

# **APT Attribution and DNS Profiling**

Frankie Li

ran2@vxrl.org

Twitter: @espionageware

## Agenda

- APT Attribution: Who wrote these codes?
- Tactics, Techniques and Procedures (TTP)
- Behavior of APT adversary
- HUMINT extracted from DNS or Whois
- Gather intelligence from open source
- Dynamically monitoring of PassiveDNS 

   PassiveWhois
- Analysis by visualization tool (Maltego)
- MalProfile Tools and demo



#### Who am 1?

- From a place in China, but not so China;)
- Sunday researcher in malware analysis and digital forensics
- Part time lecturer
- A Lazy blogger (espionageware.blogspot.com)
- NOT associated with PLA 61398 or Mandiant
- NOT associated with PLA 61486 or CrowdStrike or Taia Global





## **APT ATTRIBUTION**

#### **APT Attribution**

- Disclaimer: Not going to provide any opinion on the latest indictment or Yoke Bun or Clock Tower
- Not a major concern for private sector, but for LE or intelligence agencies
- Not difficult, if you have source code
- Not hard, if you focus only on strings & human readable data within a malware program
- But, to attribute responsibility with "Certainty" is almost impossible, unless they make a mistake



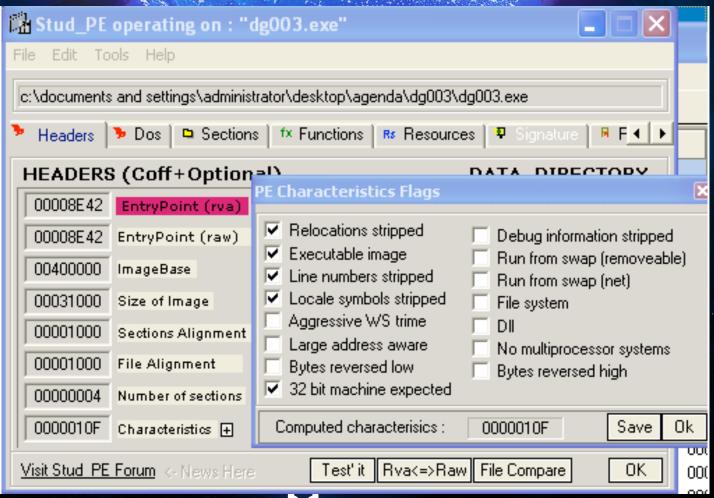
### Who wrote these codes?

- Source code attribution
- Attributes of Windows binaries
- Attribution malware
- Attribution of APT by digital DNA



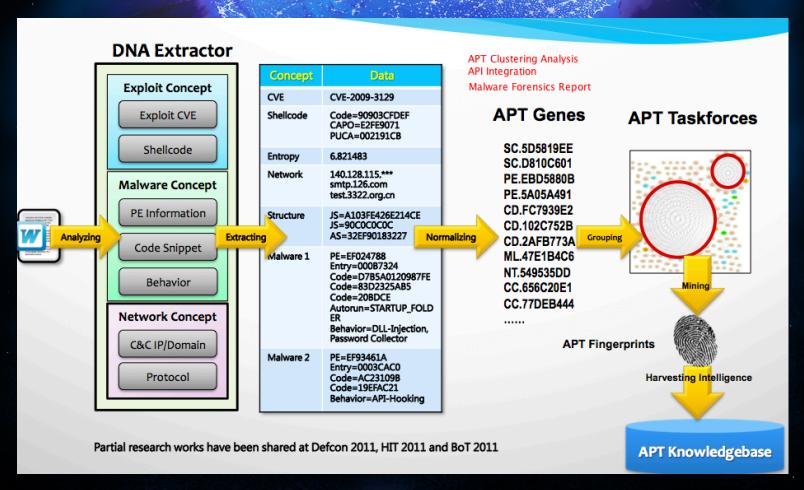
### Source code attribution

- The term Stylometry refers the application of attribute the authorship by coding style
- Kind of profiling by writing style
- Comments and coding crumbs
- JStylo: By comparing unknown documents with a known candidate author's document\*
- Not a solution because most APT samples collected are compiled binaries




