D lastline

N lastline —

Full System Emulation:
Achieving Successful Automated
Dynamic Analysis of Evasive Malware

Christopher Kruegel
Lastline, Inc.

Who am |?
D |ast

Co-founder and Chief Scientist at Lastline, Inc.

— Lastline offers protection against zero-day threats and advanced
malware

— effort to commercialize our research

Professor in Computer Science at UC Santa Barbara (on leave)
— many systems security papers in academic conferences

— started malware research in about 2004

— built and released practical systems (Anubis, Wepawet, ...)

What are we talking about?
D |ast

« Automated malware analysis
— how can we implement dynamic malware analysis systems

« Evasion as a significant threat to automated analysis
— detect analysis environment
— detect analysis system
— avoid being seen by automated analysis

* Improvements to analysis systems
— automate defenses against classes of evasion approaches

Evolution of Malware

™ lastline —
$$ Damage Targeted Attacks
Billions] and Cyberwarfare
Millions

Hundreds of
Thousands

Thousands

Hundreds

Cybercrime

Cybervandalism

2

Malware Analysis

-
OllyDbg - 601e77d9.exe

File View Debug Plugins Options Window Help

7C2BESAB

68 BREIIACC
7COBESED| 64:A1 0O0BOBO0
7COBESBE(S0

CCODESEC SB4424 18
] 896C24 10

PUSH n EET]
HOD ERL UORD PTR FS: (8]
PUSH_EAX

MOU EAX,DWORD PTR SS:[ESP+181

?C9BESBF
7COBESC3| 2BEG@
7C9BESCS| 53
7COBESCE| S6

S7

S8B4S F2
8965 ES
8

8B4S FC

7CoBESDZ
7C98ESDY| 8945 F8
7C9BESDC(8D45 FO@

64: A3 00000000

7C9BESDF
c3
SB4D F@

7COBESES

C745 FC FFFFFFFI

PUSH EDI
MOU ERX,DWORD PTR SS:[EBP-8]
MOV DWORD PTR SS:[EBP-181,ESP
PUSH _ERX

MOU ERAX,DWORD PTR SS:[EBP-4]

SS: [EBP— 4] =1
$3: [EBP-81, EAX
LEA EAX,DWORD PTR SS:[EBP-18]
MOV DWORD PTR FS:[81,ERX

RETN
Moy ECX, DWORD PTR SS: [EBP-181

a
X ntdll.KiFastSysy

a
Ba12FEFG
Ba12FF3C
2620008
7C2168268 ntdll.7C916262

7C9BESBB ntdll.7CIBESEE

C 8 ES 8823 32bit B(FFFFFFFA
P 1 CS 881B 32bit B(FFFFFFFH

5 @ S5 8823 32bit B(FFFFFFFH

e} NS _@A[R22 22ki+ ArCCCCCCCO

7COBESES
EBP=0812FF3C

Stack SS:[0012FFOB]1=00000018

Address ||

88424008 | g
ag

80484028
88484038
88434032
884840840
884840843
80484058
884340852
88484060
88484268

PB12FF44|
‘BB12FFEC| |

Ba12FEF4
Ba12FEFS
Ba12FEFC
Ba12FFaa
Ba12FFa4
Ba12FFas
Ba12FFac
Ba12FF18
Ba12FF14
Ba12FF18
BR12FF1C

& —
Call stack of main thread [m]
1]

