built-in local administrator account of the target computer object is 
stored in the confidential ms-Mcs-AdmPwd property on the computer object. By default, only 
elevated users (like Domain Administrators) have the right to read this property, but that right 
can be delegated to additional principals. The presence of this right allows the principal to read 
the plaintext password in ms-Mcs-AdmPwd, just as they would any other property. The 
password could then be used to compromise the target system. There is more background on 



LAPS, as well as ways to hide a LAPS-focused backdoors, in the “Backdoor Case Studies” 
section of this whitepaper. 

Domain Objects 
Domains are themselves represented in the Active Directory domain database, and reside at 
the root naming context “DC=domain,DC=local.” While we are aware that there are multiple 
ways to backdoor domain objects, the only one we cover in this whitepaper is backdooring 
domain objects to grant the rights associated with DCSync. Given two specific extended rights 
add to a domain object, DS-Replication-Get-Changes (GUID: 1131f6aa-9c07-11d1-f79f-
00c04fc2dcd2) and DS-Replication-Get-Changes-All (GUID: 1131f6ad-9c07-11d1-f79f-
00c04fc2dcd2), the specified principal can use the DC replication protocol to obtain the 
passwords hashes of any user/computer (amongst other things). The Mimikatz toolkit44 contains 
an implementation of this credential theft technique (the lsadump::dcsync command) written 
by Benjamin Delpy and Vincent Le Toux. 
 
With all that said, the relationships we care about are WriteDacl or WriteOwner on the domain 
object, ownership of the domain object, or GenericAll on the domain object as it implicitly grants 
WriteDacl/WriteOwner. Given the right to modify the domain object’s DACL, two ACE entries 
can be added that grant the attacker the ability to DCSync a domain controller for any account 
hash. 
 

                                                
44 https://github.com/gentilkiwi/mimikatz 



 
Above: Using PowerView’s Add-DomainObjectAcl function to add the two ACEs necessary for 

DCSync privileges to the root domain object with ‘harmj0y’ as the principal. The first highlighted 
attempt at executing DCSync fails, the rights are then added in the top window using 

PowerView, and the second highlighted DCSync attempt succeeds. 

Group Policy Objects 
While we will not get into a full overview of Group Policy Objects (GPOs), the gist is that GPOs 
are collections of settings that are linked to an organizational unit (OU, this is the most common 
scenario), domain objects themselves (like the “Default Domain Policy”), and Active Directory 
sites45 (this scenario is often forgotten). The settings in a GPO can apply to users or computers 
where the GPO is applied, and there are a myriad of ways to utilize a GPO to compromise a 
user account or gain code execution on an affected machine. For example, an “immediate” 
scheduled task can be pushed out to all machines through an applicable GPO, resulting in a 
scheduled task that runs once and then deletes itself. Suffice it to say that gaining edit rights 
over a GPO can easily result in the compromise of any users or computers the GPO is applied 
to. 
 
The main relationship we care about with GPOs is WriteProperty to the GPC-File-Sys-Path 
property (GUID: f30e3bc1-9ff0-11d1-b603-0000f80367c1) of a GPO. According to Microsoft, 
“This attribute specifies the Universal Naming Convention (UNC) path to the Group Policy 

                                                
45 https://technet.microsoft.com/en-us/library/cc754697(v=ws.11).aspx 



Object template located in the system volume (SYSVOL)”46 meaning that the right to modify this 
property means the principal can modify the settings of the GPO. This is executed by manual 
editing of the associated GPO files at 
\\domain.com\SYSVOL\domain.com\Policies\{GPO_GUID}\. GenericAll, GenericWrite, 
WriteProperty without a GUID specified (i.e. write to ALL properties), and WriteDacl/WriteOwner 
rights can all facilitate this same effective access. On an interesting note, users granted 
WriteProperty rights to GPC-File-Sys-Path appear to have associated rights cloned to the GPO-
specific folder on the filesystem where the associated SYSVOL is located: 
 

 
Above: Granting the ‘harmj0y’ user rights to edit the ‘WorkstationPolicy’ GPO through the Group 

Policy Management console. 
 

 
Above: The granted ‘harmj0y’ GPO edit rights being cloned onto the file system of the 

associated GPO folder in SYSVOL. 

                                                
46 https://msdn.microsoft.com/en-us/library/cc219950.aspx 



PowerView Abuse; redux 
Here is the summary of the object takeover rights as weaponized through PowerView: 
 

Right Abuse Function 

GenericWrite/GenericAll Set-DomainObject 

WriteProperty to specific properties Set-DomainObject 

WriteDacl Add-DomainObjectAcl 

WriteOwner Set-DomainObjectOwner 

CreateChild Add-DomainGroupMember 

User-Force-Change-Password Set-DomainUserPassword 
 
 

BloodHound Analysis 
At DEF CON 2447, the authors of this paper and Rohan Vazarkar released BloodHound48, a free 
and open source tool which uses graph theory to reveal the hidden and often unintended 
privilege relationships in AD. Historically, BloodHound tracked AD security group memberships, 
local administrator group memberships, and user logon sessions. By collecting this information, 
an attacker may very quickly find the shortest derivative local administrator49 style attack path to 
compromise a target node, if a path exists. Further, defenders may use the BloodHound 
interface and its attack graph to identify and remediate such attack paths, and easily illustrate 
the attack paths and privilege relationships to an audience not as familiar with Active Directory 
privilege delegation. 
 
In May of 2017, we released version 1.3 of BloodHound50 which added domain object DACL 
attack path analysis capabilities to the ingestors and interface. This update added several DACL 
privilege relationship edges to the attack graph, which are discussed earlier in this paper in the 
section titled “AD Control Rights.” These privilege relationships are limited to the relevant ACEs 
which the authors of this paper have verified are abusable for taking control over other AD 
principals. 
 

                                                
47 https://www.slideshare.net/AndyRobbins3/six-degrees-of-domain-admin-bloodhound-at-def-con-24 
48 https://github.com/bloodHoundAD/ 
49 https://www.sixdub.net/?p=591 
50 https://wald0.com/?p=112 



This update also added several DACL-related queries to each node type information tab. For 
instance, the interface makes it easy to analyze the effective inbound, abusable control 
relationships against any object, under the “Inbound Object Control” section of a user or group 
node tab: 
 

● Explicit Object Controllers: The number of principals with abusable ACEs defined on the 
object’s DACL. These principals would show up in the ADUC GUI when viewing the 
relevant object’s DACL. Clicking the number displays the principals with “explicit” control 
of the object. 