### Attributes of Windows Malware

- PE headers are des-constructed and metadata (artifacts) are categorized (Yonts, 2012)
- Extract the technical and contextual attributes or "genes" from different "layers" to group the malware (Xecure-Lab, 2012 and Pfeffer, 2012)
- By a proprietary reverse engineering and behavioral analysis technology (Digital DNA, 2014)




#### PE Deconstruction





## **Attribution Using Genetic Information**

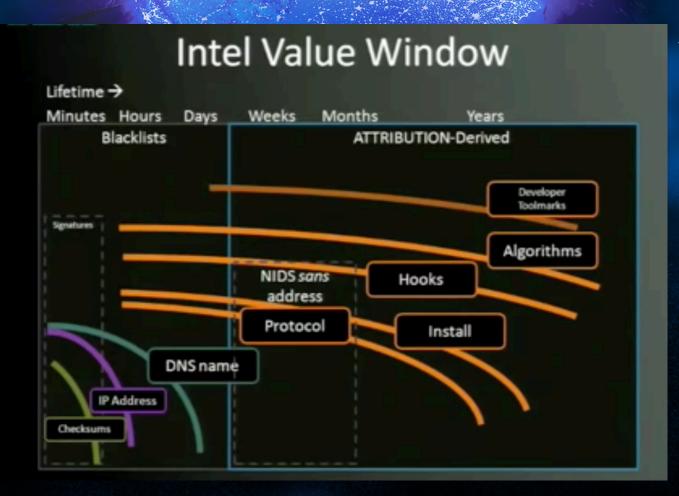


From: Xecure-Lab, 2012





# TACTICS, TECHNIQUES AND PROCEDURES (TTP)


## Human is the key

- Attribution: Tracking Cyber Spies & Digital Criminals (Hoglund, 2010)
- Forensics marks that could be extracted from raw data in three intelligence layers
  - Net Recon
  - Developer Fingerprints
  - Tactics, Techniques, and Procedures (TTP)
- Among these three layers, TTP should carry the highest intelligence value for identifying human attackers
- But, near impossibility of finding the human actors with definitive intelligence
  - Social Cyberspace (i.e., DIGINT)
  - Physical Surveillance (i.e., HUMINT)

http://www.youtube.com/watch?v=k4Ry1trQhDk



## Hoglund's malware intellife time





#### TTP

- A military term?
- A term to describe the behavior of adversary?
- A modern term to replace modus operandi?
  - the method of operation
  - The habits of working
- TTP are human-influenced factors



# Pyramid of Pain,



•Tough!

**Tools** 

Challenging

Network/ Host Artifacts

Annoying

**Domain Names** 

Simple

**IP Addresses** 

Easy

**Hash Values** 

Trivial

From David Bianco's Blog http://detect-respond.blogspot.hk/2013/03/ the-pyramid-of-pain.html





# TTP OR BEHAVIOR OF APT ADVERSARY

# APT life cycle

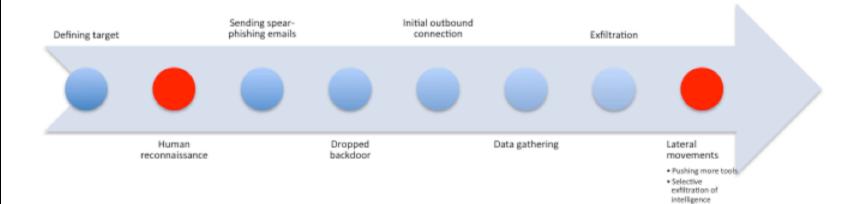
Defining target Dropped backdoor Data gathering














Sending spearphishing emails Initial outbound connection Exfiltration



# Extended APT life cycle





### APT infrastructure tactics

- Domain registration
- Naming convention is not typo squatting, but follows a pattern of meaningful Chinese PingYing(拼音)
- Creation DNS-IP address pairs
- Engaging a "friendly ISP" to use a portion of their C-class subnet of IP addresses situated at the domicile of the targeted victims
- DNS names and IP addresses may be cycled for reuse (a.k.a. campaigns), which may provide indications or links to the attacker groups
- Embedding multiple DNS A-records in exploits
- Preparing spear-phishing email content after reconnaissance of the targeted victims
- Launching malicious attachments through spear-phishing emails



