
POACHER TURNED GATEKEEPER:
LESSONS LEARNED FROM EIGHT YEARS
OF BREAKING HYPERVISORS

Rafal Wojtczuk <rafal@bromium.com>

http://www.bromium.com/

• About the speaker

• Types of hypervisors

• Attack surface

• Examples of past and present vulnerabilities

• Mitigation techniques

Agenda

• Mainstream, popular commercial, for x86, with
Windows OS VMs
– The talk is about them

• Others
– For embedded systems

– Academic ones

– Security guaranteed by formal software verification

Types of hypervisors

• Type 1 Type 2

• DeepSafe is special and different, see later

Types of hypervisors, cntd

Source:
http://en.wikipedia.org/wiki/Hypervisor#mediaviewer/
File:Hyperviseur.png

Type 1&2 attack surface

• If the goal of a virtualization system is to
maximize features, the attack surface grows

• If the goal of a virtualization system is to
provide security via reliable isolation, care
must be taken to provide functionality in a
way that does not inflate attack surface

Functionality vs security

• Application attack surface

– Browsers, document editors - hopeless

• Kernel attack surface (relevant for sandbox)

– On Windows, ca 400 syscalls, 800 win32k.sys
syscalls, drivers ioctls/WDDM escapes

– 76 CVEs for Windows kernelmode in 2013

What we compare to

• The complexity of input is the only sensible
metric – but not easy to measure quantatively

• Particularly, LOC/TCB count is close to
meaningless; if you _really_ need numbers:
– Xen-4.4.0 – ca 1.7 MLOC
– You can strip it to 110KLOC usermode and 60KLOC

ring0, still retaining useability
– Windows7 kernel – ca 2MLOC, likely win32k.sys larger

How can we compare?

• Need to rely on experience – most agree the
attack surface of a well-written hypervisor is
significantly smaller (see MS Drawbridge)

• One hard fact – vmexit boundary is much
stronger than syscall boundary, which makes
real exploitation difficult

How can we compare cntd?

• ... Of memory corruption bugs
• In case of browser vulnerabilities, attacker has a lot of control over memory layout, thanks to

javascript/other scripting
• In case of broker-vulnerability-based sandbox escapes, on Windows attacker knows libraries bases

– no ASLR protection
• In case of kernel exploits, attacker can craft useful data structures in usermode that can be

misinterpreted by the kernel, because the address space is the same (unless SMAP – but no SMAP
for Windows anytime soon);

• Windows kernel hands out its memory layout for free to attacker (better on Windows8.1) [1]
• No such powerful/troublesome things against the hypervisor – usually one needs info leak + write

primitive (while in the case of browser, use-after-free usually provides both instantly)
– Cloudburst [2] is a notable, exceptional example of a reliable VM-escape memory-corruption-based exploit
– Other exploits rely on ASLR not functional (no –fpie, non-ASLR-compatible dlls, etc)

Notes on exploitability...

• ... And assuming that hypervisor can be attacked only
after compromising the VM kernel
– Note some products expose hypervisor services to VM

unprivileged usermode

• ... And assuming there is nothing valuable in VM...
• ... And assuming hypervisor-related drivers in VM do

not weaken VM kernel security...
• Then – pure gain

If virtualization is another layer...

If virtualization is another layer...

• Isolation by virtualization improves security,
even with off-the-shelf products

• In order to maximize security, hypervisor-
related code should be small

• Often, good design can provide functionality
not sacrificing security

The state of the Union

Case studies

• 4 issues, reported by the presenter in March
2014

• Fixed in 2014 July CPU

New Oracle VirtualBox vulnerabilities

Shared folders

• Supports utf8 and unicode pathnames

– Does not check null-termination early

• Casing corrections

• Guest can specify path delimiter; host is
supposed to normalize path changing each
occurence to \

Vbox sf host code is large

• Memory corruption in vbsfbuildfullpath()
• 397 /* Correct path delimiters */
• 398 if (pClient->PathDelimiter != RTPATH_DELIMITER)
• 399 {
• 400 LogFlow(("Correct path delimiter in %ls\n", src));
• 401 while (*src) // src comes from VM, not null-terminated
• 402 {
• 403 if (*src == pClient->PathDelimiter)
• 404 *src = RTPATH_DELIMITER;
• 405 src++;
• 406 }

S0434934

• No idea by now

• If such a vulnerability was in browser code,
the usual trick would work – set up memory
layout so that javascript Array object is
positioned after the buffer; overwrite size field
of the Array

How to exploit for code execution

• Host service code should accept only narrow
input – all conversions/normalization should
be done in the guest (if possible).

Lesson

• Shared folders directory traversal

• Obviously, just concatenating
„request_pathname” received from VM to
shared folder root leads to directory traversal
via „..\..\..\..\..\request_pathname” – service
needs to sanitize input

S0434968

• Vbox sf sanitize algorithm:
• Split the path into components (/ or \ is the path separator)

– Start with depth_credit=0
– For each component do: Switch (component)
– Case . : do nothing
– Case ..: depth_credit-- //fail if negative
– Default: depth_credit++;

• So „dirname\..” is ok, „dirname\..\..” Is not
• A bit untrivial? Bugs possible?

