
MoRE Shadow Walker: TLB-splitting on Modern x86
Jacob Torrey

@JacobTorrey
Assured Information Security

torreyj@ainfosec.com

ABSTRACT

MoRE, or Measurement of Running Executables, was a DARPA

Cyber Fast Track effort to study the feasibility of utilizing x86

translation look-aside buffer (TLB) splitting techniques for

realizing periodic measurements of running and dynamically

changing applications. It built upon PaX, which used TLB

splitting to emulate the no-execute bit and Shadow Walker, a

memory hiding rootkit; both designed for earlier processor

architectures. MoRE and MoRE Shadow Walker are a defensive

TLB splitting system and a prototype memory hiding rootkit for

the current Intel i-series processors respectively – demonstrating

the evolution of the x86 architecture and how its complexity

allows software to effect the apparent hardware architecture.

Keywords

Hypervisor, Code Measurement, Real-time Analysis, Code

Isolation, Harvard Architecture, Split-TLB, Critical Software

1. INTRODUCTION
MoRE examined the feasibility of utilizing TLB splitting as a

mechanism for periodic measurement of dynamically changing

binaries. The effort created a proof-of-concept system to split the

TLB for target applications, allowing dynamic applications to be

measured and can detect code corruption. Documented in the

following sections is relevant background (Section 2) on the

technologies used, the design and implementation process of the

MoRE system (section 3) and the results of the effort (section 4).

2. BACKGROUND

2.1 Problem
Currently, on a running computer system, there is no method of

ensuring the trust in executing applications. When an application

is loaded, it is possible to generate a hash of the code before it is

executed as the data portions of the executable are initialized to a

known value. Once the application has been running, and the data

has been changed, a hash value becomes meaningless. To combat

this, most user-land applications are compiled and linked in such

a fashion that the data and code reside on different pages in

memory (called ‘static’ throughout this abstract). The portable

executable (PE) format used by the Windows OS for applications

subscribes to this paradigm, having a section (‘.text’) which is

read-only for code and another section (‘.data’) for data. When the

PE is loaded into memory, the attributes of the pages are such that

a write to the .text section will generate a fault and the kernel will

abort the process to prevent corruption.

Other, more privileged executables such as boot-loaders, OS

kernels, hypervisors, and SMI handlers are usually not compiled

in such a way, and have data and code intermixed (called

‘dynamic’ throughout this paper, as the executable changes).

Once code is allowed to execute for a period of time, measuring to

ensure code trustworthiness is not a viable option. The MoRE

effort solved this problem: enabling the real-time verification of

system code state of dynamic executables (e.g. OS kernel or boot-

loader) to detect compromise or code-injection attacks.

2.2 Portable Executable and PE Relocations
Modern Windows OS applications and kernel drivers are binaries

in a format known as portable executables (PE). This format

provides the application or driver loader with the requisite

information to load it into memory, adjust any addresses which

may have been changed and link in any shared libraries before

execution. It divides the binary into a number of different

sections, some for code (.text), some for data (.data) and other

informational sections. Of these extra sections, the most important

to this effort is the .reloc section, which lists the number and

location of addresses which must be updated at load time if the

compile-time address was different. Shared libraries and system

call functions can vary from one computer (or even session) to

another, especially with security technologies such as address-

space layout randomization. Most compilers use the same address

when initially linking the program, and as such, any addresses to

global variables are referenced in the .reloc section.

2.3 Paging & Translation Look-aside Buffer
Modern CPUs provide the ability to provide each process with a

unique view of memory. This feature, known as virtual memory or

paging eases the OS’s task of isolating different applications and

providing each application with a consistent view of memory.

When a virtual memory address is accessed by an application, the

CPU uses a number of data structures to automatically translate

the virtual address into a physical address. This process, outlined

in Figure 1, uses the CPU’s CR3 register to find a page directory

and optionally a page table, which holds the physical address. In

most modern OSes, each process is given its own set of page

translation structures to map the 4GB flat memory view provided

to the system’s physical memory.

