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ABSTRACT 

MoRE, or Measurement of Running Executables, was a DARPA 

Cyber Fast Track effort to study the feasibility of utilizing x86 

translation look-aside buffer (TLB) splitting techniques for 

realizing periodic measurements of running and dynamically 

changing applications. It built upon PaX, which used TLB 

splitting to emulate the no-execute bit and Shadow Walker, a 

memory hiding rootkit; both designed for earlier processor 

architectures. MoRE and MoRE Shadow Walker are a defensive 

TLB splitting system and a prototype memory hiding rootkit for 

the current Intel i-series processors respectively – demonstrating 

the evolution of the x86 architecture and how its complexity 

allows software to effect the apparent hardware architecture. 
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1. INTRODUCTION 
MoRE examined the feasibility of utilizing TLB splitting as a 

mechanism for periodic measurement of dynamically changing 

binaries. The effort created a proof-of-concept system to split the 

TLB for target applications, allowing dynamic applications to be 

measured and can detect code corruption. Documented in the 

following sections is relevant background (Section 2) on the 

technologies used, the design and implementation process of the 

MoRE system (section 3) and the results of the effort (section 4). 

2. BACKGROUND 

2.1 Problem 
Currently, on a running computer system, there is no method of 

ensuring the trust in executing applications. When an application 

is loaded, it is possible to generate a hash of the code before it is 

executed as the data portions of the executable are initialized to a 

known value. Once the application has been running, and the data 

has been changed, a hash value becomes meaningless. To combat 

this, most user-land applications are compiled and linked in such 

a fashion that the data and code reside on different pages in 

memory (called ‘static’ throughout this abstract). The portable 

executable (PE) format used by the Windows OS for applications 

subscribes to this paradigm, having a section (‘.text’) which is 

read-only for code and another section (‘.data’) for data. When the 

PE is loaded into memory, the attributes of the pages are such that 

a write to the .text section will generate a fault and the kernel will 

abort the process to prevent corruption. 

Other, more privileged executables such as boot-loaders, OS 

kernels, hypervisors, and SMI handlers are usually not compiled 

in such a way, and have data and code intermixed (called 

‘dynamic’ throughout this paper, as the executable changes). 

Once code is allowed to execute for a period of time, measuring to 

ensure code trustworthiness is not a viable option. The MoRE 

effort solved this problem: enabling the real-time verification of 

system code state of dynamic executables (e.g. OS kernel or boot-

loader) to detect compromise or code-injection attacks. 

2.2 Portable Executable and PE Relocations 
Modern Windows OS applications and kernel drivers are binaries 

in a format known as portable executables (PE). This format 

provides the application or driver loader with the requisite 

information to load it into memory, adjust any addresses which 

may have been changed and link in any shared libraries before 

execution. It divides the binary into a number of different 

sections, some for code (.text), some for data (.data) and other 

informational sections. Of these extra sections, the most important 

to this effort is the .reloc section, which lists the number and 

location of addresses which must be updated at load time if the 

compile-time address was different. Shared libraries and system 

call functions can vary from one computer (or even session) to 

another, especially with security technologies such as address-

space layout randomization. Most compilers use the same address 

when initially linking the program, and as such, any addresses to 

global variables are referenced in the .reloc section. 

2.3 Paging & Translation Look-aside Buffer 
Modern CPUs provide the ability to provide each process with a 

unique view of memory. This feature, known as virtual memory or 

paging eases the OS’s task of isolating different applications and 

providing each application with a consistent view of memory. 

When a virtual memory address is accessed by an application, the 

CPU uses a number of data structures to automatically translate 

the virtual address into a physical address. This process, outlined 

in Figure 1, uses the CPU’s CR3 register to find a page directory 

and optionally a page table, which holds the physical address. In 

most modern OSes, each process is given its own set of page 

translation structures to map the 4GB flat memory view provided 

to the system’s physical memory. 