S0434968, cntd

• On posix hosts (e.g. Linux), \ is NOT a path
separator

• Mkdir /mnt/vboxsf/a\a\a\a\a\a\a\a\a\a

• Access
/mnt/vboxsf/a\a\a\a\a\a\a\a\a\a/../../../../../.
./../../etc/passwd

S0434968, cntd

• Lesson – same as the previous one

• Sanitization should be SIMPLE, e.g. just check
for (\|/)..(\|/) In the pathname and refuse it

• Even better, on Windows prefix with \\?\

• On Linux, use chroot

• Beware - portable code can be full of surprises

S0434968, cntd

• Data leak in shared folders code

• When VM requests to read 1024 bytes from
zero-length file, host returns 1024 bytes-long
uninitialized buffer (plus information that 0
bytes have been read)

• Leaks contents of uninitialized malloced buffer

S0434952

S0434947:Frontend to kernel
escalation on the host

• Integer overflow in libext2fs

• Xen’s Pygrub runs in [privileged] dom0, uses
libext2fs to extract kernel image from VM’s
filesystem – bad!

• Pvgrub runs in VM, does the kernel image
extraction within VM - good

• Lesson – again, offload to VM as much as possible

CVE-2007-5497

• Use-after-free in qemu/KVM (a talk at BH11)

• Triggered by emulation of PCI hotplugging, by
writing to emulated chipset registers

• Any generic mitigation? E.g. can we deny all
PCI config access to VMs?

CVE-2011-1751

• Start VM with all PCI config space access
granted, let it boot (no interaction with
malicious input)

• Save VM, restore VM

• Deny all PCI config space access to the
restored VM; let it interact with attacker

Delusional boot

• Heap-based buffer overflow in the
process_tx_desc function in the e1000 qemu
emulation

CVE-2012-0029

What to do with device emulation:
stub domain

What to do with device emulation:
guest PV driver

• Windows Kernel TCP/IP/IGMPv3 and MLDv2
Vulnerability, remote code execution

• Hey, this is not a bug in virtualization
software?

CVE-2007-0069

• Move some privileged code (e.g. NIC/WLAN
driver, networking stack, dhcp client) to a
dedicated VM

• Need to give the service VM direct access to
the relevant hardware via PCI passthrough

– QubesOS, XenClient XT: network VM by default

Service VMs

• Make the type 2 host a giant service VM [3]

• Need to protect VMs against the host
usermode (particularly device model)

• Quite some issues – e.g. need to protect
hypervisor against hardware-based attacks
originating in the host; protect HID

Host as a service VM

• Stress how different it is from usual type 1&2

DeepSafe architecture

• When CPU runs a Deepsafe VM, EPT protects
hypervisor memory from being accessed -
good

• How about memory accesses done by PCI
devices (DMA) ?

DeepSafe architecture, cntd

DMA attacks, VTd

Source: https://software.intel.com/en-us/articles/intel-
virtualization-technology-for-directed-io-vt-d-enhancing-intel-
platforms-for-efficient-virtualization-of-io-devices

• No (tested version 1.6.0, latest available)

• Despite DMA attacks against Xen hypervisor
has been demonstrated at BH2008

• Despite well-known discussions about the
necessity of it [4]

• Impact – compromise of DeepSafe integrity

Does DeepSafe use VTd?

• Achieve kernel privileges

• Allocate a page at virtual address V

• Change PTE of V so that it points to physical address P

• CreateFile(... FILE_FLAG_NO_BUFFERING ...)

• ReadFile/WriteFile(..., V,...) will do DMA to P

• One catch – not this straightforward with BitLocker

How to do arbitrary DMA (Windows)

• We could disable it...

• ... Too much work...

• ... Why would an attacker get rid of such
privileged code he/she already controls ?

• We can use it to hide some activities from
OS/Patchguard, e.g. LSTAR MSR change – results
in rootkit functionality

Is Deepsafe hypervisor hijack useful?

Is Deepsafe hypervisor hijack useful?

• Filter drivers in the host may provide effective
backdooring capability

• Compromised host kernel can overwrite crucial
usermode memory

• How secure is mfeib.sys launch, on reboot/S3 resume?
• No trusted UI domain
• Host can mess with PCI config, SMM, BIOS, PCI devices

firmware

There are more DeepSafe concerns

• Hypervisors have non-negligible attack surface

• Despite the above, they are still useful to
isolate even less secure operation systems

• There are generic methods to reduce attack
surface of a hypervisor

Summary

Questions?

• [1] Alex Ionescu, „KASLR Bypass Mitigations in Windows
8.1”, http://www.alex-ionescu.com/?p=82

• [2] Kostya Kortchinsky, „CLOUDBURST:
A VMware Guest to Host Escape Story”, BHUSA09

• [3] Ian Pratt, „µXen”, http://www-
archive.xenproject.org/xensummit/xs12na_talks/T6.html

• [4] Joanna Rutkowska, „Thoughts on DeepSafe”,
http://theinvisiblethings.blogspot.co.uk/2012/01/thoughts-
on-deepsafe.html

Bibliography