Figure 1: Paging translation on x861

The translation look-aside buffer, or TLB, acts as a cache for these

paging translations. Due to relatively high memory latency

compared to cache-access speed, a page translation lookup is

expensive in terms of time; therefore, these operations are

optimized by caching the virtual to physical mappings in the TLB.

While logically, the TLB stores the translations for all accessed

addresses in the same area, the physical implementation splits the

TLB (Figure 2) into two: one for instruction addresses (I-TLB)

1 http://viralpatel.net/taj/tutorial/image/paging.gif

http://viralpatel.net/taj/tutorial/image/paging.gif

and one for data addresses (D-TLB). This implementation detail is

important, as it allows the TLB to point to different addresses for

instruction fetches as compared to data accesses.

Figure 2: Core 2/Previous CPU Architecture (TLBs

Highlighted)2

There has been some past work which took advantage of this

split-TLB nature for malicious purposes in the past, namely PaX

[1] and the Shadow Walker root-kit [2] and work done to prevent

self-verifying applications from detecting corruption [3]. Shadow

Walker is designed to hide the presence of a kernel driver through

TLB splitting. When the code is accessed as data, such as by an

anti-virus tool, Shadow Walker points the D-TLB towards the un-

modified kernel region. When the target section is executed, the I-

TLB is filled with the address of the malicious driver’s code,

allowing it to run as expected. A similar technique is used in [3]

to prevent self-hashing applications from detecting the malicious

modification of the application.

While paging can be used to simply isolate processes, most OSes

use it to manage memory use by paging-out memory when not in

use. The OS then invalidates the translation(s) which point to that

physical memory region by altering the page structures to note

that region as paged out. When a process tries to access one of

those translations, the CPU causes an exception known as a page

fault. The OS can then copy the data from the disk back into a free

physical page and update the paging structures with the new

physical address.

The page fault handler must also be written in such a way to

ensure the in-memory paging structures and the TLB remain

synchronized. The x86 architecture provides the INVLPG

instruction which invalidates an entry in the TLB, forcing the

CPU to re-walk the paging structures next time that address is

requested. Additionally, when the CR3 register is changed, all

TLB entries are invalidated unless they are specifically marked as

global. Global pages are most commonly used for shared libraries

and OS kernel functions exported to user-land applications and

thus benefit from remaining in the TLB.

2.4 VMX & EPT
A growing trend in IT is the use of virtual machines (VMs), which

enables datacenter consolidation. A hypervisor or virtual machine

monitory (VMM), allows multiple OSes to run simultaneously on

the same physical system, each isolated from the others. While

some hypervisors require changes to the guest OS (para-

virtualization) to function properly, many leverage newer CPU

extensions to allow an unmodified OS to run with minor

interactions from the hypervisor. These extensions, known as

virtual machine extensions, or VMX, improve performance by

empowering the CPU and chipset to perform more of the isolation

and VM memory management in hardware. VMX allows the

hypervisor to set a number of different exit conditions for each

2 Image from Intel Software Developer Manual 3A

guest VM which, when met, trigger a VM EXIT returning control

to the hypervisor for processing.

In the latest version of VMX, Intel and AMD have released the

extended page table (EPT) or rapid virtualization indexing (RVI)

technologies, respectively. These allow the hypervisor to take

even less of a role in the memory management and isolation of

each guest by providing another layer of paging structures to

translate the physical addresses which the VM OS believes to be

the physical address (guest physical address) to the machine

physical address. The CPU can automatically translate these in a

similar fashion to conventional paging and provide a VM EXIT

which is analogous with the page fault to the hypervisor. These

translations can be stored in the TLB, and tagged with each

guest’s VM process ID (VPID) so they need not be flushed on

VM context switch.

These aforementioned technologies significantly aid the

hypervisor in running multiple VMs in an isolated fashion with

relatively minor performance impacts. The MoRE VMX

implementation extensively leverages these technologies to

perform the TLB splitting for user-land Windows applications.