7C201F 10| RETURN_to kernel32.7C801F
70910283 | ntdl L. 70916262

00401124 601e77dS. 0R401154
7FFD4000

FF&76930

FFFFFFFF

A4FBOJEE

Procedure / arguments

? ntdll.7C28ESAB

? ntdll.Rt lAcqu irePeblock

7 kernel32. GetStartuDInFoFl
pStartupinfo = BB12FFS58
7 <JMP. &MSUBUMED. #1063

Called from
ntdll.7C3183F4
kernel32.7C881FGA
MSUBUMEE. 73423500

LI X
4

681e77d9.604016BD

lastiine —

Malware Analysis

lastiine —

OllyDbg - 601e77d9.exe
File VYiew Debug Plugms Optlons Window Help

£ windows Task Manager (=] 9|

File Options View ShutDown Help

Applications Processes IPevformancel Networkingl Users |

CEanEorn| £3:A1-00GBBEED | HOU EAV-DWDRD PTR FS: (81 L=
7COBESEG 59. 1 60000 PUSH ng Eg§ 93333813 Image Name |User Name I CPUI Mem Usage
CLonEcEs 884424 10 MOU EAX,DWORD PTR SS: [ESP+161 ntdll wuaucl. exe SYSTEM 00 2,420K
SBE MOy DthﬁD PTR S$S:[ESP+18],EBP _l a o wscntfy.exe user [ili] 680K
?CQGESBF SD6C24 18 LEA EBP,DWORD PTR S$S: [ESP+ al G301 2FEFD wpabaln.exe user oo 2,784 K
7C98ESCS| 2BEG Ba12FFac winlogon.exe SYSTEM 00 1,732 K
7COGESCS| 53 H EBX ABRSRERE 3
bR 3 70916268 ntdll. | taskmarexe User 02
7CIBESCT| 57 PUSH EDI 9 .
SB45 F8 MOU EAX,DWORD PTR SS: [EBP-g1] 7C9DESBE ntdll. System Idle Process SYSTEM 98 16K
2965 ES MOV DWORD PTR SS:[EBP-181,ESP C B ES 8823 22bit System SYSTEM 00 36K
PUSH ERAX P 1 CS GG1E 22bit svchost.exe LOCAL SERVICE 0o 740K
7COGESCE| 8B4S FC |MOU EAX,DWORD PTR SS5: [EBP-41 A6 St Bess 2onit svchost.exe METWORK SERVICE 00 1,340K
;Eggggg% g;gg Eg FFFFFFFI B gg' EEE; gg = 7 @__NC_@AR2D_2%his svchost.exe SYSTEM oo 8,176 K
= host. METWORK SERVICE 0o 1,628 K
?CapESOC| 8048 FO LEA EAX,DWORD PTR 55: (EBP-161 svchost.exe b oo
;EQSESEE gg:ns 6000000 gglflﬂnwonn PTR FS:[@1,EAX apooler v P o0 1488k
7COGESES| SB4D F@ HMoY_ECX, DWORD PTR_SS: [EBP-18] GB0007CC| BB4010BS| FFFOFOGE | Tssexe gggm gg 13?25 o
EBP=@012FF 30 : ’
OLLYDBG.EXE user 0o 7,588 K
Stack SS:[00912FFP01=00060013 ’
lsass.exe SYSTEM 0o 968 K
jusched.exe user oo 520K
Address rxnlnrer . exe ISR nn 13.452 K ﬂ
EEEEEEEE] Sg%%gg;g I~ Show processes from all users MI
6484802 O015FEFE
86434810 OO15FFas
333323;_3 G612FF@4| 7CEB1F10| RETURN to kerne l3Z|Processesi24 [CPUUsage: 2% |Commit Charge: 98140k § 118200
BP4B4628 B012FF@8| 7C918202| ntdll. 70916268
HB4B4650 G012FFBC| 00481184| 601e77d9. 00461184
8012FF 18| 7FFD4900
98404038 BO1ZFF14| FFEre9se
86454840 2
AB4ndadn 9812FF18| FFFFFFFF
ngggggg 9812FF1C| A4FBDIEE
88404060 B =1o1x]
Bodndan Called fron |
> ntdll.7CODESAB ntdll.7Co103F4
? ntdll.Rt lAcqu irePeblLock kernel32.7C881FBA

? kernel3z.GetStartuplnfoR MSUBUMEA. 73423500
pStartupinfo = BA12FFS8
2| 7 <JMP.&MSUBUMED. #1603 6081e77d9. 8040160ED

Malware Analysis

N lastline —

\ OllyDbg - 601e77d9.exe
File View Debug Plugins Options Window Help

(Bl x| win| s Hu 8]] L[E[MT|WE[C[/[K[B|R]..|5]

