

Reflections on Trusting TrustZone

Dan Rosenberg

What is TrustZone?

● "ARM® TrustZone® technology is a system-
wide approach to security for a wide array of
client and server computing platforms, including
handsets, tablets, wearable devices and
enterprise systems. Applications enabled by the
technology are extremely varied but include
payment protection technology, digital rights
management, BYOD, and a host of secured
enterprise solutions."

TrustZone Architecture

* Image courtesy ARM Ltd.

Real-World Uses

● DRM (WideVine, PlayReady, DTCP-IP)
● Secure key storage (dm-verify)
● Mobile payments
● Protected hardware (framebuffer, PIN entry)
● Management of secure boot (via QFuses)
● Kernel integrity monitoring (TIMA)

Prior Work

● "Next Generation Mobile Rootkits" (Thomas
Roth, 2013)

● "Unlocking the Motorola Bootloader" (Azimuth
Security, 2013)

● Maybe a few HTC S-OFF exploits
(undocumented)

● High value target

● Very little public research/scrutiny

Motivation

Target

● Qualcomm Secure Execution Environment
(QSEE)

● Majority market share among mid/high-end
Android phones

– Samsung GS4/GS5/Note3, LG Nexus 4/Nexus
5/G2/G3, Moto X, HTC One series...

Toolchain

● TrustZone images included in firmware
available online or pulled from devices

● IDA Pro

● Qualcomm loader for earlier TZ, now it's ELF

Attack Surface

● Software exceptions: Secure Monitor Call
(SMC) interface

● Hardware exceptions: IRQ, FIQ, external abort
● Shared memory interface (mostly MobiCore)
● eMMC flash (e.g. secure boot)
● Trustlet-specific calls

Attacker Assumptions

● Arbitrary code execution on device
– Extremely minimal remote attack surface

● Kernel privileges
– Ability to issue SMC instructions

– Otherwise, practically no ability to interact with
TrustZone directly

● Crashes/DoS bugs are not security relevant
– The kernel can already bring down the device

QSEE SCM Interface

● Code in Qualcomm trees (CAF) at
arch/arm/mach-msm/scm.c

● Not a typo: Qualcomm chose SCM (“Secure
Channel Manager”) as name for Linux kernel
driver that interacts with QSEE via SMC

● Two calling conventions: call-by-register, or
request/response structures

SCM Call-by-Register Convention

● Load r0 with OR'd value containing SMC
command number, flags, and number of
arguments:

#define SCM_ATOMIC(svc, cmd, n) (((((svc) << 10)|((cmd) & 0x3ff)) << 12) | \
 SCM_CLASS_REGISTER | \
 SCM_MASK_IRQS | \
 (n & 0xf))

● Arguments go in r1,r2,...,rN

SCM Command Structures

 struct scm_command {
 u32 len;
 u32 buf_offset;
 u32 resp_hdr_offset;
 u32 id;
 u32 buf[0];
 };

Request header

Request buffer

Response header

Response buffer

struct scm_response {
 u32 len;
 u32 buf_offset;
 u32 is_complete;
};

Structure Sanity Checking

1. cmd.len >= 16
(Command length is greater than size of request header)

2. cmd.buf_offset < cmd.len
(Start of request buffer resides inside command buffer)

3. cmd.buf_offset >= 16
(Request buffer does not overlap with request header)

4. cmd.resp_hdr_offset <= cmd.len – 12
(Entire response header resides inside command buffer)

5. qsee_is_ns_memory(cmd, cmd.len) returns trueqsee_is_ns_memory(cmd, cmd.len) returns true
(Entire command buffer resides in non-secure memory)(Entire command buffer resides in non-secure memory)

Secure Memory Checking

● Series of functions to check if memory is
"protected"

● Hard-coded list of regions with flags to indicate
memory attributes

● Analogous to Linux kernel's access_ok()
checks

– “Is this memory is safe for TZ to operate on?”

Integer Overflow Vulnerability

● Take another look at the invocation of secure
memory checking in validating the SCM
command structure:
 qsee_is_ns_memory(cmd, cmd.len)

● What if (cmd + cmd.len) overflows 32-bit
integer?

