
Identification over encrypted Channels

Niemczyk, Brandon
brandon.niemczyk@hp.com, HP DVLABS

Rao,Prasad
prasad.rao@hp.com, HP LABS

July 1, 2014

1 Living Document

This paper is a living document, please grab the latest version from
https://raw.githubusercontent.com/bniemczyk/pacumen/master/paper/pacumen.pdf

2 Introduction

The ability to dynamically classify and identify the entities behind network traffic could
help us with various network activities. These activities include IP network engineering
with network provisioning and network management. This ability is especially important
for surveillance for policy compliance and security.

Today’s techniques, when applied to traffic that is not hidden rely on the visibility of
packet headers, port numbers and the protocol, and stateful reconstruction of sessions.
These cues disappear when ssh, SSL or other tunneling mechanisms are used to hide
traffic. Whether the hiding is legitimate or not, it is advantageous to identify information
about encrypted traffic. Enterprises might proscribe service providers that either allow
policy violations or cause a competitive disadvantage. Campus networks could desire
to prevent games from clogging up the available bandwidth. From the point of view of
a network provider, better classification and understanding of traffic could allow better
traffic shaping. Entities interested in policy enforcement could also derive more meta
data by such analysis.

We shall use the term identification problem to mean the act of identifing traffic behind
encrypted channels. There are several published techniques resulting from many years
of research in order to classify traffic – most of them rely on machine learning.

We are releasing a simple tool that we call pacumen, that relies on simple, easily col-
lectible features in order to solve the identification problem. This tool is intended to be
be easy to use, and when compared to the academic approaches, need smaller amount
of data for training and lesser user intervention for it to function. Additionally, as this

1

tool is released as an open source project on github, we expect users to extend this
tool and contribute to its growth. Our main purpose in this exercise to gain insight and
understanding to the phenomenon of hiding traffic behind encrypted tunnels and the
process of applying machine learning techniques in an attempt to uncover them. This
work should both lead to better techniques on both sides of this hide-and-seek game.
Lastly, we present some experiments and their results to validate pacumen.

3 Related Work/Prior Research

Due to the fundamental nature of the identification problem there has been much work
over a long period of time that has explored the identification of applications/traffic types
over encrypted channels or at least in a payload agnostic manner. Table 1 illustrates a
selection of this work.

We cite two attempts at comparing various machine learning algorithms in conjunction
with several features to solve the identification problem. Lim et al [6] compare twenty-
two decision tree, nine statistical, and two neural network algorithms on thirty-two
datasets with respect to classification accuracy, training time, and (in the case of trees)
number of leaf nodes. They measure classification accuracy by mean error rate and mean
rank of error rate. They state that most of these algorithms perform similarly with a
statistical, spline-based, algorithm called Polyclass working slightly better than other
algorithms. Another statistical algorithm, logistic regression, is second with respect to
the two accuracy criteria. They find that the most accurate decision tree algorithm is
Quest with linear splits, which ranks fourth and fifth, respectively. Although spline-
based statistical algorithms tend to have good accuracy, they also require relatively
long training times. Polyclass, for example, is third last in terms of median training
time. It often requires hours of training compared to seconds for other algorithms. The
Quest and logistic regression algorithms are substantially faster. Among decision tree
algorithms with univariate splits, C4.5, Ind-Cart, and Quest have the best combinations
of error rate and speed. But C4.5 tends to produce trees with comparitively a large
number of leaves. Alshamarri et al [1] compare AdaBoost, Support Vector Machines,
Naive Bayesian, RIPPER and C4.5. They find that C4.5 is the best of these.

Some techniques such as the one by Bernaille et al [2] require very few features to be
collected – only the first five packets are used. The number five was arrived by trying
different number of packets, and different numbers of clusters and finding the pair 〈5, 50〉
to yield the best results.

Karagiannis et al [5] enhance their classification mechanism with some social, functional
and application level information, and obtain good accuracy.

Roughan et al [10] perform classification for the purpose of quality of service(QOS)
maintenance.