CPU - main thread, module ntdll

£ windows Task Manager (=] 9|

File Options View ShutDown Help

Applications Processes IPerForrnanceI Netwovkingl Users I

YCO9PESAE| 68 BBE99@7C PUSH ntdl L. 7C98E904
7CO9PESEA| 64:A1 BOO00008 DWORD PTR FS:[81] | | | a
7CO0ESBE| 50 P BB15FFE Image Name User Name CPU | Mem Usggel
PLORESE?| SB4424 10 MOU EAX, DWORD PTR SS: [ESP+18] SC35E4FS ntdl L wuauck. exe SYSTEM 00 2420K
REERIEEE] 896024 10 MOV DWORD PTR SS:[ESP+1@1,EBP _I 7FFD4860 9 wscntfy.exe user 00 680K
7CIBESE 8D6C24 18 LEA EBP,DWORD PTR S$S:[ESP+18] CE wpabaln.exe user oo 2,784 K
7 99Egc SUB ESP, EAX winlogon, exe SYSTEM 00 1,732 K
a urds r k
PUSH EDI 7C918268 ntdll. taskmar.exe user 02 4,296 K
MOU EAY,DWORD PTR SS: [EBP-21 7C98ESBE ntdll. System Idle Process SYSTEM a8 16K
ngHDgggn PTR 552 LEBP-181, ESP C @ ES 0828 32bit Sysrtfmt f:;scﬁmsswxcs gg ::gE
. P 1 CS @81B 32bit svehos.exe
8B45 FC | MOU EAX, DWORD PTR SS: [EBP-41 A6 St ppes aopie | svehostere NETWORKSERVICE 00 1,340K
g;gg t:g FFFFFFFI Mi ggi EEE;';%-EQK 7 @A NS _@ARID DT+ svchost.exe SYSTEM 0o 8,176 K
: = host. METWORK SERVICE 00 1,628K
7CapESOC| 8045 FB LEA EAX,DWORD PTR S5:[EBP-181 Srehosexe el W ook
CCOGESDE| e4:A3 000OROOG | HOU DUORD PTR FS:81, EAR Tame |Ene ———| | [P 0 140K
7CO9BESES SB4D r.ﬂ/ MALL AU RLARR mTe me 'Eﬁﬁap-‘wﬁs‘m« AAAmA— el AmAse AR —-—-—rﬁ n;; smss,exe SYSTEM a1 S6K a—
W File Edit View Go Capture Analyze Statistics Telephony Tools Help services.exe SYSTEM 00 1,376 K
Stack SS:[OPIZFIB@EE Y SMOCE wes Y EHE ach @Y <50 l‘:aL;:DeBXGe-EXE e gg 7iggg§
Wfiter: | tcp.stream eq 1 4 Expression...| & cloar | Apply : 3
[No.. Time Source Destination | Protocol Info 2]usclh ed.exe user 2g 13 iigt ﬂ
nddress He“ dul 3 1.1918603 192.168.0.2 97.74.79.222 TCP netarx > http [SYN] Seq=0 Win=16384 Ler_|=8 NSS=146¢ SXDLeL e LISEL B
R . it B EARE B T somton duer _eros |
apdadainl oo — —— R '
v [P s e et tp 10K Seulel MCodoss VirsIGS0 L processes: 24 |CPLIUsage: 2% |Commit Cherge: 9B140K / 11820C
A A = 11 2.123595 97.74.79.222 HTTP HTTP/1.1 404 Undescribed (text/html)
ggjg:ggw Bg Bg 0.2 TCP netarx > http [ACK] Seq=197 Ack=1893 W.
=15 TCP netarx > http [RST, ACK] Sed
B8468468358| B8 64 1
D040 B0 B § e e e, et 927537200 (manrcana)
60404050| 00 0B | PRIl ¥ VAle s, WA, B NI DT 1y
Ba484a658| 64 " ‘ : ‘ : S
Bo404000| 00 [" smuinae e 1ol
Ba404068| B8 Accept: */\r\n
aa4a4a76| A6 Adc Accept-Encoding: gzip, deflate\r\n -~ i

Bal User-Agent: Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1; SV1)\r\n
@@y fost: sechristass.comrin
Connec tion: Keep-ALive\r\n

881\ .

BB 10000 92 27 fc 57 72 bb 52 54 00 12 34 56 08 00 45 00
BB 10010 00 ec 06 al 40 00 80 06 81 98 cO a8 00 62 61 4a
0020 4f de 04 10 00 50 f9 6a f7 db b5 51 47 5 50 18

0030 40 b0 ed dd 00 00 47 45 54 20 2f 69 6d 61 67 65

0040 73 2f 6c 65 64 2f 68 67 2e 70 68 70 20 48 54 54 s/led/hg .php HTT

0050 50 2f 31 2e 31 0d 6a 41 63 63 65 70 74 3a 20 2a P/L.1..A ccept: * a

K0 2F 22 Ad A 41 G2 A2 A5 70 74 2 45 fe 63 RF KA /+ Aera nt-Fncod -

Q File: "/tmp/traffic.pcap" 31... Packets: 13 Displayed: 11 Marked: 0 Profile: Default

