
IOActive, Inc. Copyright ©2014. All Rights Reserved.

Windows Kernel Graphics

Driver Attack Surface

Ilja van Sprundel

Director of Penetration Testing

IOActive, Inc. Copyright ©2014. All Rights Reserved.

Who Am I ?

• Ilja van Sprundel

• ivansprundel@ioactive.com

• Director of Penetration Testing at IOActive

• Pen test

• Code review

• Break stuff for fun and profit 

mailto:ivansprundel@ioactive.com

IOActive, Inc. Copyright ©2014. All Rights Reserved.

Outline/Agenda

• What’s this talk about ?

• Windows graphics drivers

• WDDM kmd Driver

– Synchronization

– Entrypoints

• Full userland program to talk about this stuff

• Sniffing/snooping private data

• Putting it all together

– Fuzzing

– Reverse engineering

IOActive, Inc. Copyright ©2014. All Rights Reserved.

What’s This Talk About ?

• Windows® WDDM drivers

– Implementation security

– Kernel driver part

• Audience

– Auditors (what to look for)

– Graphics drivers developers

(what not to do, and where to pay close attention)

– Curious people that like to poke around in driver internals

• Knowledge
– Some basic knowledge of Windows drivers (IRP’s, probing, capturing, …)

IOActive, Inc. Copyright ©2014. All Rights Reserved.

Windows Graphics Drivers

• Old Model
– XDDM /XPDM

– Windows 2000/XP

– No longer supported as of Windows 8

– Not covered in this presentation

• WDDM (Windows Display Driver Model)
– New Vista model

• v1 – vista

• v1.1 – win 7

• v1.2 – win 8

• V1.3 – win 8.1

– Will only describe interesting parts from a security perspective

IOActive, Inc. Copyright ©2014. All Rights Reserved.

Windows Graphics Drivers

• So who makes these things and why ?

– IHV’s (Intel, NVIDIA, AMD, Qualcomm, PowerVR, VIA, Matrox, …)

• Very rich drivers

– Basic fallback (basic render, basic display)

• Implements the bare minimum

– Virtualization (VMware, Virtual Box, Parallels guest drivers)

• Specific special purpose driver

– Remote desktop scenario’s (XenDesktop, RDP, …)

• Specific special purpose driver

– Virtual display (intelligraphics, extramon, …)

• Specific special purpose driver

IOActive, Inc. Copyright ©2014. All Rights Reserved.

Windows Graphics Drivers

• WDDM model is split between user mode and kernel mode

• Move to user was done for stability and reliability
– A large chunk of all blue screen prior to vista were due to graphics drivers (from MSDN): “In

Windows XP, display drivers, which are large and complex, can be a major source of system
instability. These drivers execute entirely in kernel mode (i.e., deep in the system code) and hence
a single problem in the driver will often force the entire system to reboot. According to the crash
analysis data collected during the Windows XP timeframe, display drivers are responsible for up
to 20 percent of all blue screens.”

• User mode part runs as part of a dll in most processes
– Still has interesting attack surface

• Encoders / decoders

• Binary planting

• Some API’s might be partially (and indirectly) exposed to remote attack
surface (e.g. WebGL)

• Will not cover user mode part, only kernel mode.

IOActive, Inc. Copyright ©2014. All Rights Reserved.

IOActive, Inc. Copyright ©2014. All Rights Reserved.

WDDM kmd Driver

• So what does a WDDM kmd driver look like?

NTSTATUS DriverEntry(IN PDRIVER_OBJECT DriverObject,

IN PUNICODE_STRING RegistryPath)

{

...

DRIVER_INITIALIZATION_DATA DriverInitializationData;

...

DriverInitializationData.DxgkDdiEscape = DDIEscape;

...

Status = DxgkInitialize(DriverObject,

RegistryPath,

&DriverInitializationData);

...

}

IOActive, Inc. Copyright ©2014. All Rights Reserved.

WDDM kmd Driver

• DriverEntry() is the main entry point for any kernel driver

• Fill in DRIVER_INITIALIZATION_DATA struct

– Contains a large set of callback functions

– ‘dynamic’ struct

• Bigger on win7 (vs vista)

• Even bigger on win8

• Grown even more for win 8.1

• All later elements appended at the end

• Call DxgkInitialize()

– Tells dxgkernel about this driver and all its callbacks

• No IRP’s, no IOCTL’s, nothing like WDM. You don’t pass the IoManager.