### **APT infrastructure tactics-2**

- The exploits drop binaries that extract the DNS records and begin communicating with the C2 by resolving the IP addresses from DNS servers.
- The C2 servers or C2 proxies register the infections on the C2 database
- The intelligence analysts of the attacker groups review the preliminary collected information of the targeted victims through C2 portals.
- The infected machines are further instructed to perform exfiltration of collect further intelligence from the infected machines.
- The infrastructure technical persons of the attacker group apply changes (domain manipulation) to the DNS-IP address pair, domain name registration information (Whois information), and the "parked domains" from time to time or when a specific incident occurs
- In contrast with the Fast-Flux Services Networks mentioned by the HoneyNet Project, the information does not change with high frequency

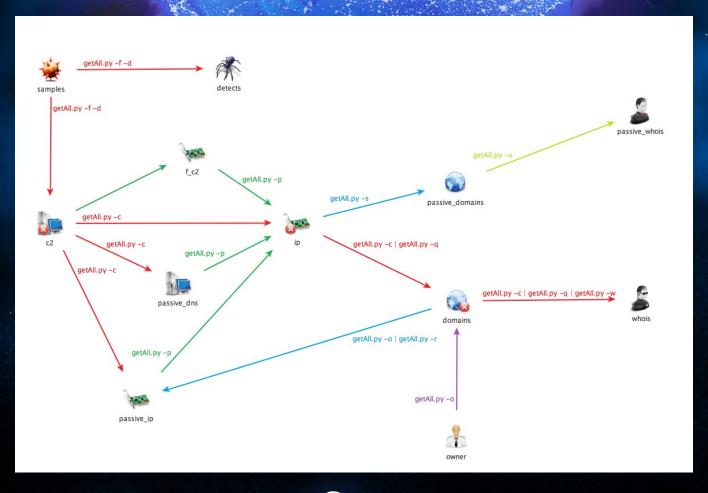




### **HUMINT EXTRACTED FROM DNS**

## What is kept in DNS & Whois

- Domain names: A Record, Cname, NS record
- Whois records: valid email address (once), name, street address, name servers
- Parked-domains: temporary IP address assigned creation of first DNS record on the name server (newly created domains are kept under 1 IP address for future use)




### **HUMINT** intel collected

- Extract DNS from the malicious code (sandbox)
- Lookup the currently assigned IP address
- Retrieve all parked-domains from the identified IP address
- Retrieve whois information from the identified domains
- Update identified record to a relational database for future analysis
- Repeat the process and record all changes in the database



# Intel collection process







## QUERIES FROM OPEN SOURCE

#### Open source

- Nslookup
- Whois
- Domain tools: reverse DNS and reverse whois
- http://bgp.he.net
- http://virustotal.com
- http://passivedns.mnemonic.no
- https://www.farsightsecurity.com
- https://www.passivetotal.org



# DomainTools - Ouch!



#### **Invoice**



Payee:

DomainTools.com 2211 5th Ave Suite 201 Seattle, WA 98121 http://www.domaintools.com

Payer:

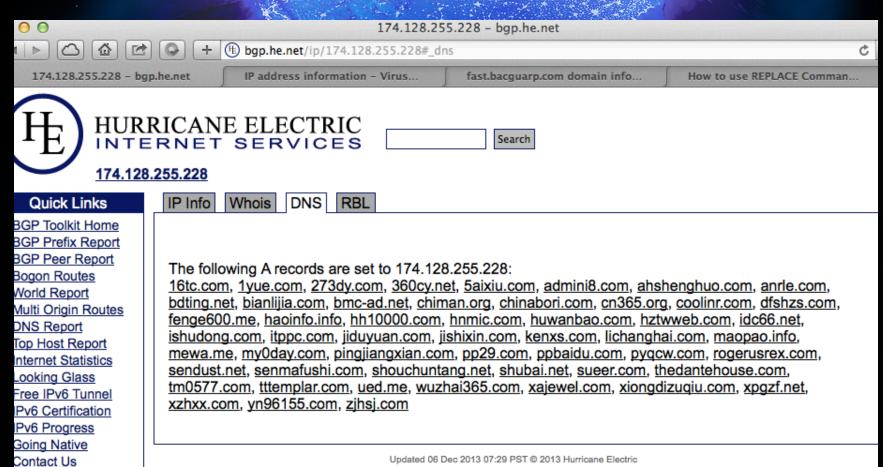
Frankie Li (ran2@vxrl.org)