Malware Analysis

N lastline —

Registry Editor
File Edit View Favorites Help

(O simbad 4] [name | Type | Data]
{0 sMsveHost ¢ | [ab)(Default) REG_SZ (value not set) =4 dows Task Manager ;IEI ll
(3 Sparrow [ab]DataBasePath REG_EXPAND_S52 %SystemRoot%\System32idriversietc File Options View ShutDown Help
(3 spacler [28]DeadGWDetectD... REG_DWORD 0x00000001 (1)
8 - [BJpomain REG_S5Z Applications Processes IPerForrnanceI Netwovkingl Users I
srservice [288]DontaddDefaultG. .. REG_DWORD 0x00000000 {0)
Srv) Registers (FPU)
EnableICMPRedir... REG_DWORD 0x00000001 (1) =
g ::gr;snv [28]EnablesecurityFil... REG_DWORD 000000000 (0) ERX BBGBBBI% | Image Name | User Name: I CPU l MLUS\%gﬂ_;
22 swenum [28)ForwardBroadcasts REG_DWORD 0x00000000 (0) ntdll wuauclk.exe SYSTEM 00 2,420K
& swhry [ab]Hostname REG_SZ user o . wscntfy.exe user 0o 680K
3 sowd [28)iPEnableRouter REG_DWORD 0x00000000 (0) +108 wpabaln.exe user 0o 2,784 K
{2 sym_hi (BJnameserver REG_SZ EBP B812FF3 winlogon.exe SYSTEM 00 1,732K
{3 sym_u3 E"JNV Hostname REG_SZ user ESI @@aza
{1 symes10 [aB)searchList REG_SZ 7 ntdll. taskmar.exe user 02 4,296 K
(0 symedxx [B8]useDomaintiame... REG_DWORD 0x00000001 (1) -3] EIP 7C9BESBE ntdll. System Idle Process SYSTEM 98 16K
3 sysmentog JESP o o omee men System SYSTEM 00 36K
Q0 Tapisry st Eg poes g:;g 0 svchost.exe LOCAL SERVICE 0 740K
=0 Teip -41 53 Anh i svchost.exe METWORK SERVICE 00 1,340K
3 Enum A @ S5S 8823 32bit
2 tinkoge =1 7 @__NC_@AR2D_2%his svchost.exe SYSTEM oo 8,176 K
. ERX ——— svchost.exe METWORK SERVICE 00 1,628K
-1@] reads svchost.exe SYSTEM 00 1,308 K
Ident |Ent Data ble | spodkv.exe SYSTEN W e
o ettty i Frmmmme e A ame mn | e smss.exe |
2w File Edit View Go Capture Analyze Statistics Telephony Tools Help SErvices.exe SYSTEM 00 1,376 K
ins - ; N SIE) - 5 OLLYDBG.EXE user oo 7,588K
= rorom] BWBAN BMOCE wes Y EBERACE EE 7S H
< » Wfiter: | tcp.stream eq 1 ~ | exprassion... | & Clear| </ Apply. I.sass.exe SHSTEM 00 968K
T aIGETR — —— - < —] — N jusched.exe user oo 520K ﬂ
| S - ":l" e 3‘1'.';‘:1803 1::.r§§8.0.2 97e.s711".a7:?"222 ‘T(ri(l: = ‘n:.tarx > http [SYN] Seq=0 Win=16384 Ler_|=8 NSS=146¢ exnlnrer. exe LEEL nn 13.457K
20300 s S IS el o A s kLU0 T Show processes from alusers ndrocess_|
HTTP GET_/images/led/hq.php HTTP/1.1
7 2.050312 TP [TCP segment of a reassembled PDU] -
82.107883 Tce [TCP segment of a reassembled PDU] -
9 2.113988 TCP T > http [ACK] Seq=197 Ack=1566 Win=16560 L - -
105115622 1o TTch sequent of o reassenbled PoUl | Z|Processes:24 |CPU Usage: 2% Commit Charge: 98140K { 11820C
11 2.123595 HTTP/1.1 404 Undescribed (text/html)
2 b -
88484638 hetarx > http [RST, ACK] Seg
BB4a40833| 66 88 (<