2

Authors ML Technique Data, Quantity,
Features

Accuracy

Williams et al [11] (i) Baysesian with
discretized featured
(ii) C4.5 (iii) Naive
Bayes (iv) Naive Bayes
Tree. Feature reduc-
tion using correlation
and consistency. Filter
vs. wrapper models.
Sampling to limit
number of flows.

auckland-vi-
20010611,2
leipzig-ii-
20030221,
nzix-ii20000706
4000 Flows per
application class
; 22 Features

> 80%

McGregor et al [7] Expectation Maxi-
mization(EM)

packet length,
inter-arrival
time and flow
duration.

NA, unsuper-
vised

Zander et al [12] Greedy Forward Fea-
ture Search and EM

subset of Ta-
ble 2

average of
86.5%

Roughan et al [10] Nearest Neighbor
(NN) and linear dis-
criminate analysis
(LDA) into interactive
or transactional

packet, flow,
connection,
intra-flow,
multi-flow

90s

Moore et al [9] Naive Bayes Classifier,
Correlation based se-
lection of stronger fea-
tures

248 flow fea-
tures – packet
length, inter-
arrival times

> 65% per flow.
70 − 97% with
Kernel density
estimation and
and > 90% with
FCBF Filtering

Karagiannis et al
[5]

graph-based social, func-
tional, applica-
tion

> 95%

Bernaille et al [2] K-means clusterting First 5 packets > 80%
Lim et al [6] 33 algorithms 32 data sets
Alshammari,
Zincir-Heywood [1]

5 algorithms ssh v.s skype
features in Ta-
ble 2 on old
standard data

> 90%

Zhang et al [13] k-NN, Bayesian, ran-
dom forest

number of
packets, bytes
transferred,
packet size,
inter-packet
time

variable

Branch et al[3] C4.5 Skype identifi-
cation. Packet
lengths, inter
arrival times,
large v/s small
packets

> 98%

Table 1: Related Machine Learning Approaches Compared

3

Protocol Duration of the flow

Packets in forward direction # Bytes in forward direction
Packets in backward direction # Bytes in backward direction
Min forward inter-arrival time Min backward inter-arrival time
Std deviation of forward interarrival times Std deviation of backward interarrival times
Mean forward inter-arrival time Mean backward inter-arrival time
Max forward inter-arrival time Max backward inter-arrival time
Min forward packet length Min backward packet length
Max forward packet length Max backward packet length
Std deviation of forward packet length Std deviation of backward packet length
Mean backward packet length Mean forward packet length

Table 2: Typical feature set for a ML algorithm

The results of Table 1 would perhaps suggest that it is easy to get accuracies of greater
than 80% while solving the identification problem using machine learning techniques.
While we have had similar successes in attempting to identify Skype against non-Skype,
we have not had similar successes with other classification attempts over browser-based
applications such as gmail.

Absorbing the work that went behind all these papers gave us much better insight and
intuition into the nature of the identification problem and the techniques to solve it than
if we were to attempt solving it from scratch.

4 A quick introduction to Machine Learning

Given that this problem has been addressed using machine learning techniques, it is
fruitful to introduce these properly (beyond presenting a laundry list of machine learning
algorithms). In his book [8], Tom Mitchell defines learning as: A computer program is
said to learn from experience E with respect to some tasks T and some performance
measure P if its performance at tasks in T improves with E.

When using machine learning for the act of assigning entities to classes, the result of
learning is a classifier which can be applied to instances not seen during training.

Our main goal, while solving the identification problem is not to debate the meaning of
the word learning but to find algorithms and techniques that satisfy the above definition
and to devise some ourselves.

The act of designing a machine learning system incudes firstly the design or choice of the
training experience. Secondly, we must choose or design a target function that helps us
with the act of classification. Thirdly, we need to choose a representation of this target
function. We need to arrive at approximation schemes to evaluate this target function

4

for values not in the training set. We will describe how we performed all of these steps
listed above in the next section.