● Unrolled Object Controllers: The number of principals with abusable ACEs defined on 
the object’s DACL, when accounting for security group delegation. For instance, if the 
“Domain Users” group has a control relationship over the “Domain Admins” group, the 
“unrolled object controllers” count against the “Domain Admins” group would equal the 
number of users in the “Domain Users” group. 

● Transitive Object Controllers: The number of explicit object controllers, plus the number 
of unrolled object controllers, plus the number of other principals which can gain control 
of the affected user or group through an ACL-enabled attack path, without relying on a 
derivative local admin style attack. 

 

 
Above: The BloodHound interface tracks the principals which may take over the “Domain 

Admins” group by abusing ACL control relationships to this group. 
 

By analyzing this data, an attacker may derive several key insights when determining how best 
to hide a DACL backdoor in Active Directory: the current state of DACL hygiene in the directory, 
the typical names used for principals with control over other objects, and good hiding places for 
objects hiding in “plain sight” within deeply nested security groups. 
 
When assessing the current state of DACL hygiene, an easy starting point is the “Domain 
Admins” group in any domain. The “Domain Admins” group is a protected group, and thus its 
DACL will be replicated from the AdminSDHolder object. Ideally, from a defensive point of view, 
only the most trusted groups and users will have control relationships against the 
AdminSDHolder object, and in turn, every other protected object. However, in reality, the 
authors have observed several instances where a haphazard addition to the AdminSDHolder 
DACL has resulted in tens, hundreds, and even thousands of users gaining DACL control of the 
“Domain Admins” object, and every other protected object. In the example BloodHound 
database, we have added several DACL edges to illustrate what we have observed in real 
environments. 
 



So far, the greatest offender we have seen of adding DACL control relationships to most, if not 
all, securable AD objects, is Microsoft Exchange Server (depending on the version). During the 
installation process, Exchange Server alters AD in several ways, including extending the AD 
schema to include the Exchange properties, adding several security groups to Active Directory, 
and, most critically, granting additional GenericAll (or Full Control) ACEs to almost every 
securable object in Active Directory. In fact, until Exchange Server 2007 SP1, the Exchange 
Server installation process included granting the “Exchange Enterprise Servers” group the 
WriteDacl permission against the root domain object, effectively giving any computer or other 
principal added to that group full control of the domain, and making Exchange servers equally 
as sensitive as domain controllers. The below figure shows a typical set of groups with control 
over the “Domain Admins” group, based on what we have seen in real environments. Several 
Exchange groups are granted control, as well as a seemingly random group called “Backup2”: 
 

 
Above: The BloodHound interface showing the other groups which may take over the “Domain 
Admins” group by abusing ACL control relationships. Four groups have the “GenericAll” (or Full 

Control) privilege against the “Domain Admins” group, and one group has the “WriteDacl” 
privilege against the “Domain Admins” group. 

 
The above view could fairly be equated with a trimmed-down view of the ADUC GUI of an object 
DACL, although we believe even in this aspect BloodHound provides an analyst with a more 
user-friendly experience. These groups have control of the “Domain Admins” group only tells a 
very small part of the story, as other users, groups and computers can, of course, be added to 
groups, and get the same rights as that group. BloodHound allows easy expansion to include 
the principals which effectively have control of the “Domain Admins” group through security 
group delegation: 

 



 
Above: The BloodHound interface shows the unrolled members of the groups with ACL control 
relationships against the “Domain Admins” group (far right). Of note are the several computer 

objects (colored in red) with effective control of the “Domain Admins” group. 
 

An attacker may inspect this view in order to select backdoor candidates. For example, if we 
zoom into part of the above view, we can see several computer objects that may make good 
backdoor targets. Alternatively, an attacker may add a new object to the domain and “blend in” 
with existing accounts based on group memberships. Would a computer object called “Exch-
007” immediately stick out when inspecting this view? Does the physical computer associated 
with the “Exch-003” computer object still exist? The answers to these questions may inform an 
adversary when deciding where to hide: 
 

 
Above: Detail of the previous figure, showing several computers belonging to the security group 
“Exchange Trusted Subsystem”, which in turn has the “GenericAll” (or Full Control) relationship 

to the “Domain Admins” group. 



Finally, BloodHound enables easy analysis of all possible ACL-enabled attack paths that lead to 
a selected object. In the example below, our target object is the “Domain Admins” group. By 
clicking the number next to “Transitive Object Controllers”, BloodHound queries and displays all 
the objects that can chain together an ACL-enabled attack path that is not based on the classic 
derivative local admin attack. This is especially interesting to an adversary, as the further away 
an object is from the “Domain Admins” group, the less likely it is that the defenders are paying 
close attention to that object. For instance, in the below screenshot, we can see that on the far 
left and upper right, a user named “TWILSON_ADMIN” has an ACL-enabled attack path 
resulting in ownership of the “Domain Admins” group. This attack path starts off due to this user 
belonging to a group called “LAPTOP ADMINS’. The controls, monitoring, and audit activities 
against this user are likely not as robust as those applied against Domain Administrator users. 
Regardless, this user is capable of taking over the “Domain Admins” group and, in turn, the 
domain, without using malware or compromising any computer in the domain. 
 

 
Above: The BloodHound interface displaying the objects with a transitive object control attack 
path to the “Domain Admins” group. These are principals which may execute an ACL-enabled 

attack path to take over the “Domain Admins” group, without a derivative local admin style 
attack. 

DACL-Based Backdoors 

A Brief Sidenote on Semantics 
Before diving into strategies and stealth primitives for these types of backdoors, we wanted to 
step back for a second and reflect on the phrases “pure ACL attack-path” and “ACL-only attack 



paths.” As many of these concepts are new to most of the audience, we wanted to explain our 
interpretation of some of this new terminology. 
 
We define an ACL “backdoor” as maliciously crafted ACE entries that allow for later domain or 
object compromise, while “attack path” is the execution of one or more control relationships to 
increase or otherwise expand an attacker’s current privilege. An attack path can be executed on 
a number of unintentional misconfigurations for the purposes of domain escalation, or the attack 
path can be the execution of a previously-implemented backdoor. 
 
One issue is that to take over group, computer, or GPO nodes in an attack chain, an action 
must be executed that falls outside of ACL manipulation. For example, to subsume a group’s 
rights, a controllable principal must be added to its membership. Likewise, gaining control over a 
computer object (currently) involves code execution on the system, and attack paths involving 
GPOs involve editing of the GPO and often code execution in a specific machine or user 
context. Whether or not these actions qualify as a part of a “pure” ACL attack path is up to 
interpretation. 
 