 

Figure 1: Paging translation on x861 

The translation look-aside buffer, or TLB, acts as a cache for these 

paging translations. Due to relatively high memory latency 

compared to cache-access speed, a page translation lookup is 

expensive in terms of time; therefore, these operations are 

optimized by caching the virtual to physical mappings in the TLB. 

While logically, the TLB stores the translations for all accessed 

addresses in the same area, the physical implementation splits the 

TLB (Figure 2) into two: one for instruction addresses (I-TLB) 
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and one for data addresses (D-TLB). This implementation detail is 

important, as it allows the TLB to point to different addresses for 

instruction fetches as compared to data accesses. 

 

Figure 2: Core 2/Previous CPU Architecture (TLBs 

Highlighted)2 

There has been some past work which took advantage of this 

split-TLB nature for malicious purposes in the past, namely PaX 

[1] and the Shadow Walker root-kit [2] and work done to prevent 

self-verifying applications from detecting corruption [3]. Shadow 

Walker is designed to hide the presence of a kernel driver through 

TLB splitting. When the code is accessed as data, such as by an 

anti-virus tool, Shadow Walker points the D-TLB towards the un-

modified kernel region. When the target section is executed, the I-

TLB is filled with the address of the malicious driver’s code, 

allowing it to run as expected. A similar technique is used in [3] 

to prevent self-hashing applications from detecting the malicious 

modification of the application. 

While paging can be used to simply isolate processes, most OSes 

use it to manage memory use by paging-out memory when not in 

use. The OS then invalidates the translation(s) which point to that 

physical memory region by altering the page structures to note 

that region as paged out. When a process tries to access one of 

those translations, the CPU causes an exception known as a page 

fault. The OS can then copy the data from the disk back into a free 

physical page and update the paging structures with the new 

physical address.  

The page fault handler must also be written in such a way to 

ensure the in-memory paging structures and the TLB remain 

synchronized. The x86 architecture provides the INVLPG 

instruction which invalidates an entry in the TLB, forcing the 

CPU to re-walk the paging structures next time that address is 

requested. Additionally, when the CR3 register is changed, all 

TLB entries are invalidated unless they are specifically marked as 

global. Global pages are most commonly used for shared libraries 

and OS kernel functions exported to user-land applications and 

thus benefit from remaining in the TLB. 

2.4 VMX & EPT 
A growing trend in IT is the use of virtual machines (VMs), which 

enables datacenter consolidation. A hypervisor or virtual machine 

monitory (VMM), allows multiple OSes to run simultaneously on 

the same physical system, each isolated from the others. While 

some hypervisors require changes to the guest OS (para-

virtualization) to function properly, many leverage newer CPU 

extensions to allow an unmodified OS to run with minor 

interactions from the hypervisor. These extensions, known as 

virtual machine extensions, or VMX, improve performance by 

empowering the CPU and chipset to perform more of the isolation 

and VM memory management in hardware. VMX allows the 

hypervisor to set a number of different exit conditions for each 
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guest VM which, when met, trigger a VM EXIT returning control 

to the hypervisor for processing. 

In the latest version of VMX, Intel and AMD have released the 

extended page table (EPT) or rapid virtualization indexing (RVI) 

technologies, respectively. These allow the hypervisor to take 

even less of a role in the memory management and isolation of 

each guest by providing another layer of paging structures to 

translate the physical addresses which the VM OS believes to be 

the physical address (guest physical address) to the machine 

physical address. The CPU can automatically translate these in a 

similar fashion to conventional paging and provide a VM EXIT 

which is analogous with the page fault to the hypervisor. These 

translations can be stored in the TLB, and tagged with each 

guest’s VM process ID (VPID) so they need not be flushed on 

VM context switch.  

These aforementioned technologies significantly aid the 

hypervisor in running multiple VMs in an isolated fashion with 

relatively minor performance impacts. The MoRE VMX 

implementation extensively leverages these technologies to 

perform the TLB splitting for user-land Windows applications. 