4.1 Issues while designing machine learning systems

The list of Machine Learning algorithms continues to grow and some of them are being
used heavily in the real world. Understanding the appropriateness of these algorithms to
the problem being solved, and following up this understanding with a decision of which
algorithm to use is difficult. Also, the decision of having to design a new algorithm is
not an easy one, and needs justification – often by appealing to the special features of
the problem at hand.

It is often asserted in literature that a large amount of data with simple algorithms
outperforms sophisticated algorithms with smaller amounts of data. The central question
here is: How much training data is sufficient? How can we quantify the confidence in
the learning done on the training data?

How much can we use prior knowledge in these systems. For instance is it OK to pre-
process data – by ignoring some particular features, even if the knowledge guiding this
decision is approximate?

When should re-training be done? Should we do the same kind of training as we did
before, or should we modify the training – say, by adding/deleting features?

What form should the classifier take? Should we let the learning system decide this?

4.2 Performance Issues

Sophisticated machine learning algorithms allow parameterization of the extent to which
they will fit the model to the training data. It is easy to fall into the trap of overfitting
the data – in which case results in the laboratory look very good. These models do not
often perform as well on real world data.

In our case, the application of standard machine learning algorithm such as Bayesian-
LogisticRegression to the problem of distinguishing Skype from everything else had a
precision of 1 which means that it had no false positives and a recall of 0.872. We are
in the process of determining the extent of overfitting in this and other good results by
applying the same technique to 10x the amount of data.

5 Our Approach

Our approach is to break the stream up by time buckets and try various weak classifiers
on buckets and then adjust our confidence over time. The reason for using time based

5

Figure 1: Illustration of bucketing sizes for a time window

windows instead of a set amount of packets is that intuitively there is a better chance of
identifying the application even if it is mixed with traffic from other applications on the
tunnel. See 5.1 for classifying each time window and 5.2 for information on updating
the confidence over time.

We looked at two primary features - packet size counts and timing between packets. In
our experience the timing was too noisy for accurate classification, but the packet size
counts and relations between them are very useful. And we can implicitly include some
timing information by generating our feature vectors as a function of time. So what
we do is generate a single 65536 dimension feature vector where each dimension is a
count of the number of packets with a size that is the same as the ”number” of that
dimension.

As an illustration, if you take say 100 packets and treat that as your feature vector, and
the user is 1) using skype and 2) watching a youtube video. It is likely you will get
no traffic for skype or at least not get consistent numbers of packets in that 100 length
sequence due to being overwhelmed with video data. On the other hand in a 10 second
window you can expect a certain amount of traffic from any particular application you are
looking to identify, and our feature selection will ideally discard most of the noise.

Figure 1 displays a simple workflow with a 10 second window that saw 6 packets, 3 of
which were sizes that the classifier deems relevant.

6

5.1 Algorithms used to classify 10 second windows of traffic

In order to be able to easily update our confidence using section 5.2 our window classifier
needs to return an estimate of the probability of the feature vector for both our negative
and positive classes. We should emphasize that it is not a probability that it belongs to
the positive class.

Likelihood function Assume traffic is generated by a mixed gaussian and estimate
the density function using the multi-variate normal likelihood function (Equation
(5.1)).

Decision trees See section 5.1.1. This performs significantly better than the Likeli-
hood function.

L(x) = e−
1
2

ln(|Σ|)− 1
2

(x−µ)T Σ−1(x−µ)− k
2

ln(2π) (5.1)

where

x = column feature vector

µ = Sample mean column vector

Σ = Sample covariance matrix

|Σ| = determinant of Σ

k = number of dimensions (65536)

5.1.1 Decision Tree Algorithm

See Figure 2 for an example of a Decision Tree that we would like to create.

Algorithm 5.1 describes the decision tree creation algorithm in pseudocode. These trees
give much better accuracy than the likelihood function and in fact get perfect accuracy
with Skype, which most of the existing work has used. The bias parameter is important
to help avoid overfitting, and can be set by the user. Additionally, the tools provided
can search for the best bias.