Payment:

PayPal 3YMVR4Z8TUQS8 fukayli@gmail.com

Invoice Number: DT13555833

Invoice Date: 2013-03-22 08:28:34


Invoice Status: PAID

#### **Item List:**

| Item Description                                                          | Quantity | Unit Price | Extended Price |
|---------------------------------------------------------------------------|----------|------------|----------------|
| Reverse Whois Report (Registrant (Owner) Exactly Matching "WANGLUO SHAN") | 1        | 99.00      | 99.00          |
|                                                                           |          | SubTotal:  | 99.00          |
|                                                                           |          | Taxes:     | 0.00           |
|                                                                           |          | Total:     | 99.00          |



## http://bgp.he.net



Updated 06 Dec 2013 07:29 PST @ 2013 Hurricane Electric





#### PASSIVE DNS TO PASSIVE WHOIS

## Passive DNS

- Passive DNS is a technology that constructs zone replicas without cooperation from zone administrators, and is based on captured name server response
- Passive DNS is a highly scalable network design that stores and indexes both historical DNS data that can help answer questions such as:
  - where did this domain name point to in the past
  - which domain name points to a given IP network
- VirusTotal kept passive DNS records collected from malicious samples
- Higher chance malicious historical DNS-IP records



### VirusTotal - PassiveDNS

\*

Community

Statistics

Documentation

FAO

About

English

Join our community

Sign in



#### fast.bacguarp.com domain information

#### □ Passive DNS replication

VirusTotal's passive DNS only stores address records. This domain has been seen to resolve to the following IP addresses.

2013-09-04 121.127.248.27

2013-10-30 210.56.63.60

#### A Latest detected URLs

Latest URLs hosted in this domain detected by at least one URL scanner or malicious URL dataset.

3/50 2013-10-30 13:10:12 http://fast.bacguarp.com/



#### **Passive Whois**

- There are no open source keeping those whois changes, like VirusTotal Passive DNS project (or whois history at who.is)
- By stepping through the IP lookup, retrieval of parked-domains and whois lookup, any changes will then be updated to a relational database



# Passive Whois

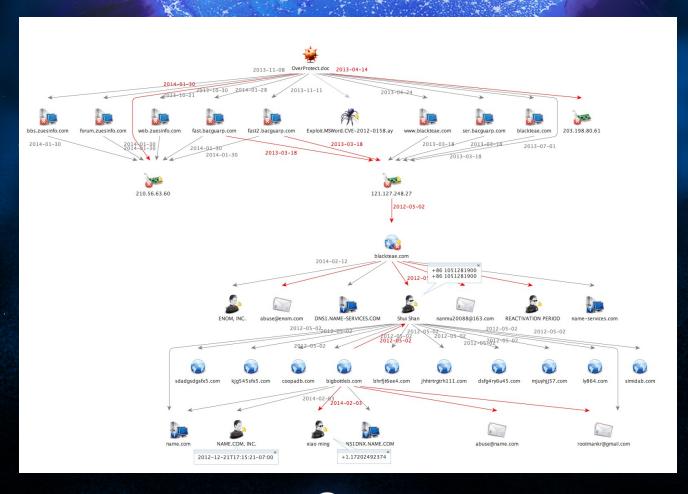
select t3.date, t3.name, t1.scan\_date, t1.dns, t1.ip\_addr, t2.domain, t2.Cname from c2 as t1, domains as t2, samples as t3 where t1.id = t2.sid and t3.id = t1.sid