Therefore, we like the phrase “ACL-enabled” attack paths to avoid the purist argument, and we 
propose both strong and weak definitions. In our minds, the “strong” definition can be defined as 
“a domain attack path involving the abuse of one or more ACL control relationships that don’t 
require code execution on any additional machines.” That is, the “strong” definition of an ACL-
enabled attack path means it can be executed from a single system, though may involve 
additional logon sessions. Our version of a “weak” definition would be “a domain attack path 
involving the abuse of one or more ACL control relationships.” Since it’s debatable what specific 
actions qualify as “ACL” based actions, we feel that this looser definition makes the most sense. 

Objective 
Our objective is to create various AD security-descriptor-enabled backdoors that: 
 

● Facilitate the regaining of elevated control in the AD environment 
● Blend in with normal security descriptor configurations (“hiding in plain sight”), or are 

otherwise hidden from easy enumeration by defenders 
 
So assuming that defenders: a) are knowledgeable about these types of backdoor (unlikely) and 
b) have the tooling to enumerate, analyze, and remove these misconfigurations at scale (even 
more unlikely), we can either blend with “normal” DACL/ACE entries in a specific environment, 
prevent the backdoor from being enumerated, obfuscate/otherwise complicate the enumeration 
of the malicious principal used in the entry (or entries), or otherwise complicate the triage and 
removal of these types of actions. 
 
This rest of section will cover various “stealth” primitives that we will use in the next section to 
build chains of malicious ACEs. 



Stealth Primitive - Hiding the Security Descriptor 
Remember the previous security reference monitor (SRM) breakdown and the “canonical” order 
of ACE evaluation: 
 

1. Explicit DENY 
2. Explicit ALLOW 
3. Inherited DENY 
4. Inherited ALLOW 

 
As explicit DENY rules take precedence over explicit allows, this grants us an opportunity to 
prevent the enumeration of our malicious security descriptor even by an elevated group such as 
“Domain Admins.” Also, remember that object owners can transitively grant themselves 
GenericAll rights to any object they own. This supersedes any explicit ACEs in the DACL. 
Translation: when an object’s owner manipulates an object, the current DACL is effectively 
pointless since it can be overwritten. Since objects may have been created by the very 
privileged groups we’re attempting to hide the DACL from, we can’t forget to also modify the 
object owner. Also, remember that the WriteOwner right (implicit in GenericAll) means that 
principals can TAKE ownership of the objects, meaning they can only change the ownership to 
themselves. The principals are not able to “give” ownership to other principals(unless the 
principals also have SE_RESTORE_PRIVILEGE, that is). 
 
The approach to hide an object’s DACL from elevated account enumeration thus involves: a) 
changing the owner of the object to an attacker controlled principal and then b) adding an 
explicit ACE to the target object that denies the “Everyone” principal (SID: S-1-1-0) 
RIGHT_READ_CONTROL (aka the “Read Permissions” right). Here’s what the object will look 
like in Active Directory Users and Computers (ADUC) MMC snap-in: 
 

 
Above: When clicking the “Security” tab on the user object in ADUC, the above alert is 

displayed, informing the user that they do not have permission to view permissions on the 
object. 



Here’s how the enumeration of the DACL will look like from a “Domain Admins” context: 
 

 
Above: The owner of the object is obscured from a domain admin user, along with the ACEs 

comprising the user DACL. 
 

 
Above: Running PowerView from a “Domain Admin” context is still unable to enumerate the 

“jfrank” user. 



Stealth Primitive - Hiding the Principal 
Another primitive is hiding the principal/trustee listed in the security descriptor for the object. 
Even if an elevated user can retake ownership of a manipulated object, as in the previous 
example, we can still obscure the principal itself, preventing a defender from easily discovering 
who actually held the right specified in the ACE. 
 
Consider an OU called “Invisible Objects”, containing a user called “Invisible User.” Upon initial 
creation of this OU and user, an admin may easily see the existence of the user in ADUC: 
 

 
Above: ADUC displaying the contents of the “Invisible Objects” OU: one user called “Invisible 

User”. 
 
“Hiding” a principal is slightly more complicated than preventing the enumeration of a specific 
object DACL: 
 

1. Change the principal’s explicit owner to the attacker, or an attacker controlled account, 
due to the ownership issues described previously. 

2. Grant explicit control of the principal to either itself, or another controlled principal. 
3. On the organizational unit (OU) that contains this principal, deny 

RIGHT_DS_LIST_CONTENTS (“The right to list all child objects of the object, if the 
object is a type of container”). 

 



 
Above: The owner of “Invisible User” has been set to itself and a new explicit “Deny” ACE has 

been added, denying “Everyone” full control of the user (ie: no privileges at all). 
 
The reason for step 3 above is that if deny rights are implemented on the principal, any user that 
effectively has the LIST_CONTENTS rights on the container (most often an OU) that contains 
the principal, the user can still list the principal, though it will be rendered like this in ADUC: 
 

 
Above: Viewing ADUC using a Domain Admin account, the “Invisible User” user object appears 

as an “Unknown” object type. 
 



An admin may now easily see the existence of this strange, “unknown” type object in the OU 
structure. When a privileged user attempts to view the object in ADUC, the following text 
displays in the object property window: “The Active Directory Domain Services object could not 
be displayed. Unable to view attribute or value. You may not have permissions to view this 
object.” Then, if an admin tries to view the “Security” tab of the user, a pop up will inform the 
user that “You do not have permission to view the current permission settings for <username>. 
It cannot be determined if you have the permission to make changes. Permission changes will 
be allowed but it cannot be guaranteed that the changes will successfully apply.” Finally, when 
viewing the Security Descriptor GUI and DACL, the admin will be presented with a blank, non-
informational view of the rights on this user; however, the admin retains the ability to change or 
claim ownership of the object through the SeTakeOwnership and SeBackupRestore privileges. 
 
In order to more effectively obscure the existence of the object, we need to add an ACE to the 
container this object belongs to: in this example, it is the “Invisible Objects” OU. By denying the 
“Everyone” group the ability to list contents of this OU, the OU will effectively appear empty both 
in the GUI and via LDAP. 
 

 
Above: A new Deny-type ACE is added to the OU, “Invisible Objects,” blocking the ability for 

anyone in the domain to view the contents of the OU. 
 