5.2 Using Bayes Rule to update our confidence

F or each network stream we maintain a probability that the stream contains data from
our positive class (P (CLASS|DATA)). For every 10 seconds of data we then create
a feature vector and estimate P (DATA|CLASS) for both the positive and negative
classes using either the likelihood function or decision trees. Once we have this estimate
we can update our stored prior (confidence if you prefer) using Bayes’ Rule (Equation
(5.2)).

7

Take this path
if there is < 1 packet
with size 104.

If we reach this node
there is a 2.8% probability
that it is not skype, and a 97.2%
probability that it is skype.

There is a 0.6% probability
that non-skype data will
reach this node, and a 24.1%
probability that skype data will
reach this node

Figure 2: Example Skype/SSH decision tree

8

Algorithm 5.1 Decision Tree Creation Algorithm

function SelectFeatureAndCutoff(data, bias)
col← ⊥
cut← ⊥
max← −∞
for all {column, thresh|column, thresh ∈ features× values} do

igain← information gain ratio using column and thresh

. We use the bias parameter to bias our selection to column/thresh pairs that look
for a decrease in the probability of the positive class on the < side, this is so that we
do not learn that a protocol ”will not have these sizes”

score← (P (col >= thresh|positive) ∗ P (col>=thresh|positive)
P (col>=thresh|negative) ∗ igain

bias)
1

2+bias

if score > max then
max← score
col← column
cut← thresh

end if
end for
return col, cut

end function

function ExpandNode(data, bias)
p← probability of positive class given data
if p < ε ∨ p > 1− ε then

return
end if
f, c← SelectFeatureAndCutoff(data, bias)
low ← {x|x ∈ data ∧ x[f] < c}
high← {x|x ∈ data ∧ x[f] >= c}
ExpandNode(low)
ExpandNode(high)

end function

ExpandNode(training data)

9

P (CLASS|DATA) =
P (DATA|CLASS)P (CLASS)

ΣC∈CLASSESP (DATA|C)P (C)
(5.2)

6 Experiments and Results

We collected the data using the --nflog option in iptables, for outbound packets only.
We extracted the features using the python wrapper to libcap –scapy in linux and
winpcapy in windows.

The pacumen tool can be run directly within a iPython notebook and setting a variable
to point to the directory with the pcap files. In order to run algorithms in Weka[4] we
provide a converter.

7 Discussion

We resort to standard measures of precision, recall and f-measure to demonstrate the
efficacy of our approach.

precision =
Number of Correctly classified instances

Total number of positive classifications

recall =
Number of Correctly classified instances

Total number of class members

f −measure = 2.
precision.recall

precision+ recall

We ran our experiments on our machine learning algorithms and also on standard ma-
chine learning algorithms in Weka. Table 3 shows the result.

The results are comparitively worse for the classes firefox.gmail and firefox.linkedin.
The extra rows gmail and linkedin were created by combining the firefox and chrome
versions of these classes. It can be observed that this union yielded better results, lead-
ing to the conclusion that the firefox and the chrome versions of the classes were often
mistaken for one another.

References

[1] Riyad Alshammari and A Nur Zincir-Heywood. Machine learning based encrypted
traffic classification: identifying ssh and skype. In Computational Intelligence for

10

J48 LADTree BLR Our Tree
P R F P R F P R F P R F

chrome.facebook .92 .79 .85 .87 .82 .84 .85 .70 .77 .70 .96 .81
chrome.gmail .64 .32 .43 .60 .38 .46 .59 .54 .56 .38 1.0 .55
chrome.linkedin .51 .56 .54 .63 .40 .49 .78 .72 .75 .95 .43 .59
firefox.facebook .84 .64 .72 .86 .73 .79 .88 .67 .76 .33 1.0 .50
firefox.gmail .30 .15 .21 .68 .34 .46 .88 .67 .76 .18 1.0 .31
firefox.linkedin .30 .15 .21 .67 .31 .42 .82 .35 .49 .50 1.0 .66
linkedin .71 .45 .64 .67 .47 .55 .69 .57 .62 – – –
gmail .86 .50 .78 .76 .72 .74 .80 .78 .79 – – –
skype .89 .90 .90 .95 .90 .92 1.0 .87 .93 1.0 1.0 1.0