#### Execute query

#### Error message from database engine:

#### No error

#### Data returned:


| date       | name      | scan_date  | dns                | ip_addr         | domain                   | Cname                |
|------------|-----------|------------|--------------------|-----------------|--------------------------|----------------------|
| 2013-04-12 | Insurance | 2013-10-24 | wznewbook.gicp.net | 174.128.255.228 | ued.me                   | mytension.gicp.net   |
| 2013-04-12 | Insurance | 2013-10-24 | wznewbook.gicp.net | 174.128.255.228 | wuzhai365.com            | shiyuekai.gicp.net   |
| 2013-04-12 | Insurance | 2013-10-24 | wznewbook.gicp.net | 174.128.255.228 | xajewel.com              | xianidc.gicp.net     |
| 2013-04-12 | Insurance | 2013-10-24 | wznewbook.gicp.net | 174.128.255.228 | xiongdizuqiu.com         | syq10086.gicp.net    |
| 2013-04-12 | Insurance | 2013-10-24 | wznewbook.gicp.net | 174.128.255.228 | xpgzf.net                | tangjiands.gicp.net  |
| 2013-04-12 | Insurance | 2013-10-24 | wznewbook.gicp.net | 174.128.255.228 | xzhxx.com                | xzhxx.gicp.net       |
| 2013-03-02 | Japan     | 2013-11-02 | webmonder.gicp.net | 174.128.255.228 | 050sf.com                | chaocha.gicp.net     |
| 2013-03-02 | Japan     | 2013-11-02 | webmonder.gicp.net | 174.128.255.228 | 2bbaike.com              | 116.112.7            |
| 2013-03-02 | Japan     | 2013-11-02 | webmonder.gicp.net | 174.128.255.228 | chilia-info.com          | qq329684750.gicp.net |
| 2013-03-02 | Japan     | 2013-11-02 | webmonder.gicp.net | 174.128.255.228 | chinabori.com            | zoweeoffice.gicp.net |
| 2013-03-02 | Japan     | 2013-11-02 | webmonder.gicp.net | 174.128.255.228 | design-zy.com            | qq329684750.gicp.net |
| 2013-03-02 | Japan     | 2013-11-02 | webmonder.gicp.net | 174.128.255.228 | goodnoon.com             | todayliu.gicp.net    |
| 2012 02 02 | lanen     | 2012 11 02 |                    | 174 120 255 220 | la la al la cola de mana | indiana aire         |





# ANALYSIS BY VISUALIZATION MALTEGO

# Sample called OverProtect







## CONCLUSION

# Intuitive views on the attribution of APT

- Continuously monitoring "whois servers" and DNS-IP address pairs
- Intelligence may be lost if they change their TTP in the future, particularly after the publication of this paper
- TTP are determined by the cultural background of the attacker groups
- The intelligence collection process should thus be adjusted toward these changes and analysts should have the same cultural mindset



#### Is attribution with certainty possible?

- All discussed methods may generate some value to the attribution
- But, TTP should carry the highest intelligence value for identifying human attackers
- Any artifacts that support the highest human link should be allocated with highest value to the attribution
- However, the increasing sharing of TTP and tools by various actors may reduce the reliability to associate with them. (I've read a paper promoting a framework called OpenAPT)
- Another challenging factor is attribution intelligence are not shared enough and intelligence community are not fully understood





**TOOLS** 

# MalProfile Tools and MalProfile Local Transforms

- The tools consists of 2 parts:
  - MalProfile script to grabbing intelligence from the Internet
  - Maltego Local Transforms to help analysis process



## MalProfile.py

```
Ran2:myscripts fukayli$ getAll.py -h
Usage: getAll.py [options]
Options:
  -h, --help
               show this help message and exit
               initialize c2 database [c2 dev.db]
  -f FILENAME Provide a FILENAME to check
               Provide a DNSNAME to check
  -d DNS
               rescanning c2 to update all subsequent tables
  - C
               rescanning owner table to update all subsequent tables
  -0
               rescanning passive tables to update ip table
  - p
               rescanning ip table to update domains & whois tables
  - q
               rescanning domains table to update passive_ip table
  - r
               rescanning ip table to update passive domains & passive whois
  - S
               tables
               rescanning and update tmp table
  - t
               rescanning and update domains table to update whois
  -W
               rescanning and update whois table from passive whois
  - X
Ran2:myscripts fukayli$
```