3. DESIGN

3.1 Design Goals & Testing
MoRE was designed to allow periodic measurement of running

executables and ensure the measurements remain meaningful as

the data in dynamic applications changes. In order to accomplish

this goal, MoRE worked to take advantage of TLB splitting for

defensive purposes – create a copy of the executable and redirect

data accesses to the data copy while instruction fetches are routed

to the static version (Figure 3). This approach was taken to

determine whether using this architectural method would be

feasible and what the caveats and performance impacts would be

[4].

Figure 3: MoRE Split TLB Goal

To empirically test and simulate a dynamic application, a kernel-

mode page was split: when the page was accessed as data, it

would display the opcodes for instructions to halt the system,

when executed it returned without system interruption. A test

suite of user-land applications was also created to aide in

performance testing. The test application’s PE files were modified

in such a way that the .text section was writable and the tests

would use the .text section as a memory buffer to simulate a

dynamic application. While the test suite is non-similar to the

practical use cases, it provides a useful simulation framework for

testing and performance analysis.

3.2 PFH Implementation
The initial implementation was inspired by Shadow Walker, in

that it hooks the page fault IDT entry and uses its privilege

position in the system to split the TLB for certain memory pages.

Figure 4 provides a flowchart of the PFH semantics which works

as a filter on page faults. If the page fault was caused by MoRE, it

will perform the requisite task and return to the target application;

otherwise the PFH will forward the exception to the OS’s handler.

Figure 4: PFH Flowchart

More concretely, when a target page is split it results in an

immutable executable page (IEP) and a writable data page

(WDP). The paging structures for the target page are marked as

paged-out, while leaving them resident in memory. When the

target page is accessed, the CPU will generate a page fault,

transferring execution control to the MoRE PFH filter. The MoRE

PFH then checks the CR2 value and stores the faulting address to

determine if the fault was caused by the paging structure

manipulation or if it was a genuine page fault. If a genuine page

fault, MoRE forwards the fault to the OS for handling. If the

faulting address is the target page, the MoRE PFH can determine

whether the fault was an instruction fetch or data access by

comparing the exception return address (EIP) with the faulting

address or checking the error code provided by the x86

architecture [3].

The MoRE PFH then adjusts the paging structures to show the

target page as paged in (present in memory) and adjusts the

physical address to point to either the physical address of the IEP

or WDP. Once the structure has been updated, the PFH loads that

translation into the TLB, either by simply accessing the first byte

in the page for data accesses, or by temporarily overwriting the

first byte of the page with the RET (return) instruction (0xC3) and

CALLing that page before restoring the correct first byte. These

actions load the TLB with the correct translation; the MoRE PFH

then alters the paging structures to once again show the target

page as not present and returns control to the faulting application,

without invalidating the TLB entry (desynchronizing the paging

structures from the TLB).

The Windows 7 (the chosen OS for the MoRE prototype) memory

manager monitors each user-land application’s memory usage,

caching possibly needed pages in memory before they’re

requested (pre-loading) and paging-out pages which are not likely

to be used in the near future. While the system is running, the

memory manager checks each process’s working set to see if it

can be trimmed or should have pages cached. If a discrepancy

between the paging structures and Windows’ internal structures is

found, the kernel bug checks (triggering a blue screen of death)

the system to prevent memory corruption – preventing the PFH

from TLB splitting a user-land process. It is important to

emphasize that if an operating system architect was designing a

new system, or a Windows kernel developer modified this

behavior, the existing hardware would support TLB splitting of

applications.

3.2.1 Intel Nehalem Architecture Differences
During testing of initial prototypes, it was discovered that the

TLB splitting did not function properly on the newer Intel Core-i

series processors. Further research determined that Intel had

changed their TLB architecture and added a shared TLB (S-TLB)

which functioned as a shared L2 cache for the data and instruction

TLBs. When either of the I-TLB or D-TLB is full, the least-

recently-used translation is evicted and replaced with the new

translation. In this new architecture, the evicted translation is

moved to the S-TLB in case it will be needed again shortly, where

it can rapidly be replaced without re-walking the paging

structures. While this improves performance, the shared nature of

the S-TLB violates the separation MoRE relies on, discarding the

older of the similar translations. To support this new architecture,

a VMX hypervisor was implemented.