Table 3: Results of running some standard machine learning algorithms in Weka upon
our data. The columns P,R,F stand for precision, recall and f-measure respectively. BLR
stands for Bayesian Logistic Regression.

Security and Defense Applications, 2009. CISDA 2009. IEEE Symposium on, pages
1–8. IEEE, 2009.

[2] Laurent Bernaille, Renata Teixeira, Ismael Akodkenou, Augustin Soule, and Kave
Salamatian. Traffic classification on the fly. ACM SIGCOMM Computer Commu-
nication Review, 36(2):23–26, 2006.

[3] Philip A Branch, Amiel Heyde, and Grenville J Armitage. Rapid identification of
skype traffic flows. In Proceedings of the 18th international workshop on Network
and operating systems support for digital audio and video, pages 91–96. ACM, 2009.

[4] Mark Hall, Eibe Frank, Geoffrey Holmes, Bernhard Pfahringer, Peter Reutemann,
and Ian H Witten. The weka data mining software: an update. ACM SIGKDD
explorations newsletter, 11(1):10–18, 2009.

[5] Thomas Karagiannis, Konstantina Papagiannaki, and Michalis Faloutsos. Blinc:
multilevel traffic classification in the dark. In ACM SIGCOMM Computer Commu-
nication Review, volume 35, pages 229–240. ACM, 2005.

[6] Tjen-Sien Lim, Wei-Yin Loh, and Yu-Shan Shih. A comparison of prediction accu-
racy, complexity, and training time of thirty-three old and new classification algo-
rithms. Machine learning, 40(3):203–228, 2000.

[7] Anthony McGregor, Mark Hall, Perry Lorier, and James Brunskill. Flow clustering
using machine learning techniques. In Passive and Active Network Measurement,
pages 205–214. Springer, 2004.

[8] Tom M Mitchell. Machine learning. wcb, 1997.

[9] Andrew W Moore and Denis Zuev. Internet traffic classification using bayesian
analysis techniques. In ACM SIGMETRICS Performance Evaluation Review, vol-
ume 33, pages 50–60. ACM, 2005.

11

[10] Matthew Roughan, Subhabrata Sen, Oliver Spatscheck, and Nick Duffield. Class-
of-service mapping for qos: a statistical signature-based approach to ip traffic clas-
sification. In Proceedings of the 4th ACM SIGCOMM conference on Internet mea-
surement, pages 135–148. ACM, 2004.

[11] Nigel Williams, Sebastian Zander, and Grenville Armitage. A preliminary per-
formance comparison of five machine learning algorithms for practical ip traffic
flow classification. ACM SIGCOMM Computer Communication Review, 36(5):5–
16, 2006.

[12] Sebastian Zander, Thuy Nguyen, and Grenville Armitage. Automated traffic clas-
sification and application identification using machine learning. In Local Computer
Networks, 2005. 30th Anniversary. The IEEE Conference on, pages 250–257. IEEE,
2005.

[13] Jun Zhang, Chao Chen, Yang Xiang, and Wanlei Zhou. Robust network traffic
identification with unknown applications. In Proceedings of the 8th ACM SIGSAC
symposium on Information, computer and communications security, pages 405–414.
ACM, 2013.

12

	Living Document
	Introduction
	Related Work/Prior Research
	A quick introduction to Machine Learning
	Issues while designing machine learning systems
	Performance Issues

	Our Approach
	Algorithms used to classify 10 second windows of traffic
	Decision Tree Algorithm

	Using Bayes Rule to update our confidence

	Experiments and Results
	Discussion
	References