## Google Project

- Special thanks go to Kenneth Tse and Eric Yuen who is upgrading my messy code into a class
- You can find the code at: https:// code.google.com/p/malicious-domain-profiling/
- To allow more intelligence can be added when new TTP be identified
- Any interested are welcome to contribute to this project. Please contact ran2@vxrl.org or kennetht@gmail.com



# malicious-domain-profiling

#### Introduction

MalProfile? is a set of tools to:

- Fetch useful data from different sources include malware samples, suspicious IP/Domain being used, passive DNS records, md5 hash and save to a database at different time slot for behaviour and/or timeline analysis
- Present in Maltego the relationship of malware, current and passive domain/IP/Email/Telephone etc to get the origin of the source. And elaborate the relationship to get suspected IP/Domain for proactive prevention and detection.

#### History

Please refer to CHANGELOG?

#### Requirements

- Kali Linux 1.0.7 or later (for illustration purpose only, for advance users, just use the tool per your preference, in my case, I install it on my Mac)
- 2. Maltego Edition 3.4.0 or later (If community version is used, only 12 records will be randomly displayed)
- 3. Virustotal registration and API key
- 4. Maltego Basic Python Library https://www.paterva.com/web6/documentation/developer-local.php

(Other system with Python 2.7 and Maltego may work but never tried:))

#### Package Files

The following files are included in the MalProfile? package.

MalProfile/MalProfile.py
MalProfile/MalProfile.ini
MalProfile/README.txt
MalProfile/c2\_PittyTiger
MalProfile/c2\_Xsecu
MalProfile/Maltego/MyEntities.mtz
MalProfile/Maltego/\*
MalProfile/Utils/\*
ReadMe/\*
Samples/\*

# MalProfile main script

# MalProfile configuration file

# this file

# Sample database file (not included in the code email ran2@vxrl.org)

# Sample database file (not included in the code email ran2@vxrl.org)

# Maltego Input Entities

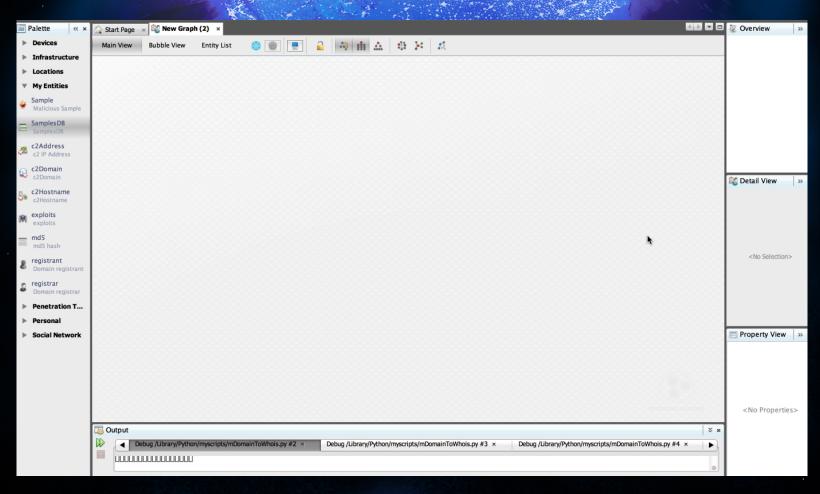
# Maltego Transform scripts, Refer to ReadMe/Transform\_Readme for more info

# Libraries and plugins for MalProfile

# Documentation of MalProfile design and usage

# Samples for demonstration (not included in the code email ran2@vxrl.org)

#### Installation


- 1. unzip the MalProfile.zip to /Root/MalProfile
- 2. apt-get install python-setuptools
- easy\_install pip
- 4. pip install python-whois
- 5. pip install hashlib





## **DEMO**

# Sample called OverProtect and Insurance







# Thank you! Q&A

Frankie Li

Ran2@vxrl.org

http://espionageware.blogspot.com



# Please complete the Speaker Feedback Surveys

Frankie Li

Ran2@vxrl.org

http://espionageware.blogspot.com