3. DESIGN 

3.1 Design Goals & Testing 
MoRE was designed to allow periodic measurement of running 

executables and ensure the measurements remain meaningful as 

the data in dynamic applications changes. In order to accomplish 

this goal, MoRE worked to take advantage of TLB splitting for 

defensive purposes – create a copy of the executable and redirect 

data accesses to the data copy while instruction fetches are routed 

to the static version (Figure 3). This approach was taken to 

determine whether using this architectural method would be 

feasible and what the caveats and performance impacts would be 

[4]. 

 

Figure 3: MoRE Split TLB Goal 

To empirically test and simulate a dynamic application, a kernel-

mode page was split: when the page was accessed as data, it 

would display the opcodes for instructions to halt the system, 

when executed it returned without system interruption. A test 

suite of user-land applications was also created to aide in 

performance testing. The test application’s PE files were modified 

in such a way that the .text section was writable and the tests 

would use the .text section as a memory buffer to simulate a 

dynamic application. While the test suite is non-similar to the 

practical use cases, it provides a useful simulation framework for 

testing and performance analysis. 

3.2 PFH Implementation 
The initial implementation was inspired by Shadow Walker, in 

that it hooks the page fault IDT entry and uses its privilege 

position in the system to split the TLB for certain memory pages. 

Figure 4 provides a flowchart of the PFH semantics which works 

as a filter on page faults. If the page fault was caused by MoRE, it 



will perform the requisite task and return to the target application; 

otherwise the PFH will forward the exception to the OS’s handler. 

 

Figure 4: PFH Flowchart 

More concretely, when a target page is split it results in an 

immutable executable page (IEP) and a writable data page 

(WDP). The paging structures for the target page are marked as 

paged-out, while leaving them resident in memory. When the 

target page is accessed, the CPU will generate a page fault, 

transferring execution control to the MoRE PFH filter. The MoRE 

PFH then checks the CR2 value and stores the faulting address to 

determine if the fault was caused by the paging structure 

manipulation or if it was a genuine page fault. If a genuine page 

fault, MoRE forwards the fault to the OS for handling. If the 

faulting address is the target page, the MoRE PFH can determine 

whether the fault was an instruction fetch or data access by 

comparing the exception return address (EIP) with the faulting 

address or checking the error code provided by the x86 

architecture [3].  

The MoRE PFH then adjusts the paging structures to show the 

target page as paged in (present in memory) and adjusts the 

physical address to point to either the physical address of the IEP 

or WDP. Once the structure has been updated, the PFH loads that 

translation into the TLB, either by simply accessing the first byte 

in the page for data accesses, or by temporarily overwriting the 

first byte of the page with the RET (return) instruction (0xC3) and 

CALLing that page before restoring the correct first byte. These 

actions load the TLB with the correct translation; the MoRE PFH 

then alters the paging structures to once again show the target 

page as not present and returns control to the faulting application, 

without invalidating the TLB entry (desynchronizing the paging 

structures from the TLB). 

The Windows 7 (the chosen OS for the MoRE prototype) memory 

manager monitors each user-land application’s memory usage, 

caching possibly needed pages in memory before they’re 

requested (pre-loading) and paging-out pages which are not likely 

to be used in the near future. While the system is running, the 

memory manager checks each process’s working set to see if it 

can be trimmed or should have pages cached. If a discrepancy 

between the paging structures and Windows’ internal structures is 

found, the kernel bug checks (triggering a blue screen of death) 

the system to prevent memory corruption – preventing the PFH 

from TLB splitting a user-land process. It is important to 

emphasize that if an operating system architect was designing a 

new system, or a Windows kernel developer modified this 

behavior, the existing hardware would support TLB splitting of 

applications.  