IOActive, Inc. Copyright ©2014. All Rights Reserved.

WDDM kmd Driver

• Very similar variant of this

• Calls DxgkInitializeDisplayOnlyDriver() iso DxgkInitialize() instead

• Uses PKMDDOD_INITIALIZATION_DATA structure

• Much like the previous, but for use by a kernel mode display only driver

IOActive, Inc. Copyright ©2014. All Rights Reserved.

WDDM kmd Driver

• DRIVER_INITIALIZATION_DATA contains all sorts of callbacks

• From an attack surface perspective, we can roughly divide them into three

groups:

– Those where an attacker has no or very little control

– Those where an attacker has some (indirect) control

– Those where an attacker has significant input into the callback

• We’re obviously mainly concerned with the latter

IOActive, Inc. Copyright ©2014. All Rights Reserved.

WDDM kmd Driver – Synchronization

• WDDM has a threading model for these callbacks which basically

consists of four levels (where each callback belongs to one of these):

• Three

– Only a single thread may enter

– GPU Has to be idle

– No DMA buffers being processed

– Video memory is evicted to host CPU memory

• Two

– Same as three except for video memory eviction

IOActive, Inc. Copyright ©2014. All Rights Reserved.

WDDM kmd Driver – Synchronization

• One

– Calls are categorized into classes. Only one thread of each class is

allowed to call into callback simultaneously

• Zero

– Completely reentrant

• If concurrency is allowed, no two concurrent threads may belong to the

same process.

• This is important to know, since you need to keep this in mind when

looking for potential race conditions scenarios.

IOActive, Inc. Copyright ©2014. All Rights Reserved.

WDDM kmd Driver Entrypoints

• A fairly small number of the callbacks take significant input from userland:

– Escape

– Render

– Allocation

– QueryAdapter

• Before we can get to them, we need to perform proper driver initialization

– Look at this first

• Then look at the callbacks

IOActive, Inc. Copyright ©2014. All Rights Reserved.

WDDM kmd Driver Entrypoints – Initialization

• Need to initialize the device before entry points can be reached from

userland

• Assume we come from the GDI world and we have an HDC

• Succinctly, this involves three steps:

– Convert HDC to WDDM adapter handle

– Get a WDDM device handle out of the adapter handle

– Create a context for the device

IOActive, Inc. Copyright ©2014. All Rights Reserved.

WDDM kmd Driver Entrypoints – Initialization

– Convert HDC to adapter handle

– Fill in the D3DKMT_OPENADAPTERFROMHDC data structure

– Call D3DKMTOpenAdapterFromHdc

D3DKMT_OPENADAPTERFROMHDC

oafh;

memset(&oafh, 0x00, sizeof(oafh));

oafh.hDc = GetDC(NULL);

D3DKMTOpenAdapterFromHdc(&oafh);

IOActive, Inc. Copyright ©2014. All Rights Reserved.

WDDM kmd Driver Entrypoints – Initialization

– Get a device handle out of the adapter handle

– Fill in D3DKMT_CREATEDEVICE data structure

– Call D3DKMTCreateDevice

D3DKMT_CREATEDEVICE cdev;

memset(&cdev, 0x00, sizeof(cctx));

cdev.hAdapter = oafh.hAdapter;

D3DKMTCreateDevice(&cdev);

IOActive, Inc. Copyright ©2014. All Rights Reserved.

WDDM kmd Driver Entrypoints – Initialization

– Create a context for the device

– The previously obtained device handle is the handle that gets passed to most

userland API’s to talk to WDDM drivers.

– In order to do anything, you’ll need to create a device context for the device

• Sets up stuff like command buffers that can be passed off to a WDDM driver

• There is some attack surface here. Allows passing arbitrary userland data

(pPrivateDriverData) (with associated length, PrivateDriverDataSize) to WDDM

driver.

– It may or may not look at it. This is completely driver dependent.

IOActive, Inc. Copyright ©2014. All Rights Reserved.