Now, a defender will not easily be able to identify the existence of the invisible user object, 
either through ADUC or LDAP: 
 



 
Above: An administrator running ADUC attempts to list the contents of the “Invisible Users” OU, 

but the OU appears to be empty. 
 
In this way, an attacker may be able to convince defenders that the security principal is some 
type of remnant and something to be ignored. 

Stealth Primitive - A “Patsy” User 
One additional approach involves the user of what we are calling a “patsy” user. Instead of the 
attacker’s account being used as the principal, and then attempting to hide that account from 
defenders, an attacker can use an account he/she controls as the principal in the malicious 
ACE. The attacker can implement any of the malicious ACEs on the patsy user itself to 
guarantee future account takeover, and then that account can be set as the principal in the 
“actual” malicious ACE. This forces defenders, if they are even able to find the end ACE 
backdoor, to walk back chains of control relationships to triage the resulting access. 
 
This approach can extend beyond a single user as well. An attacker could implement numerous 
chains of control-focused ACEs that terminate in a user set as the principal on the actual object 
we’re interested in. While BloodHound can walk these types of relationships back, this task is 
not trivial using other current toolsets. 
 
 
 
 
 
 
 



Backdoor Case Studies 
Now, let’s bring everything together and show how all of these pieces can be used to create 
interesting AD DACL backdoors. Here is a review of the primitives we’ve covered: 
 

● We know which specific ACEs on which object types can result in object takeover. 
● We can hide/complicate the enumeration an object’s security descriptor, even from 

users in elevated contexts (like “Domain Admins”). 
● We can hide/obscure a security principal/trustee in a way that makes it difficult to triage. 
● We can use one or more “patsy” users to complicate walking the chains of control ACE 

relationships back. 
 
Let’s see what we can build! 

A DCSync backdoor 
As described in the "Domain Objects" part of the previous "Object-Specific Targeting" section, 
DCSync is Benjamin Delpy and Vincent Le Toux’s implementation of the replication protocol 
used by domain controllers to synchronize data. This has been fully implemented into the 
Mimikatz toolset51, and allows for the retrieval of the password hash for any user in the domain, 
given the requesting user context has the rights to retrieve this information. Many in the 
offensive community believe that “Domain/Enterprise Admin” rights, or the equivalent, are 
needed to execute this synchronization operation. However, this is not the case. 
 
In effect, DCSync rights boil down to adding two extended rights on the domain object itself, 
located at the root naming context “DC=domain,DC=local”. The two extended rights are DS-
Replication-Get-Changes52 (GUID: 1131f6aa-9c07-11d1-f79f-00c04fc2dcd2) and DS-
Replication-Get-Changes-All53 (1131f6ad-9c07-11d1-f79f-00c04fc2dcd2). These rights are, by 
default, granted to “Enterprise Domain Admins” and “Domain Controllers54”. 
 
Since replication rights depend on these two ACEs on the domain object itself, and not on group 
membership or other criteria, our first backdoor is a relatively simple one. An attacker simply 
adds these two extended-right ACE entries to the domain object for a principal/trustee that the 
attacker already controls, and said principal can retrieve the password of ANY user in the 
domain at will. 
 
PowerView already weaponizes this through its Add-DomainObjectAcl function with the -
Rights DCSync parameter: 
 

                                                
51 https://github.com/gentilkiwi/mimikatz 
52 https://msdn.microsoft.com/en-us/library/ms684354(v=vs.85).aspx 
53 https://msdn.microsoft.com/en-us/library/ms684355(v=vs.85).aspx 
54 https://redmondmag.com/articles/2001/01/01/active-directory-data-guarding-the-family-jewels.aspx 



 
Above: Using PowerView’s Add-DomainObjectAcl function to add the two ACEs necessary for 

DCSync privileges to the root domain object with ‘harmj0y’ as the principal. The first highlighted 
attempt at executing DCSync fails, the rights are then added in the top window using 

PowerView, and the second highlighted DCSync attempt succeeds. 

AdminSDHolder 
AdminSDHolder55 is a special Active Directory object located at 
CN=AdminSDHolder,CN=System,DC=domain,DC=com. The stated purpose of this object is 
to protect certain privileged accounts from unintended security descriptor modification. Every 60 
minutes, a special background AD task called SDProp (Security Descriptor propagator) 
recursively enumerates membership for a specific set of protected groups, checks the access 
control lists for all accounts discovered, and clones the security descriptor of the 
AdminSDHolder object to any protected objects with a differing security descriptor. Any 
account/group which is (or once was) a part of a protected group has their “adminCount” 
property set to 1, even if the object is moved out of that protected group. However, according to 
Microsoft56, simply having the adminCount property set to 1 is not sufficient to trigger the 
AdminSDHolder protection. For additional information on AdminSDHolder and SDProp, please 
see Sean Metcalf’s post on the subject57 or the AD technical specification58. 

                                                
55 https://technet.microsoft.com/en-us/library/2009.09.sdadminholder.aspx 
56 https://blogs.technet.microsoft.com/askds/2009/05/07/five-common-questions-about-adminsdholder-and-sdprop/ 
57 https://adsecurity.org/?p=1906 



One effect of this AdminSDHolder/SDProp protection is that if any security descriptors are 
modified for protected groups, such as “Domain Admins” or “Enterprise Admins,” the security 
descriptor template for those accounts will be reset within 60 minutes. If a malicious ACE is 
discovered by defenders on a single protected group or user, say a particular user in “Domain 
Admins,” and defenders remove the malicious ACE, it will be recloned. However, this grants 
attackers another opportunity: if any ACEs are modified for the AdminSDHolder object itself, 
those permissions will be cloned to all protected groups within 60 minutes. This is an attack 
primitive that the authors have explored previously59, but we will add in an additional stealth 
primitive to expand the approach. 
 
To implement the backdoor, the attacker first chooses some type of account/group takeover 
right described (GenericWrite, GenericAll, User-Force-Change-Password, WriteMembers, etc.) 
and adds that right to the CN=AdminSDHolder,CN=System,DC=domain,DC=com object. For 
our example, we will use GenericAll: 
 

 
Above: Showing that a Domain Admin user ‘da’ does not have any ACE where ‘badguy’ is a 
principal. Then, Add-DomainObjectAcl is used to add a GenericAll ACE for ‘badguy’ to the 

AdminSDHolder object. 
 