3.2.1 Intel Nehalem Architecture Differences 
During testing of initial prototypes, it was discovered that the 

TLB splitting did not function properly on the newer Intel Core-i 

series processors. Further research determined that Intel had 

changed their TLB architecture and added a shared TLB (S-TLB) 

which functioned as a shared L2 cache for the data and instruction 

TLBs. When either of the I-TLB or D-TLB is full, the least-

recently-used translation is evicted and replaced with the new 

translation. In this new architecture, the evicted translation is 

moved to the S-TLB in case it will be needed again shortly, where 

it can rapidly be replaced without re-walking the paging 

structures. While this improves performance, the shared nature of 

the S-TLB violates the separation MoRE relies on, discarding the 

older of the similar translations. To support this new architecture, 

a VMX hypervisor was implemented. 

3.2.2 VMX Design 

After further research into the possible solutions for overcoming 

the S-TLB issues, it was discovered that the optimal solution 

would be to leverage VMX functionality to both bypass the 

Window memory manager and S-TLB problem. Due to the fact 

that a hypervisor is more privileged than the OS, the VMX 

memory manager is able to manipulate memory without the OS 

knowing. EPT provided the simplest method to do so and had the 

least performance impact on the system. EPT also provides the 

hypervisor’s paging structures granting more granular access 

controls to each page, permitting read-only, execute-only and 

read/write paging permissions. It was assumed that if the TLB, 

which can also cache EPT translations, was primed with split 

entries, each with different permissions, the TLB would not merge 

them in the S-TLB, violating the security of EPT permissions. To 

prevent the TLB entries from being invalidated, it was essential to 

support VPID in the hypervisor. 

The VMX hypervisor developed for MoRE is a Windows driver 

which could load a hypervisor into operation and put the running 

Windows into a VM without interrupting the system or 

performing any device emulation. The first steps were to add 

VPID and EPT support to the hypervisor, and the EPT paging 

structures would point the guest physical addresses to the 

identical machine physical addresses (an identity map). This 

would permit the OS to manage memory as if the hypervisor were 

not present, and allow MoRE to mark certain physical addresses 

as non-present in EPT without the Windows memory manager 

noticing. 

 

Figure 5: EPT VM EXIT Flowchart 

3.2.2.1 MoRE VMX Functionality 

With the inclusion of EPT and VPID support into the VMX 

hypervisor, a similar procedure as in the PFH (Figure 4) could be 

implemented. The paging out process was done in the EPT 

structures and the MoRE filter was moved to the VM EXIT 



handler for an EPT fault. The major modification that was 

required was the fact the handler could not prime the TLB itself; 

with VPID, the TLB entries are tagged with (and only accessible 

to) the ID of the priming VM, or 0 in the case of the hypervisor. 

To overcome this hurdle, the EPT handler modifies the paging 

structures for the EPT fault, and sets the guest trap flag in the 

EFLAGS, which causes the CPU to trap after a single instruction. 

The hypervisor is then configured to VM EXIT on the trap 

exception. MoRE implements a trap flag handler in the VMX 

hypervisor which disables the trap flag and resets the EPT paging 

structures to non-present, leaving the VPID tagged TLB primed, 

but will trap to the EPT handler if an access of a different type 

occurs. A graphical flowchart of this process is shown in Figure 5 

and Figure 6. 

 

Figure 6: Trap VM EXIT Flowchart 

3.2.2.2 Windows PE COW 

Once the MoRE PFH functionality was ported to the hypervisor 

and tested to support TLB splitting of a user-land application, it 

was noticed that when a dynamic application ran, the physical 

pages of the data copy of the PE would change. Through further 

research, it was discovered that Windows marks all code pages 

(even if they are marked as writable) as read-only and when 

modifications are detected, performs a copy-on-write (COW) 

operation. This optimization allows Windows to run multiple 

instances of the same application without wasting memory on 

duplicate, rarely changing code pages. 

To detect this remapping of the application’s pages, the MoRE 

hypervisor would walk the OS’s paging structures each time the 

CR3 register was changed (each process switch), and if the 

physical addresses were different for the target application, it 

would update its list of pages to split. Due to this feature of 

Windows, the read-only executable copy is kept unchanged, and 

the data copy which was made is removed and replaced with the 

Windows COW version. 