WDDM kmd Driver Entrypoints – Initialization

– Create a context for the device

– Fill in

D3DKMT_CREATECONTEXT data structure

– Call D3DKMTCreateContext

– DxgkDdiCreateContext kernel entry point

D3DKMT_CREATECONTEXT

cctx;

memset(&cctx, 0x00,

sizeof(cctx));

cctx.hDevice = cdev.hDevice;

r =

pfnKTCreateContext(&cctx);

typedef struct _D3DKMT_CREATECONTEXT {

D3DKMT_HANDLE hDevice;

UINT NodeOrdinal;

UINT EngineAffinity;

D3DDDI_CREATECONTEXTFLAGS Flags;

VOID *pPrivateDriverData;

UINT PrivateDriverDataSize;

D3DKMT_CLIENTHINT ClientHint;

D3DKMT_HANDLE hContext;

VOID *pCommandBuffer;

UINT CommandBufferSize;

D3DDDI_ALLOCATIONLIST *pAllocationList;

UINT AllocationListSize;

D3DDDI_PATCHLOCATIONLIST *pPatchLocatio

nList; UINT PatchLocationListSize;

D3DGPU_VIRTUAL_ADDRESS CommandBuff

er;

} D3DKMT_CREATECONTEXT;

IOActive, Inc. Copyright ©2014. All Rights Reserved.

WDDM kmd Driver Entrypoints – Initialization

– Create a context for the device

– Some interesting output elements in struct

– Both command buffer and patchlocationlist get

allocated on your behalf by WDDM

– In usermode. Used to talk to WDDM driver.

typedef struct _D3DKMT_CREATECONTEXT {

D3DKMT_HANDLE hDevice;

UINT NodeOrdinal;

UINT EngineAffinity;

D3DDDI_CREATECONTEXTFLAGS Flags;

VOID *pPrivateDriverData;

UINT PrivateDriverDataSize;

D3DKMT_CLIENTHINT ClientHint;

D3DKMT_HANDLE hContext;

VOID *pCommandBuffer;

UINT CommandBufferSize;

D3DDDI_ALLOCATIONLIST *pAllocationList;

UINT AllocationListSize;

D3DDDI_PATCHLOCATIONLIST *pPatchLocatio

nList; UINT PatchLocationListSize;

D3DGPU_VIRTUAL_ADDRESS CommandBuff

er;

} D3DKMT_CREATECONTEXT;

IOActive, Inc. Copyright ©2014. All Rights Reserved.

WDDM kmd Driver Entrypoints – Escape

• DxgkDdiEscape

• This is the IOCTL of graphics drivers.

• Very much like the ‘old’ extEscape

• However, no escape function is passed.

• Just a pointer to private data and a length value

• MSDN describes it as “The DxgkDdiEscape function shares information with the user-

mode display driver.”

• Driver is free to implement this any way it sees fit.

• Data isn’t structured in any standardized way.

– Can and will vary wildly from driver to driver.

• Threading level 2

IOActive, Inc. Copyright ©2014. All Rights Reserved.

WDDM kmd Driver Entrypoints – Escape

• What does DxgkDdiEscape look like?

NTSTATUS APIENTRY

DxgkDdiEscape(

__in const HANDLE hAdapter,

__in const DXGKARG_ESCAPE

*pEscape

)

{ ... }

typedef struct

_DXGKARG_ESCAPE {

HANDLE hDevice;

D3DDDI_ESCAPEFLAGS Flags;

VOID

*pPrivateDriverData;

UINT

PrivateDriverDataSize;

HANDLE hContext;

} DXGKARG_ESCAPE;

IOActive, Inc. Copyright ©2014. All Rights Reserved.

WDDM kmd Driver Entrypoints – Escape

• pPrivateDriverData is probed and captured

• No length restrictions (e.g. could be ~4 gigs)

• Userland has complete control of its content

• Any embedded pointers in it need to be probed and only used under a

try/except

IOActive, Inc. Copyright ©2014. All Rights Reserved.

WDDM kmd Driver Entrypoints – Escape

• How do you talk to this from userland?

• Publicly documented function. Basically exposes a system call.