Then the attacker “hides” their account using the “Hiding the Principal” stealth primitive covered 
in the previous section. First, the owner of the ‘badguy’ principal is changed to ‘badguy’ itself. 
And note that ‘badguy’ is no particular groups: 
 

                                                                                                                                                       
58 [MS-ADTS] 3.1.1.6.1 “AdminSDHolder”.  https://msdn.microsoft.com/en-us/library/dd240052.aspx 
59 http://www.harmj0y.net/blog/redteaming/abusing-active-directory-permissions-with-powerview/ 



 
Above: Using PowerView’s Set-DomainObjectOwner to modify the ownership of the ‘badguy’ 

object. 
 
Next, we’ll hide the object from its OU listing as well as adding an explicit deny to the object 
itself for ‘Everyone’: 
 

 
Above: The ‘badguy’ being listed in the ‘TestOU’ OU before manipulation. 

 



 
Above: Adding a deny entry for ListChildren on the ‘badguy’s parent OU where the ‘Everyone’ 
SID (S-1-1-0) is the principal, as well as a deny for GenericAll to ‘Everyone’ on the ‘badguy’ 
object itself. After modifying the ACE, the object is no longer discoverable through LDAP. 

 

 
Above: The ‘badguy’ object is now hidden from its parent OU listing. 

 



 
Above: The malicious ACE with ‘badguy’ as the principal present on a user in ’Domain Admins’ 

but the current elevated context is unable to resolve the SID. 
 
To execute the backdoor, the attacker executes a password reset from the ‘badguy’ context, 
resetting the password for a user in ‘Domain Admins’: 
 

 
Above: The malicious ACE with ‘badguy’ as the principal present on a user in ’Domain Admins’ 

but the current elevated context is unable to resolve the SID. 
 



The end result is that the attacker-controlled account gains the ability to modify the membership 
of every SDProp-protected group (again, including “Domain/Enterprise Admins,” the ability to 
force reset the password for any protected user that is a member of any of these groups, and 
the ability to force Kerberoasting of the password for any user in these protected groups. 
However, even if the malicious ACE is discovered, it’s difficult to triage the principal in the ACE. 

A Case of Subverting LAPS 
In May of 2015, Microsoft released the Local Administrator Password Solution (LAPS), an IT 
administration tool used to securely randomize and manage local administrator passwords. 
LAPS accomplishes this through two major components: an Active Directory schema change 
and a client side group policy extension. After installing these, IT administrators can then 
configure LAPS via the AdmPwd.PS PowerShell cmdlets. 
 
The LAPS Active Directory schema change adds the properties ms-Mcs-AdmPwd and ms-Mcs-
AdmPwdExpirationTime to computer objects. Most interesting to us is the ms-Mcs-AdmPwd 
property, as it contains the plaintext password of the local administrator account. In order to 
read ms-Mcs-AdmPwd property, a principal must have the DS_CONTROL_ACCESS right to the 
entire target computer object or to the ms-Mcs-AdmPwd property on the target computer object. 
Usually IT administrators do this by using the AdmPwd.PS cmdlet Set-
AdmPwdReadPasswordPermission, which creates an ACE on a target OU granting a principal 
DS_CONTROL_ACCESS and ReadProperty rights to the ms-Mcs-AdmPwd property on all 
computers in the OU. 
 
To help audit who has rights to read the ms-Mcs-AdmPwd property (and therefore the local 
admin password of LAPS-secured machines), the AdmPwd.PS cmdlet contains a cmdlet named 
Find-AdmPwdExtendedRights. The intended purpose for this cmdlet is to, given a certain OU 
passed in as parameter, enumerate which AD principals can read the ms-Mcs-AdmPwd 
properties. The suggested use of this cmdlet is to audit who can read LAPS local administrator 
passwords. However, upon doing this research, we found several flaws where this cmdlet will 
not detect users with DS_CONTROL_ACCESS and we identified scenarios this cmdlet does not 
account for that could lead to attackers granting themselves access to the ms-Mcs-AdmPwd 
property. 
 
When detecting who has a specific AD right, two things should be taken into consideration: 
 

1) What principals can grant the right to themselves or other principals 
2) What existing ACEs grant the specified right and what objects do the ACEs apply to 

 
In regard to consideration #1, the first “flaw” we found is that that the Find-
AdmPwdExtendedRights does not account for who has security descriptors control rights. For 
example, any principal can modify the DACL of a LAPS-protected OU or computer if the 
principal is the owner of the object, has the WriteDACL or WriteOwner rights to the object, or 
has SE_TAKE_OWNERSHIP_PRIVILEGE. With the ability to modify the DACL, the principal 



could simply grant itself DS_CONTROL_ACCESS to the ms-Mcs-AdmPwd property. As the 
cmdlet is named Find-AdmPwdExtendedRights (emphasis on the extended rights), it’s hard to 
really call this a flaw in the cmdlet. However, several articles tout using this cmdlet in security 
auditing to determine who has rights to read LAPS passwords, but in reality, this cmdlet does 
not take into principals who can grant themselves this privilege. 
 
The second set of flaws we found in Find-AdmPwdExtendedRights deals with some bugs in 
how it determines where the DS_CONTROL_ACCESS right has been granted (consideration #2 
from above). Adding an allow ACE explicitly or via inheritance to a LAPS-protected computer 
with an access mask of DS_CONTROL_ACCESS or GenericAll(which implicitly grants 
DS_CONTROL_ACCESS) will allow a principal to read the ms-Mcs-AdmPwd property. To 
determine which principals have these rights, Find-AdmPwdExtendedRights analyzes explicit 
allow ACEs based on four things: 
 

1) The AD object type 
2) The ACE access mask (i.e. the granted right) 
3) The ACE ObjectType 
4) The ACE InheritedObjectType 

 
In regard to AD object types, Find-AdmPwdExtendedRights only analyzes ACEs applied to OUs 
or computers. All other container objects are ignored. Consequently, an attacker add a 
malicious ACE to a non-OU container that grants the attacker’s account 
DS_CONTROL_ACCESS to the the ms-Mcs-AdmPwd property.   
 
One example of a non-OU container is the Computers container - the default container that AD 
adds all new computers to.  Since Find-AdmPwdExtendedRights only analyzes explicit rights on 
OU containers, it’s impossible for the cmdlet to even analyze the “Computers” container. 
Consequently, if an attacker adds a malicious ACE to the Computers container, it will never be 
detected by this cmdlet. 
 
Another example of malicious container is the msImaging-PSPs object.  The following 
screenshots how an attacker could leverage this object type to evade the Find-
AdmPwdExtendedRights cmdlet as well. 
 