3.2.2.3 Thrashing Detection and Workarounds 

During the testing process of the VMX handler, it was discovered 

that the S-TLB would not permit two entries for the same address 

loaded for the same instruction. In other words, when instructions 

were within the same (4KB) page as the data being accessed, the 

VM EXIT handler would replace the TLB entry for data with the 

instruction address and vice versa, causing an infinite loop 

(thrashing back and forth). To maintain the security guarantees 

proscribed by this effort, a workaround was developed. 

When a thrash was detected (two sequential EPT VM EXITs 

without a trap VM EXIT), the EPT handler would set the 

translation to point to the data page, and allow it to be executed 

and read/write accessed. It would also copy the instruction to be 

executed to the data page from the execution copy to prevent 

modification. When the EPT handler returned, the instruction 

would be executed from the data copy, then trapping back to the 

trap handler, which would remove the permissions and disable the 

trap flag – in essence, single-stepping through these ‘thrash 

points’. 

4. RESULTS 
This section describes the results and software generated by the 

MoRE effort. The main goal of the MoRE effort was to create a 

prototype research platform for determining the feasibility of 

measuring dynamically changing applications through TLB 

splitting. This technology could be used for a variety of cases, but 

would at the very least be able to satisfy the following 

requirements: separate executing code from data, be able to be 

statically measured and periodically measure applications. 

All these requirements were met. Both the MoRE PFH and VMX 

hypervisor are able to utilize TLB splitting to separate instruction 

fetches from data accesses, and periodically measure (10 Hz) the 

target PE application. We ensured that the Windows driver 

implementation of both the PFH and the VMX hypervisor did not 

contain any dynamic modules and thus could be measured to 

ensure that the MoRE code had not been compromised. A second 

Windows driver was implemented (drivermeasure.sys) to measure 

the MoRE driver and display its measurement to ensure it 

remained static. The performance impact of the MoRE hypervisor 

on the test suite was ~2%. This test suite included both a CLI and 

GUI version of the following applications, all of which could be 

configured to be dynamic or static and mixed or isolated to test 

thrash handling: 

 Pi Calculation – Power series estimation of pi 

 Wasteful Sort – Random swap & check 

 Coin Flipping – Random coin flipping 

 Cycle Timers – Setting a timer and calculating 

instructions per cycle 

5. MORE SHADOW WALKER 
It is the author’s belief that technology itself is not inherently 

good, evil, defensive or offensive. TLB-splitting neatly shows this 

in the progression from PaX (defensive), Shadow Walker 

(offensive) and finally to MoRE (defensive). To further highlight 

this point, the author will once again swing the technology’s 

application to the offensive side with MoRE Shadow Walker, a 

memory hiding VMX root-kit that can operate on Intel Nehelam 

and newer CPUs with the S-TLB.  

MoRE Shadow Walker (MSW) is built upon the same code base 

as the defensive MoRE VMM, but instead of ensuring the code 

pages are unchanged from the loaded application, it can allow an 

attacker to load a different page to be executed. This lets a 

malicious adversary insert malicious code into a kernel code page 

without alerting Microsoft PatchGuard (PG) as PG will read the 

unchanged data page containing the unchanged kernel 

instructions. 

It is worthwhile to mention the motivation for utilizing a VMX 

hypervisor to hide a kernel implant as the hypervisor is already 

operating from a stealthy and highly-privileged position in the 

system. MSW-hidden kernel implants allow for a greater 

granularity of introspection into the OS’s operation and at less 

performance and code size costs when compared to a full 

introspective hypervisor (e.g. IntroVirt™3). Additionally, there is 
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a wealth of existing kernel implants and root-kits that exist for the 

Windows kernel that can be quickly packaged with MSW to 

bypass PG. 

The code for both MoRE and MSW will be released as open 

source and available4 for further research and study. 
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