3.2.2 VMX Design

After further research into the possible solutions for overcoming

the S-TLB issues, it was discovered that the optimal solution

would be to leverage VMX functionality to both bypass the

Window memory manager and S-TLB problem. Due to the fact

that a hypervisor is more privileged than the OS, the VMX

memory manager is able to manipulate memory without the OS

knowing. EPT provided the simplest method to do so and had the

least performance impact on the system. EPT also provides the

hypervisor’s paging structures granting more granular access

controls to each page, permitting read-only, execute-only and

read/write paging permissions. It was assumed that if the TLB,

which can also cache EPT translations, was primed with split

entries, each with different permissions, the TLB would not merge

them in the S-TLB, violating the security of EPT permissions. To

prevent the TLB entries from being invalidated, it was essential to

support VPID in the hypervisor.

The VMX hypervisor developed for MoRE is a Windows driver

which could load a hypervisor into operation and put the running

Windows into a VM without interrupting the system or

performing any device emulation. The first steps were to add

VPID and EPT support to the hypervisor, and the EPT paging

structures would point the guest physical addresses to the

identical machine physical addresses (an identity map). This

would permit the OS to manage memory as if the hypervisor were

not present, and allow MoRE to mark certain physical addresses

as non-present in EPT without the Windows memory manager

noticing.

Figure 5: EPT VM EXIT Flowchart

3.2.2.1 MoRE VMX Functionality

With the inclusion of EPT and VPID support into the VMX

hypervisor, a similar procedure as in the PFH (Figure 4) could be

implemented. The paging out process was done in the EPT

structures and the MoRE filter was moved to the VM EXIT

handler for an EPT fault. The major modification that was

required was the fact the handler could not prime the TLB itself;

with VPID, the TLB entries are tagged with (and only accessible

to) the ID of the priming VM, or 0 in the case of the hypervisor.

To overcome this hurdle, the EPT handler modifies the paging

structures for the EPT fault, and sets the guest trap flag in the

EFLAGS, which causes the CPU to trap after a single instruction.

The hypervisor is then configured to VM EXIT on the trap

exception. MoRE implements a trap flag handler in the VMX

hypervisor which disables the trap flag and resets the EPT paging

structures to non-present, leaving the VPID tagged TLB primed,

but will trap to the EPT handler if an access of a different type

occurs. A graphical flowchart of this process is shown in Figure 5

and Figure 6.

Figure 6: Trap VM EXIT Flowchart

3.2.2.2 Windows PE COW

Once the MoRE PFH functionality was ported to the hypervisor

and tested to support TLB splitting of a user-land application, it

was noticed that when a dynamic application ran, the physical

pages of the data copy of the PE would change. Through further

research, it was discovered that Windows marks all code pages

(even if they are marked as writable) as read-only and when

modifications are detected, performs a copy-on-write (COW)

operation. This optimization allows Windows to run multiple

instances of the same application without wasting memory on

duplicate, rarely changing code pages.

To detect this remapping of the application’s pages, the MoRE

hypervisor would walk the OS’s paging structures each time the

CR3 register was changed (each process switch), and if the

physical addresses were different for the target application, it

would update its list of pages to split. Due to this feature of

Windows, the read-only executable copy is kept unchanged, and

the data copy which was made is removed and replaced with the

Windows COW version.

3.2.2.3 Thrashing Detection and Workarounds

During the testing process of the VMX handler, it was discovered

that the S-TLB would not permit two entries for the same address

loaded for the same instruction. In other words, when instructions

were within the same (4KB) page as the data being accessed, the

VM EXIT handler would replace the TLB entry for data with the

instruction address and vice versa, causing an infinite loop

(thrashing back and forth). To maintain the security guarantees

proscribed by this effort, a workaround was developed.