AA4A4 G345 | GG @& (> Frane 6 (250 bytes on wire, 250 bytes captured) &

=] ﬁ4ﬁ a6 a8 1 Ethernet II, Src: RealtekU_12:34:56 (52:54:00:12:34:56), Dst: 92:27:fc:57:72:bb (92:27:fc:57:72:bb)

S22 EE2 25 S5 s Internet Protocol, Src: 192.168.0.2 (192.168.0.2), Dst: 97.74.79.222 (97.74.79.222)

@@4@4@5@ E’@ B8 1, Transnission Control Protocol, Src Port: netarx (1049), Dst Port: http (80), Seq: 1, Ack: 1, Len: 196

B8484058| B4 « Hypertext Transfer Protocol

Ba404060| 66 > GET /images/led/hg.php HTTP/1.1\r\n E |I:I| xl
Ba484062| BG Accept: +/\r\n

aR4ndn7al o Add Accept-Encoding: gzip, deflate\r\n - S

D@1 User-Agent: Mozilla/a.0 (compatible; WSIE 6.0; Windows NT 5.1; SVI)\r\n
Host: aachristmas.com\r\n
881 Conection: Keep-Alive\r\n -
881 <
BB 10000 92 27 fc 57 72 bb 52 54 00 12 34 56 08 00 45 00 . .M.RT ..4V..E. 2
B3] 0010 00 ec 06 al 40 60 80 06 81 98 O a8 00 02 61 4a .
0020 4f de 04 10 00 50 f9 6a f7 db b5 51 47 5 50 18

06.p

0030 46 b0 e4 dd 00 00 47 45 54 20 2f 69 6d 61 67 65 @.....GE T /image

0040 73 2f 6¢c 65 64 2f 68 67 2e 70 68 70 20 48 54 54 s/led/hg .php HTT

0050 50 2f 31 2e 31 0d 0a 41 63 63 65 70 74 3a 20 2a P/1.1..A ccept: * &
A 2f 2 Ad A A1 A2 A3 AR 7 74 2d A5 Ae A2 AF RA 7+ Aere nb-Fncod v

O File: "/tmpjtraffic.pcap’ 31... Packets: 13 Displayed: 11 Marked: O Profile: Default

» lastline —

» Last 12 months

» Last 24 months

HopgiIonti

1011110111014110

» Last5years

= New Malware

1101111011110

» Last10 years
1 |3
diiofinofiniofiigiigiiip

0

I

40,000,000 -
30,000,000
20,000,000
10,000,000

New Malware

» Allyears

There is a lot of malware out there ...

20z

noz

ooz

6002
8002
1002
9002
5002
002
€002
2002
1002
0002
6661
8661
1661

9661
5661
v661
€661
2661
1661

0661
6861
8861
1861
9861
5861
v86l

Copyright © AV-TEST GmbH, www.av-test.org

Last update: 03-16-2013 09:03

Automated Malware Analysis
D last

Aka sandbox

Automation is great!
— analysts do not need to look at each sample by hand (debugger)
— only way to stem flood of samples and get scalability
— can handle zero day threats (signature-less defense)

Implemented as instrumented execution environment
— run program and observe its activity
— make determination whether code is malicious or not

10

What do we want to monitor?
D last

1. Persistent changes to the operating system, network traffic

— a file was written, some data was exchanged over the network

c:\sample.exe

net: 192.168.0.1
-> evil.com:80

4

What do we want to monitor?
D last

Persistent changes to the operating system, network traffic

— a file was written, some data was exchanged over the network

Can be done with post hoc monitoring of file system and
external capturing of network traffic

— easy to implement

— allow malware to run on bare metal and unmodified OS (stealthy)

— quite poor visibility (no temporary effects, sequence of actions,
memory snapshots, data flows, ...)

12

2.

What do we want to monitor?
D last

Interactions between the program (malware) and the
environment (operating system)

open c:\sample.exe
read c:\secret.exe
write c:\tmp\a.txt

net: 192.168.0.1
-> evil.com:80

delete c:\tmp\a.txt

write c:\sample.exe

4

13

What do we want to monitor?
D last

Interactions between the program (malware) and the
environment (operating system)

Can be done by instrumenting the operating system or libraries
(install system call or library call hooks)

— typically done by running modified OS image inside virtual
machines, used by many (most) vendors

— can see temporary effects, sequence of operations, more details
— very limited visibility into program operations (instructions)
— limited visibility of memory (where does data value come from?)