NTSTATUS D3DKMTEscape(

In const D3DKMT_ESCAPE

*pData);

typedef struct _D3DKMT_ESCAPE {

D3DKMT_HANDLE hAdapter;

D3DKMT_HANDLE hDevice;

D3DKMT_ESCAPETYPE Type;

D3DDDI_ESCAPEFLAGS Flags;

VOID *pPrivateDriverData;

UINT PrivateDriverDataSize

; D3DKMT_HANDLE hContext;

} D3DKMT_ESCAPE;

IOActive, Inc. Copyright ©2014. All Rights Reserved.

WDDM kmd Driver Entrypoints – Escape

IOActive, Inc. Copyright ©2014. All Rights Reserved.

WDDM kmd Driver Entrypoints – Render

• DxgkDdiRender

• This callback is at the heart of rendering.

• Allows usermode to tell GPU to render from a command buffer

– Will generate DMA buffer from command buffer

IOActive, Inc. Copyright ©2014. All Rights Reserved.

WDDM kmd Driver Entrypoints – Render

• What does DxgkDdiRender look like?

NTSTATUS APIENTRY

DxgkDdiRender(

In const HANDLE hContext,

Inout DXGKARG_RENDER

*pRender

)

{ ... }

typedef struct _DXGKARG_RENDER {

const VOID CONST *pCommand;

const UINT CommandLength;

VOID *pDmaBuffer;

UINT DmaSize;

VOID *pDmaBufferPrivateData;

UINT DmaBufferPrivateDataSize;

DXGK_ALLOCATIONLIST *pAllocationList;

UINT AllocationListSize;

D3DDDI_PATCHLOCATIONLIST *pPatchLocationListIn;

UINT PatchLocationListInSize;

D3DDDI_PATCHLOCATIONLIST *pPatchLocationListOut;

UINT PatchLocationListOutSize;

UINT MultipassOffset;

UINT DmaBufferSegmentId;

PHYSICAL_ADDRESS DmaBufferPhysicalAddress;

} DXGKARG_RENDER;

IOActive, Inc. Copyright ©2014. All Rights Reserved.

WDDM kmd Driver Entrypoints – Render

• pCommand buffer is a pointer that comes from userland

• pPatchLocationListIn is a pointer that comes from userland

• MSDN says the following about these:

“Both the command buffer pCommand and the input patch-location

list pPatchLocationListIn that the user-mode display driver generates are allocated from

the user-mode address space and are passed to the display miniport driver untouched.

The display miniport driver must use __try/__except code on any access to the buffer and

list and must validate the content of the buffer and list before copying the content to the

respective kernel buffers.”

• It goes on to give a validation sample.

IOActive, Inc. Copyright ©2014. All Rights Reserved.

WDDM kmd Driver Entrypoints – Render

__try

{

for (Index = 0; Index < AllocationListInSize; AllocationTable++,

AllocationListIn++, AllocationListOut++, Index++)

{

D3DKMT_HANDLE AllocationHandle = AllocationListIn->hAllocation;

. . .

}

}

__except(EXCEPTION_EXECUTE_HANDLER)

{

Status = STATUS_INVALID_PARAMETER;

SAMPLE_LOG_ERROR("Exception occurred accessing … Status=0x%I64x", Status);

goto cleanup;

}

IOActive, Inc. Copyright ©2014. All Rights Reserved.

WDDM kmd Driver Entrypoints – Render

• Userland doesn’t actually get to specify the command buffer and patch list

addresses.

• Dxgkernel allocates them on your behalf when you call

D3DKMTCreateContext, but does map it in userland.

• So you can unmap it (VirtualFree), behind the drivers back.

• Hence, why the try/except is needed.

• Given that both command and patch list addresses are in userland you

need to watch out for double fetches.

– Fetch one: dereference and validate

– Userland changes data

– Fetch two: dereference and use, double fetch bug, invalidates previous

validation

IOActive, Inc. Copyright ©2014. All Rights Reserved.

WDDM kmd Driver Entrypoints – Render

• Example of missing try /except

static NTSTATUS APIENTRY DxgkDdiRenderNew(CONST HANDLE hContext, DXGKARG_RENDER *pRender) {

if (pRender->CommandLength < sizeof (VBOXWDDM_DMA_PRIVATEDATA_BASEHDR))

{

return STATUS_INVALID_PARAMETER;

}

PVBOXWDDM_DMA_PRIVATEDATA_BASEHDR pInputHdr = (PVBOXWDDM_DMA_PRIVATEDATA_BASEHDR)pRender-

>pCommand;

NTSTATUS Status = STATUS_SUCCESS;

VBOXCMDVBVA_HDR* pCmd = (VBOXCMDVBVA_HDR*)pRender->pDmaBufferPrivateData;

switch (pInputHdr->enmCmd)  no try/except.