Secure Memory Checking
Pseudocode

int qsee_is_ns_memory(long addr, long size)
{
 return qsee_range_not_in_region(qsee_region_list, addr, addr+sizeaddr+size);
}

int qsee_range_not_in_region(void *region_list, long start, long end)
{
 long tmp;

 if (end < start) {if (end < start) {
 tmp = start;tmp = start;
 start = end;start = end;
 end = tmp;end = tmp;
 }}

 /* Validate that start to end doesn't overlap
 * secure list */
 ...
}

Pathological Command Buffer

1. cmd.len >= 16

2. cmd.buf_offset < cmd.len

3. cmd.buf_offset >= 16

4. cmd.resp_hdr_offset <= cmd.len – 16

5. qsee_is_nonsecure_memory(cmd, cmd.len) returns true

 cmd.len = 0xfffff000

 cmd.buf_offset = 0xffffe000

 cmd.resp_hdr_offset =

 arbitrary value < 0xfffff000

What is Written to Response
Output?

● Hard-coded response buffer for all requests
that receive output:

rsp.len = 12;

rsp.buf_offset = 12;

rsp.is_complete = 1;

Result: Arbitrary Secure Memory
Write Primitive

● By crafting SMC request to exploit integer
overflow, possible to cause QSEE to write three
words (0x0000000c 0x0000000c 0x00000001)
to response structure, which can reside in
arbitrary secure memory!

● Can we achieve arbitrary secure code
execution?

How Can This Be Exploited?

● Memory layout of QSEE is known
– Image resides unencrypted on eMMC flash

– Loaded at known physical address

● Most of RAM is non-secure memory
● Can't we just clobber part of a function pointer

in secure memory to point to our non-secure
payload and trigger?

– e.g. 0xdeadbeef → 0xcadbeef

Sorcery!

● This doesn't appear to work
● Suspect QSEE has mechanism to prevent TZ

execution from non-secure pages
● Undocumented black hole
● Any Qualcomm or ARM employees in the

audience?

Building Better Primitives

● A 12-byte uncontrolled write makes exploitation
somewhat difficult

– Unaligned writes clobber extra words,
potentially unstable

– Minimal options for redirecting pointers to non-
secure memory

● How can we use this to build a more flexible
primitive?

Region Lists Revisited

● List of protected memory regions composed of
structures similar to the following:
struct qsee_memory_region {

int id;

int flags;

unsigned long start;

unsigned long end;

}

Region List Corruption

● Use 12-byte write to clobber flags, start, and
end addresses for entry corresponding to the
QSEE image

● Result: all checks intended to ensure safety of
user-provided output pointers pass

● Now we can write arbitrary secure memory with
any value written as output by QSEE!

Choosing A New Write Primitive

● Enumerate SMC handlers

● Eliminate those that don't write any output

● Choose best option based on task at hand

● But then what?

SMC Handler Table
● In QSEE, SMC table entries are variable length:

struct smc_entry {

unsigned int smc_num;

char *handler_name;

unsigned int flags;

int (*smc_handler)();

unsigned int num_args;

unsigned int arg_lens[];

}

● Iterates through table using num_args to
calculate entry length, matching against
smc_num

SMC Table Extension Attack

● Use arbitrary secure memory write to modify
num_args field of SMC table entry

● Expand size of entry so iterator jumps to
supposed next entry in attacker-controlled non-
secure memory

● Create fake entry to call arbitrary QSEE
functions with arbitrary arguments!

Arbitrary TZ Code Execution

● Find memcpy, copy all of secure memory to a
non-secure buffer, break all DRM/secure key
storage

● Disable TIMA
● Invoke OEM-specific functionality to e.g. unlock

the bootloader permanently :-)

DEMO!

Lessons Learned

● Analysis/exploitation is made much easier due
to lack of encryption of TZ image

– Compare to iOS

● Parsing of complex data structures is an
obvious likely point of failure

● As a vuln researcher, learn to trust your gut
– If it looks sketchy, it probably is

Lessons Learned

● Single points of failure are a bad idea
– Compare Motorola's secure boot to Samsung's

● Improving security by minimizing attack surface
is a good idea, but feature creep will eliminate
this advantage entirely

● Marketing does not eliminate software bugs

Questions?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33