 
Above: 1) Compromised IT admin adds an msImaging-PSPs object “ThisIsNotAnOU,” a type of 

container, to an existing OU and moves the computer “Exchange” from the Server OU into it. 
 

 
Above: 2) Attacker uses IT admin to add an ACE to the “ThisIsNotAnOU” container, granting the 

low-privileged user “johnsmith” DS_CONTROL_ACCESS to all objects in the container. Note 
that Find-AdmPwdExtendedRights does not detect “johnsmith” as the having 

DS_CONTROL_ACCESS right (“johnsmith” is not in ExtendedRightHolders field). 
 

 
Above: 3) The low-privileged user “johnsmith” accessing the ms-Mcs-AdmPwd property 

 



In regard to OU and computer object DACL ACEs, Find-AdmPwdExtendedRights analyzes 
ACEs that grant DS_CONTROL_ACCESS and GenericAll to the principal - the rights necessary 
to read the ms-Mcs-AdmPwd property. However, the cmdlet makes several flawed logic 
decisions when analyzing the ACE ObjectType and ACE InheritedObjectType fields that an 
attacker could abuse to subvert detection. 
 
For ACEs with an access mask that grants GenericAll rights, the cmdlet will report a principal 
only if the ACE InheritedObjectType applies to all objects or only to computer objects. Notably, 
the cmdlet fails to account for ACEs added to computer object DACLs where the 
InheritedObjectType refers to a nonexistent object. The following table outlines this logic and its 
flaws: 
 

AdmPwd.PS GenericAll Logic Flaws OA   OC  OP  OAC OCC OPC 

InheritedObjectType == Any object ✔ ✔ ✔ ✔ ✔ ✔ 

InheritedObjectType == Computers ✔ ✔ ✔ ✔ ✔ ✔ 

InheritedObjectType == Nonexistent Object 
 InheritanceType == All,Descendants, or SelfAndChildren 

X X X N/A N/A N/A 

Above: ACE ObjectType(Top) vs ACE InheritedObjectType(Left) when analyzing GenericAll 
ACEs. The✔   and X symbols indicate whether Find-AdmPwdExtendedRights cmdlet correctly 

reports the principal that is granted GenericAll or not, respectively. 
 

Table Definitions: 
OA - ACE where ObjectType == Any Object, added to a computer object DACL 
OC - ACE where ObjectType == Computer Object, added to a computer object DACL 
OP - ACE where ObjectType == ms-Mcs-AdmPwd property, added to a computer object DACL 
OAC - ACE where ObjectType == Any Object, added to a container object DACL 
OCC - ACE where ObjectType == Computer Object, added to a container object DACL 
OPC - ACE where ObjectType == ms-Mcs-AdmPwd property, added to a container object 
DACL 
N/A = Not applicable since the ACE will never grant a principal the rights needed to view the 
ms-Mcs-AdmPwd property 
 
For ACEs with an access mask that grants DS_CONTROL_ACCESS rights, the cmdlet will 
report a principal under a a couple circumstances: 
 

● If the ACE applies to the ms-Mcs-AdmPwd property and is inherited to computers object 
descendants 

● If the ACE applies to all objects and is inherited to all descendants or only to computers 
object. 

 



Just as with GenericAll checks, the cmdlet fails to detect ACEs added to computer objects 
DACLs where the InheritedObjectType refers to a nonexistent object. Notably the cmdlet’s logic 
fails to report any object where the ACE ObjectType only applies to computers. In addition, the 
cmdlet does not report when the ACE ObjectType applies to the ms-Mcs-AdmPwd property and 
to computer objects. The following table outlines this logic and its flaws: 
 

AdmPwd.PS DS_CONTROL_ACCESS Logic Flaws OA OC OP OAC OCC OPC 

InheritedObjectType == Any object ✔ X X ✔ X ✔ 

InheritedObjectType == Computers ✔ X ✔ ✔ X ✔ 

InheritedObjectType == Nonexistent Object 
 InheritanceType == All,Descendants, or SelfAndChildren 

X X X N/A N/A N/A 

	Above: ACE ObjectType(Top) vs ACE InheritedObjectType(Left) when analyzing 
DS_CONTROL_ACCESS ACEs. The✔   and X symbols indicate whether Find-
AdmPwdExtendedRights cmdlet correctly reports the principal that is granted 

DS_CONTROL_ACCESS or not, respectively.	
 
To exploit any of the above noted flaws, an attacker would need to strategically craft an ACE 
and apply it to an AD computer object or container. As an example, consider the scenario 
described in the table above where an attacker creates an ACE granting the 
DS_CONTROL_ACCESS right, with an ObjectType that applies to the ms-Mcs-AdmPwd 
property, and an InheritedObjectType applying to any descendant object. A privileged attacker 
could exploit this by adding this ACE to a target LAPS-secured computer, granting all users the 
ability to read the local admin password of the target computer while at the same time 
subverting the Find-AdmPwdExtendedRights cmdlet. We demonstrate this in the following 
screenshots: 
  



 
 

 
Above: A privileged attacker granting “Domain Users” DS_CONTROL_ACCESS to the 

“Exchange” computer. Note that the Find-AdmPwdExtendedRights cmdlet does not detect 
“Domain Users” as having the DS_CONTROL_ACCESS right (the group isn’t listed in the 

ExtendedRightHolders field of Find-AdmPwdExtendedRights’s output) 
 

 
Above: The attacker leveraging an unprivileged user account to obtain the local admin 

password of the “Exchange” computer via an ACE backdoor. 
 
As shown, an attacker can subvert detection by the Find-AdmPwdExtendedRights cmdlet by 
exploit logic flaws in detecting who has the DS_CONTROL_ACCESS right. This cmdlet is a 
great demonstration that detecting who has access to a specific Active Directory right is not a 
straightforward task. While these flaws are specific to LAPS, they can more generally apply to 
any tool that attempts to detect AD security descriptor misconfiguration flaws. 

	

	 	



Exchange Strikes Back 
The installation process for Microsoft Exchange Server includes several modifications to the 
Active Directory schema, default object class parameters, and the addition of several Exchange-
related security groups and control relationships. In several enterprise environments, we have 
observed these privileges to include control over the AdminSDHolder object, and, in turn, every 
protected object (ie: Domain Admins, Enterprise Admins, and the members of these groups). 
For example, in many environments, all of the Exchange server computer objects are added to 
a security group called “Exchange Trusted Subsystem”, and this group is then given 
“GenericAll” (or Full Control) over the Domain Admins group and all the users of the Domain 
Admins group. If an adversary elevates to the SYSTEM user on any Exchange server in these 
environments, they will be able to abuse this privilege to execute the DCSync attack (due to full 
control over the domain object) or directly take over any other user or group in the domain. 
 