When a thrash was detected (two sequential EPT VM EXITs

without a trap VM EXIT), the EPT handler would set the

translation to point to the data page, and allow it to be executed

and read/write accessed. It would also copy the instruction to be

executed to the data page from the execution copy to prevent

modification. When the EPT handler returned, the instruction

would be executed from the data copy, then trapping back to the

trap handler, which would remove the permissions and disable the

trap flag – in essence, single-stepping through these ‘thrash

points’.

4. RESULTS
This section describes the results and software generated by the

MoRE effort. The main goal of the MoRE effort was to create a

prototype research platform for determining the feasibility of

measuring dynamically changing applications through TLB

splitting. This technology could be used for a variety of cases, but

would at the very least be able to satisfy the following

requirements: separate executing code from data, be able to be

statically measured and periodically measure applications.

All these requirements were met. Both the MoRE PFH and VMX

hypervisor are able to utilize TLB splitting to separate instruction

fetches from data accesses, and periodically measure (10 Hz) the

target PE application. We ensured that the Windows driver

implementation of both the PFH and the VMX hypervisor did not

contain any dynamic modules and thus could be measured to

ensure that the MoRE code had not been compromised. A second

Windows driver was implemented (drivermeasure.sys) to measure

the MoRE driver and display its measurement to ensure it

remained static. The performance impact of the MoRE hypervisor

on the test suite was ~2%. This test suite included both a CLI and

GUI version of the following applications, all of which could be

configured to be dynamic or static and mixed or isolated to test

thrash handling:

 Pi Calculation – Power series estimation of pi

 Wasteful Sort – Random swap & check

 Coin Flipping – Random coin flipping

 Cycle Timers – Setting a timer and calculating

instructions per cycle

5. MORE SHADOW WALKER
It is the author’s belief that technology itself is not inherently

good, evil, defensive or offensive. TLB-splitting neatly shows this

in the progression from PaX (defensive), Shadow Walker

(offensive) and finally to MoRE (defensive). To further highlight

this point, the author will once again swing the technology’s

application to the offensive side with MoRE Shadow Walker, a

memory hiding VMX root-kit that can operate on Intel Nehelam

and newer CPUs with the S-TLB.

MoRE Shadow Walker (MSW) is built upon the same code base

as the defensive MoRE VMM, but instead of ensuring the code

pages are unchanged from the loaded application, it can allow an

attacker to load a different page to be executed. This lets a

malicious adversary insert malicious code into a kernel code page

without alerting Microsoft PatchGuard (PG) as PG will read the

unchanged data page containing the unchanged kernel

instructions.

It is worthwhile to mention the motivation for utilizing a VMX

hypervisor to hide a kernel implant as the hypervisor is already

operating from a stealthy and highly-privileged position in the

system. MSW-hidden kernel implants allow for a greater

granularity of introspection into the OS’s operation and at less

performance and code size costs when compared to a full

introspective hypervisor (e.g. IntroVirt™3). Additionally, there is

3 http://www.ainfosec.com/introvirt/

a wealth of existing kernel implants and root-kits that exist for the

Windows kernel that can be quickly packaged with MSW to

bypass PG.

The code for both MoRE and MSW will be released as open

source and available4 for further research and study.

6. REFERENCES
[1] PaX Team, "PAGEEXEC," 15 March 2003. [Online].

Available: https://pax.grsecurity.net/docs/pageexec.txt.

[Accessed 17 February 2014].

[2] S. Sparks and J. Butler, "Shadow Walker: Raising the Bar

for Rootkit Detection," in Blackhat Japan, 2005.

[3] P. van Oorschot, A. Somayaji and G. Wurster, "Hardware-

assisted circumvention of self-hashing software tamper

resistance," in IEEE TDSC, 2005.

[4] Intel Corporation. “Intel Software Developer Manuals”.

2014

4 https://github.com/ainfosec/more