{

...

}

...

return STATUS_SUCCESS;

}

IOActive, Inc. Copyright ©2014. All Rights Reserved.

WDDM kmd Driver Entrypoints – Render

• Example of double fetch

static NTSTATUS APIENTRY DxgkDdiRenderNew(CONST HANDLE hContext, DXGKARG_RENDER *pRender) {

…

PVBOXWDDM_DMA_PRIVATEDATA_BASEHDR pInputHdr =

(PVBOXWDDM_DMA_PRIVATEDATA_BASEHDR)pRender->pCommand;

...

PVBOXWDDM_DMA_PRIVATEDATA_UM_CHROMIUM_CMD pUmCmd = pInputHdr;

…

PVBOXWDDM_UHGSMI_BUFFER_UI_SUBMIT_INFO pSubmUmInfo = pUmCmd->aBufInfos;

…

if (pSubmUmInfo->offData >= pAlloc->AllocData.SurfDesc.cbSize

|| pSubmUmInfo->cbData > pAlloc->AllocData.SurfDesc.cbSize

|| pSubmUmInfo->offData + pSubmUmInfo->cbData > pAlloc->AllocData.SurfDesc.cbSize)

{

WARN(("invalid data"));

return STATUS_INVALID_PARAMETER;

}

…

pSubmInfo->cbBuffer = pSubmUmInfo->cbData;

…

return STATUS_SUCCESS;

Validate

Use

IOActive, Inc. Copyright ©2014. All Rights Reserved.

WDDM kmd Driver Entrypoints – Render

• How do you talk to this from userland?

NTSTATUS APIENTRY

D3DKMTRender(

Inout D3DKMT_RENDER *pData);

typedef struct _D3DKMT_RENDER {

union {

D3DKMT_HANDLE hDevice;

D3DKMT_HANDLE hContext;

};

UINT CommandOffset;

UINT CommandLength;

UINT AllocationCount;

UINT PatchLocationCount;

VOID *pNewCommandBuffer;

UINT NewCommandBufferSize;

D3DDDI_ALLOCATIONLIST *pNewAllocationList;

UINT NewAllocationListSize;

D3DDDI_PATCHLOCATIONLIST *pNewPatchLocationList;

UINT NewPatchLocationListSize;

D3DKMT_RENDERFLAGS Flags;

ULONGLONG PresentHistoryToken;

ULONG BroadcastContextCount;

D3DKMT_HANDLE

BroadcastContext[D3DDDI_MAX_BROADCAST_CONTEXT];

ULONG QueuedBufferCount;

D3DGPU_VIRTUAL_ADDRESS NewCommandBuffer;

VOID *pPrivateDriverData;

UINT PrivateDriverDataSize;

} D3DKMT_RENDER;

IOActive, Inc. Copyright ©2014. All Rights Reserved.

WDDM kmd Driver Entrypoints – Render

IOActive, Inc. Copyright ©2014. All Rights Reserved.

WDDM kmd Driver Entrypoints – Allocation

• DxgkDdiCreateAllocation

• Dxgkernel calls this callback on userland’s behalf to allocate memory.

• It will allocate either system or video memory, depending on flags.

IOActive, Inc. Copyright ©2014. All Rights Reserved.

WDDM kmd Driver Entrypoints – Allocation

• What does DxgkDdiCreateAllocation look like?

NTSTATUS APIENTRY DxgkDdiCreateAllocation(

const HANDLE hAdapter,

DXGKARG_CREATEALLOCATION

*pCreateAllocation

)

{ ... }

typedef struct

_DXGKARG_CREATEALLOCATION {

const VOID *pPrivateDriverData;

UINT PrivateDriverDataSize;

UINT NumAllocations;

DXGK_ALLOCATIONINFO

*pAllocationInfo;

HANDLE hResource;

DXGK_CREATEALLOCATIONFLAGS

Flags;

} DXGKARG_CREATEALLOCATION;

IOActive, Inc. Copyright ©2014. All Rights Reserved.