 
Above: A typical scenario in many enterprise networks: the Exchange Trusted Subsystem, with 

all Exchange computer objects as members, has full control over the Domain Admins group. 
 

The level of control Exchange grants itself in Active Directory is dependent on the version of 
Exchange Server being installed. Exchange 2016 and 2010 assume full control over every user, 
computer, and group in Active Directory except for any protected object, including 
AdminSDHolder; however, Exchange 2016 still adds at least 53 ACEs to the AdminSDHolder 
object, which may still provide some way to assume control of AdminSDHolder and, in turn, any 
protected Active Directory object. Until Exchange Server 2017 SP1, Exchange additionally 
assumed control of the domain object with a “WriteDACL” ACE. As mentioned, we have 
observed several instances of the Exchange Trusted Subsystem simply having full control of all 
objects in the domain, including the domain object. 
 
This backdoor relies on riding that liberal control over other objects granted to Exchange 
servers, and requires two steps: 
 
First, add our backdoor user to a nested group with local admin rights to an Exchange server. 
Security Group nesting easily grows out of control in most environments, making auditing user 
and group privileges an incredibly difficult and tedious task. In this demonstration, we will select 



a group three degrees separated from the system it has admin rights to: “Server Admins” is 
added to “US-West Server Admins”, which is added to “Exchange Server Admins”. Finally, 
“Exchange Server Admins” is granted local admin rights to an exchange server called 
EXCH001. Our backdoor, invisible user will be added to the “Server Admins” group, with its 
password set to never expire. 
 

 
Above: An anonymized example from a real enterprise network. The group on the far left (1) is 
added to the group in the center (2), which is added to the group to the right (3). This group (3) 

is granted local admin rights to the computer (4). Because this computer belonged to the 
Exchange Trusted Subsystem, it had full control of the entire domain. 

 
Second, hide the backdoor user using the methodology described in the “Stealth Primitive – 
Hiding the Backdoor User” section of this paper. Please see that section for detailed information 
on hiding the backdoor user. 
 
To execute this backdoor, we first need domain authenticated access as any user. Because of 
LDAP’s ability to supply alternate credentials, we can impersonate our backdoor, invisible user 
from any domain-joined context. We’ll impersonate the user, then add our current user to the 
“Server Admins” group, effectively granting our new, initial access user local admin rights on the 
Exchange server. 
 



 
Above: Using the alternate credentials of the “InvisibleUser” user, rwinchester adds himself as a 

member of the “Server Admins” group. 
 
Next, we assume the identity of the “SYSTEM” user on the affected Exchange server. An 
attacker has numerous options for this step, which are outside the scope of this paper. Then, 
the attacker may ride the existing, extreme amount of control Exchange servers have over other 
Active Directory objects. The options for executing this backdoor are vast and varied. An 
attacker may choose to use this privilege to reset a high privilege user and then assume that 
user’s identity, or add another user to a high privilege group, or even push evil GPOs to users in 
a certain OU. In several environments, the Exchange server account may even have DCSync 
privileges, granting us the ability to pull the krbtgt NT hash and create golden tickets. 
 

 
Above: Using Mimikatz’s DCSync command, the SYSTEM user on the Exchange server steals 

the NT hash for the KRBTGT. 



Abusing GPOs and Constrained Delegation 
Our final case study is the most complex, and takes advantage of the “patsy” user approach. A 
core part of the attack chain is the abuse of the SeEnableDelegationPrivilege, which is 
described in depth by one of the authors here60. 
 
The implementation of the backdoor comprises of two parts. First, the attacker grants 
themselves GenericAll rights to any user in the domain. This user does not have to be a 
member of any privileged group and will function as our “patsy” user. Second, the attacker 
grants this “patsy” user the WriteDacl right to the “Default Domain Controllers” Group Policy 
Object (GUID: 6AC1786C-016F-11D2-945F-00C04FB984F9): 
 

 
Above: Granting ‘harmj0y’ all rights to the ‘patsy’ user, and granting the ‘patsy’ user the right to 

edit the DACL of the “Default Domain Controllers Policy”. 
 

 
Above: The DACL edit rights granted to the ‘patsy’ user reflected in the group policy 

management console. 

                                                
60 http://www.harmj0y.net/blog/activedirectory/the-most-dangerous-user-right-you-probably-have-never-heard-of/ 



To exercise the backdoor, the attacker first force-resets the “patsy” user’s password, or 
executes the “targeted Kerberoasting” attack to recover the user’s password. The key is 
regaining the ability to authenticate as this user. From there, the attacker authenticates as the 
“pasty” user and uses takes advantage of the previously implemented WriteDacl right to add a 
malicious ACE to the “Default Domain Controllers” GPO which grants the “patsy” user the right 
to edit the GPO itself: 
 

 
Above: The attacker ‘badguy’ force-resets the password for the ‘patsy’ user, authenticates as 
‘patsy,’ and then uses that authentication context to grant all rights for ‘patsy’ to the ‘Default 

Domain Controllers Policy’ GPO. 
 
Then, from the same “patsy” user context, the attacker grants the “badguy” user the 
SeEnableDelegationPrivilege privilege right in the 
\\DOMAIN\sysvol\testlab.local\Policies\{6AC1786C-016F-11D2-945F-
00C04fB984F9}\MACHINE\Microsoft\Windows NT\SecEdit\GptTmpl.inf group policy file: 
 

 
Above: Modifying the default domain controllers policy to grant the ‘badguy’ user 

SeEnableDelegationPrivilege. 
 



This now grants the ‘badguy’ user the ability to execute a constrained delegation61 attack using 
Benjamin Delpy’s Mimikatz and Kekeo62 projects that would result in the ability to DCSync any 
account credential in the domain. First, ‘msds-allowedtodelegateto’ for ‘patsy’ is changed to 
ldap/DOMAIN_CONTROLLER. This property can only be modified by a user who has 
SeEnableDelegationPrivilege, which we just granted the ‘badguy’ user. We also set a nonsense 
SPN as it’s a requirement for the later Kerberos flow63, and flip the user account control bit 
16777216 (TRUSTED_TO_AUTH_FOR_DELEGATION): 
 

 
Above: Using the ‘badguy’ user’s SeEnableDelegationPrivilege to set the msds-

allowedtodelegate property of ‘patsy’. 
 