WDDM kmd Driver Entrypoints – Allocation

• What does DxgkDdiCreateAllocation look like ? (cont.)
typedef struct _DXGK_ALLOCATIONINFO {

VOID *pPrivateDriverData;

UINT PrivateDriverDataSize;

UINT Alignment;

SIZE_T Size;

SIZE_T PitchAlignedSize;

DXGK_SEGMENTBANKPREFERENCE HintedBank;

DXGK_SEGMENTPREFERENCE PreferredSegment;

UINT SupportedReadSegmentSet;

UINT SupportedWriteSegmentSet;

UINT EvictionSegmentSet;

UINT MaximumRenamingListLength;

HANDLE hAllocation;

DXGK_ALLOCATIONINFOFLAGS Flags;

DXGK_ALLOCATIONUSAGEHINT *pAllocationUsageHint;

UINT AllocationPriority;

} DXGK_ALLOCATIONINFO;

IOActive, Inc. Copyright ©2014. All Rights Reserved.

WDDM kmd Driver Entrypoints – Allocation

• Private driver data is captured from user to kernel.

• There are NumAllocations DXGK_ALLOCATIONINFO structures that

userland gets to pass.

• DXGK_ALLOCATIONINFO’s private driver data is also captured from

user to kernel.

• DxgkDdiOpenAllocation can’t be directly called from userland, but its

private driver data is the same as provided here.

IOActive, Inc. Copyright ©2014. All Rights Reserved.

WDDM kmd Driver Entrypoints – Allocation

• How do you talk to this from userland ?

NTSTATUS APIENTRY

D3DKMTCreateAllocation(

D3DKMT_CREATEALLOCATION

*pData

);

typedef struct _D3DKMT_CREATEALLOCATION {

D3DKMT_HANDLE hDevice;

D3DKMT_HANDLE hResource;

D3DKMT_HANDLE hGlobalShare;

const VOID *pPrivateRuntimeData;

UINT PrivateRuntimeDataSize;

const VOID *pPrivateDriverData;

UINT PrivateDriverDataSize;

UINT NumAllocations;

D3DDDI_ALLOCATIONINFO *pAllocationInfo;

D3DKMT_CREATEALLOCATIONFLAGS Flags;

HANDLE

hPrivateRuntimeResourceHandle;

} D3DKMT_CREATEALLOCATION;

IOActive, Inc. Copyright ©2014. All Rights Reserved.

WDDM kmd Driver Entrypoints – Allocation

IOActive, Inc. Copyright ©2014. All Rights Reserved.

WDDM kmd Driver Entrypoints – queryadapter

• The actual type nr in user and driver

different

• Dxgkernel does some kind of translation

• All have well defined format

• With well defined length

• Except for

DXGKQAITYPE_UMDRIVERPRIVATE

• Driver can implement that one any way

it wants

typedef enum _DXGK_QUERYADAPTERINFOTYPE {

DXGKQAITYPE_UMDRIVERPRIVATE = 0,

DXGKQAITYPE_DRIVERCAPS = 1,

DXGKQAITYPE_QUERYSEGMENT = 2,

#if (DXGKDDI_INTERFACE_VERSION >= DXGKDDI_INTERFACE_VERSION_WIN7)

DXGKQAITYPE_ALLOCATIONGROUP = 3,

DXGKQAITYPE_QUERYSEGMENT2 = 4,

#endif

#if (DXGKDDI_INTERFACE_VERSION >= DXGKDDI_INTERFACE_VERSION_WIN8)

DXGKQAITYPE_QUERYSEGMENT3 = 5,

DXGKQAITYPE_NUMPOWERCOMPONENTS = 6,

DXGKQAITYPE_POWERCOMPONENTINFO = 7,

DXGKQAITYPE_PREFERREDGPUNODE = 8,

#endif

#if (DXGKDDI_INTERFACE_VERSION >=

DXGKDDI_INTERFACE_VERSION_WDDM1_3)

DXGKQAITYPE_POWERCOMPONENTPSTATEINFO = 9,

DXGKQAITYPE_HISTORYBUFFERPRECISION = 10

#endif } DXGK_QUERYADAPTERINFOTYPE;

IOActive, Inc. Copyright ©2014. All Rights Reserved.