From here, the ‘badguy’ attacker uses Kekeo to request a ticket-granting-ticket (TGT) for the 
‘patsy’ user, and then uses Kekeo’s tgs::s4u module to request a ticket for LDAP service 
access to the domain controller through constrained delegation: 
 

                                                
61 http://www.harmj0y.net/blog/activedirectory/s4u2pwnage/ 
62 https://github.com/gentilkiwi/kekeo/ 
63 http://www.microsoft.com/technet/prodtechnol/windowsserver2003/technologies/security/tkerberr.mspx 



 
Above: Using Kekeo to inject a ticket for ldap/PRIMARY.testlab.local through constrained 

delegation. 
 
And finally, with this ticket injected, DCSync for any user can be executed against the PRIMARY 
domain controller: 
 



 
Above: DCSync is successfully executed against PRIMARY.testlab.local to retrieve the account 

hash for the krbtgt account. 
 
More information on the specifics of this attack approach are covered here64 and here65. 
 

Defenses 
Some defenders may believe the detection of these types of backdoors is a lost cause, but 
several defensive approaches can help find these types of persistence. The primary method for 
detection and investigation remains properly tuned event logs for domain controllers. It is 
outside the scope of this paper to comprehensively cover event log tuning for these types of 
attacks, but the authors intend to perform follow up research on this for future publication. 
However, we will highlight some resources and approaches to facilitate defense. Note that we 
will not focus on how to “prevent your domain being owned,” but rather the detection of the 
implementation steps of these backdoors. 
 
One interesting defensive tool is the use of AD replication metadata. When a change is made to 
a domain object on a domain controller in AD, those changes are replicated to other domain 
controllers in the same domain (see the "Directory Replication" section here66). As part of the 
replication process, metadata about the replication is preserved in two constructed attributes 
(attributes where the end value is calculated from other attributes). These two properties are 
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msDS-ReplAttributeMetaData (for normal attribute) and msDS-ReplValueMetaData (for linked 
attributes). The data in these two properties are stored as XML: 
 

 
Above: Retrieving XML-formatted replication metadata for the ‘harmj0y’ user. 

 
You can see that we get an array of XML text blobs that describes the modification events. 
PowerView's brand new Get-DomainObjectAttributeHistory function will automatically query 
msDS-ReplAttributeMetaData for one or more objects and parse out the XML blobs into 
custom PSObjects: 
 

 
Above: Using PowerView’s Get-DomainObjectAttributeHistory function to retrieve parsed 

replication metadata for the ‘harmj0y’ user. 
 



Metadata won't magically tell you an entire story, but it can start to point you in the right 
direction, with the bonus of being pre-existing functionality already present in your domain. For 
most triage situations, the process will be: 
 

1. Use AD replication metadata to detect changes to objective properties that might 
indicate malicious behavior. 

2. Collect detailed event logs from the domain controller linked to the change (as indicated 
by the metadata) in order to track down who performed the modification and what the 
value was changed to. 

 
Example event log IDs of interest are 4735/4737/4755 for modifications to domain local, global, 
and universally scoped security groups and 4738 (“A user account was changed”) for 
modification to specific user properties. 
 
Also, system access control lists (SACLs), the other ACL component, are ripe for defensive 
uses. SACLs can implement custom auditing of specific AD changes. We believe these have 
not been properly investigated because of the perceived difficulty in implementation for use at 
scale in enterprises, as well as the additional noise introduced. However, we believe that it may 
be possible to implement very specific SACLs for just the malicious primitives outlined in this 
paper, reducing the overhead of implementation, maintenance, and event noise. This is a future 
research area for the authors. 
 

Future Research 
Two DACL neutering approaches were investigated that proved unfruitful: setting a Null DACL 
on an object (which would effectively allow everyone all access) and flipping the 
SE_DACL_PRESENT header control bit in the security descriptor to produce a similar effect. 
Section 6.1.367 (“Security Descriptor Requirements”) of the Active Directory Technical 
Specification ([MS-ADTS]) explicitly states that NULL DACLs are disallowed. In our testing, 
SE_DACL_PRESENT failed as well. Contradictory, though, the specification also outlines 
checking for NULL DACLs and the SE_DACL_PRESENT when evaluating access control (see 
[MS-ADTS] 5.1.3.3 “Checking Access”). These discrepancies warrant further investigation. 
 
Another area of future research will be investigating methods of combatting the stealth 
primitives described. We believe, but have not properly tested, that there should be additional 
options to regain object access or enumerating DACLs with explicit “deny” rules if a defender is 
operating from an elevated context on a domain controller itself. We hope to discover how to 
detect and mitigate every backdoor action and stealth primitive described in this paper. 
 
Related to this work on securable Active Directory objects, the authors have also started some 
research into host-based securable objects and their associated implications. We believe that 
security-descriptor-based backdoors added to host-based securable objects can be 
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implemented in conjunction with AD-security-descriptor-based backdoors to create even more 
subtle attack scenarios. 
 
Finally, as mentioned, defensive use of SACLs to detect the attacks described is another area 
of future work. In the future, the authors will produce complete guidance on performing this type 
of tuning and monitoring for even large enterprises. 
 

Conclusion 
The Active Directory access control model is an untapped resource for covert persistence in a 
domain. As mentioned, a huge advantage of using this approach is that it’s often difficult to tell if 
a DACL “misconfiguration” was implemented maliciously or implemented by accident. In 
addition, malicious DACL configurations are likely to survive operating system and domain 
functional level upgrades. 
 
With a minimal amount of time and elevated domain credentials, the possibilities for creative 
DACL-based domain backdoors are limited only by an attacker’s imagination. By using the 
control relationship taxonomy outlined in this paper, combined with the stealth primitives of 
hiding object DACLs and/or principals, hard to triage backdoors of this nature can be obscured 
from defenders. The BloodHound analysis project can find some of these types of malicious 
attack chains, but this lacks the context of “who made this change.” While defense certainly is 
possible in the form of properly tuned domain controller event log collection, this collection 
needs to be in place at the time the backdoor is implemented. 
 
It is the authors’ opinion that these types of backdoors have likely been implemented in the wild, 
but we have not found any public confirmation of this suspicion. Remember: “As an offensive 
researcher, if you can dream it, someone has likely already done it…... and that someone isn’t 
the kind of person who speaks at security cons.” 
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