WDDM kmd Driver Entrypoints – queryadapter

• What does DxgkDdiQueryAdapterInfo look like?

NTSTATUS APIENTRY

DxgkDdiQueryAdapterInfo(

HANDLE hAdapter,

DXGKARG_QUERYADAPTERINFO

*pQueryAdapterInfo)

{ ... }

typedef struct

_DXGKARG_QUERYADAPTERINFO {

DXGK_QUERYADAPTERINFOTYP

E Type; VOID *pInputData;

UINT InputDataSize;

VOID *pOutputData;

UINT OutputDataSize;

} DXGKARG_QUERYADAPTERINFO;

IOActive, Inc. Copyright ©2014. All Rights Reserved.

WDDM kmd Driver Entrypoints – queryadapter

• Has interesting entry- and exit points

• Entry points:

– Data being passed in from userland.

– Most interesting type for this is DXGKQAITYPE_UMDRIVERPRIVATE.

• Exit points:

– With Query API’s that return large structures from kernel to user, there is the

risk of information leaks.

• Usually happens when a struct is on the stack/heap, no memset is

done, and part of one or more members is not initialized (e.g. fixed

character buffer that holds a 0-terminated string).

IOActive, Inc. Copyright ©2014. All Rights Reserved.

WDDM kmd Driver Entrypoints – queryadapter

• How do you talk to this from userland ?

NTSTATUS

D3DKMTQueryAdapterInfo(

D3DKMT_QUERYADAPTERINFO

*pData

);

typedef struct

_D3DKMT_QUERYADAPTERINFO {

D3DKMT_HANDLE hAdapter;

KMTQUERYADAPTERINFOTYPE Type;

VOID *pPrivateDriverData;

UINT PrivateDriverDataSize;

} D3DKMT_QUERYADAPTERINFO;

IOActive, Inc. Copyright ©2014. All Rights Reserved.

WDDM kmd Driver Entrypoints – queryadapter

IOActive, Inc. Copyright ©2014. All Rights Reserved.

WDDM kmd Driver Entrypoints – Best Practices

• Out of bound read  very common

– This means bluescreen in kernel

– Could happen, even for a single byte out of bound read

• Don’t ship debug code

– Remove DbgPrint calls

– And surrounding code (e.g. data that will be printed by formatstring)

• Ends up in binary otherwise. Could contains exploitable bugs.

– #ifdef debug

• Use kernel safe integer library routines (e.g. RtlUIntAdd)

– Please don’t roll your own …

IOActive, Inc. Copyright ©2014. All Rights Reserved.

Full userland Program to Talk to this Stuff

• Slightly more difficult than it looks.

• The API’s are documented on msdn, and exported from gdi32.dll.

• The data structures are documented on msdn.

• Meant for OpenGL ICD (Installable client driver) drivers

– No headers for this stuff:

• Need to LoadLibrary/GetProcAddress

• There is a devkit for this, but, ..., MSDN says: “Note To obtain a license

for the OpenGL ICD Development Kit, contact the OpenGL

Issues team.”

• Given that it is documented, getting a (partially) working implementation

is pretty easy.

• Or you could use the COM APIs. 

mailto:opengl@microsoft.com

IOActive, Inc. Copyright ©2014. All Rights Reserved.

Sniffing/snooping Private Data

• Since data send from umd to kmd is not structured in any way, we need to

see what gets send to kmd under normal conditions.

• To get an idea of what the protocol looks like for any given driver

• Hook APIs:

– D3DKMTEscape

– D3DKMTRender

– D3DKMTCreateAllocation

– D3DKMTQueryAdapterInfo

IOActive, Inc. Copyright ©2014. All Rights Reserved.

Sniffing/snooping Private Data

• Tool/demo

• Release!

• Running against PowerPoint seems to give pretty good results.

IOActive, Inc. Copyright ©2014. All Rights Reserved.

Putting It all Together

• Fuzzing

• Reverse engineering

IOActive, Inc. Copyright ©2014. All Rights Reserved.

Putting It all Together – Fuzzing

• Mutating fuzzer

• Starting off with sniffed data (template per driver)

• Mutate data

• Loop

• Combine this with reversing

– If (embedded_len != PrivateDataSize) bail;

– Checksums

•  Bugs!

IOActive, Inc. Copyright ©2014. All Rights Reserved.

Putting It all Together – Reverse Engineering

"If the process of reverse engineering Windows drivers could be modeled

as a discrete task, 90% would be understanding how Windows works

and 10% would be understanding assembly code.“ – Bruce Dang

IOActive, Inc. Copyright ©2014. All Rights Reserved.

WDDM kmd Driver – Reverse Engineering

• As shown before, all the driver does as part of it’s initialization is call

DxgkInitialize() or DxgkInitializeDisplayOnlyDriver().

• And pass it a callback table (DRIVER_INITIALIZATION_DATA)

• When looking at the driver in a disassembler no call to these functions is

observed.

• These functions are inlined

IOActive, Inc. Copyright ©2014. All Rights Reserved.

WDDM kmd Driver – Reverse Engineering

• So what does it look like? (with symbols)

IOActive, Inc. Copyright ©2014. All Rights Reserved.

IOActive, Inc. Copyright ©2014. All Rights Reserved.

WDDM kmd Driver – Reverse Engineering

IOActive, Inc. Copyright ©2014. All Rights Reserved.

WDDM kmd Driver – Reverse Engineering

• Loads Dxgkrnl.sys (it should already be loaded)

• Gets a pointer to it’s device object

• Issues ioctl 0x230043 on it (video device, function 10, method neither,

FILE_ANY_ACCESS)

• Hands back a function pointer to be used to register the callback

• Call that function pointer with DRIVER_INITIALIZATION_DATA or

PKMDDOD_INITIALIZATION_DATA struct as argument

IOActive, Inc. Copyright ©2014. All Rights Reserved.

WDDM kmd Driver – Reverse Engineering

• The table itself can be created/stored several different ways

– tabled stored globally

– Created on the stack

– Specific function fills in DRIVER_INITIALIZATION_DATA

• Or filled out in a local stack buffer right before calling DxgkInitialize()

• Finding the code that does this is usually pretty simple. It’ll happen early

on, usually in DriverEntry() or some function it calls.

• Tends to look like this:

IOActive, Inc. Copyright ©2014. All Rights Reserved.

WDDM kmd Driver – Reverse Engineering

IOActive, Inc. Copyright ©2014. All Rights Reserved.

WDDM kmd Driver – Reverse Engineering

• Here’s what the structure looks like in C:

• Mapping this to IDA disassembly and renaming the functions to

something meaningful is pretty easy

typedef struct _DRIVER_INITIALIZATION_DATA {

ULONG Version;

PDXGKDDI_ADD_DEVICE DxgkDdiAddDevice;

PDXGKDDI_START_DEVICE DxgkDdiStartDevice;

PDXGKDDI_STOP_DEVICE DxgkDdiStopDevice;

PDXGKDDI_REMOVE_DEVICE DxgkDdiRemoveDevice;

...

} DRIVER_INITIALIZATION_DATA, *PDRIVER_INITIALIZATION_DATA;

IOActive, Inc. Copyright ©2014. All Rights Reserved.

WDDM kmd Driver – Reverse Engineering

• Userland data passed in (PrivateData)

– Driver gets to handle this any way it sees fit

– Usually:

• Feels like (simple) network protocol reverse engineering

• Usually comes with a header

– Type

– Length

– Value

• Switch case or nested if/else to handle values for types

IOActive, Inc. Copyright ©2014. All Rights Reserved.

WDDM kmd Driver – Reverse Engineering

• Example of a typical case:

IOActive, Inc. Copyright ©2014. All Rights Reserved.

WDDM kmd Driver – Reverse Engineering

• Functions (e.g. DxgkDdiEscape) tend to return

STATUS_INVALID_PARAMETER (0xc000000d) when userland provided

data couldn’t be parsed

– Return value gets picked by driver

– If you see this often/constantly during fuzzing, it’s usually a sign you’ve hit

some kind of validation/checksum.

• Dig into assembly to figure out why, and adjust your fuzzer accordingly.

IOActive, Inc. Copyright ©2014. All Rights Reserved.

Q&A