14

What do we want to monitor?
D last

3. Details of the program execution (how does the program
process certain inputs, how are outputs produced, which

checks are done)?

open c:\sample.exe

read c:\secret.exe Does the program “leak”
s yrite c:\tmp\a.txt information from the
secret file to the network?
Where does the. data net: }92 .168.0.1 And if so, under which
come from that is -> evil.com:80 circumstances (triggers)?

written into these files?] 4oi1ete c:\tmp\a.txt

) yrite c:\ sample.exe

4

15

What do we want to monitor?

D last

Details of the program execution (how does the program
process certain inputs, how are outputs produced, which
checks are done)?

Can be implemented through process emulation (CPU
instructions + some Windows API calls) or a debugger
— provides single instruction visibility

— can potentially detect triggers and data flows

— poor fidelity (some Windows API calls)

— very slow and easy to detect (debugger)

— produces a lot of data, so analysis must be able to leverage it

16

What do we want to monitor?

D lastline —
4. Details of the program execution while maintaining good fidelity?

17

What do we want to monitor?
D last

Details of the program execution while maintaining good fidelity?

Can be implemented through full system emulation (running a real
OS on top of emulated hardware — CPU / memory)

provides single instruction visibility

can detect triggers and data flows

much better fidelity (real Windows)

not as fast as native execution (or VM), but pretty fast

produces a lot of data, so analysis must be able to leverage it

18

VM Approach versus CPU Emulation

N lastline —

cmp L $ax0c , ¥ebx

je Bx106008f21e

xor | Xesi, Mesi

mova #ris , Hrdi

- xorl Heax ,Xeax
callg Bx188878473 ; symbol stub for: _open : callg BOx1P6878478 : symbol stub for: _open
- moy 1 Heax ,¥rizd

testl ¥eax,X¥eax

js Ax160806f 21e

leaq @xffffff7a(%rbp),%rcx

movq Hrox,Bxfffffecd(¥rbp)

mov L $0x0000005A ,¥edx

mova Xrex,drsi

- moy | Heax Medi

y symbol stub for: _read E callg Bx1888784b4 y symbol stub for: _read
- mova Hrax,Xri13

moy | Heax ,Xridd

- moy | #rizd,¥edi

; symbol stub for: _close E callg Bx1888782b6 ; symbol stub for: _close
: cmp L $0x02 ,%r13d

jle ax106808f21e

Ax1660764b4

callq

callg @x1A66762b6

19

Dynamic Analysis Approaches

N lastline —

A
Visibility
Process Emulation

System call hooking
(Virtual machines)

>

Fidelity

20

Our Automated Malware Analysis
D |ast

Anubis: ANalyzing Unknown BlnarieS (university project)
and its successor (which was built from scratch)
llama: LastLine Advanced Malware Analysis

— based on full system emulation
— can see every instruction!
— monitors system activity from the outside (stealthier)
— runs real operating system
— requires mechanisms to handle semantic gap

— general platform on which additional components can be built

21

Visibility Does Matter

D |ast
See more types of behavior

— which connection is used to leak sensitive data
» allows automated detection of C&C channels
— how does the malware process inputs from C&C channels
» enumeration of C&C commands (and malware functionality)
— insights into keyloggers (often passive in sandbox)

— take memory snapshots after decryption for forensic analysis

Combat evasion

— detect triggers

— bypass stalling code

— much more about this later ...

22

Detecting Keyloggers

D last

Software-based keyloggers

— SetWindowsHook: intercepts events from the system, such as
keyboard and mouse activity

— GetAsyncKeyState oOr GetKeyState

User simulation module that triggers actions likely to be
monitored by keyloggers

— Type on keyboard

— Insert special data values (e.g., “valid” credit card numbers,
passwords, email addresses, etc.)

Track sensitive data and how it is used by the malware

23

Detecting Keyloggers

N lastline —

= Threat Level

The file was found to be at 2014-05-09 01:38:35.
Risk Assessment

Maliciousness score: 100/100
Risk estimate: High Risk - Malicious behavior detected

Malicious Activity Summary

Type Description

Autostart Registering for autostart using the Windows start menu

Evasion Possibly stalling against analysis environment (loop)

File Modifying executable in user-shared data directory

Signature Identified trojan code
swal Keysmolelggngeapadites
Stealth Creating executables masquerading system files

Stealth Deleting the sample after execution

24

Detecting Keyloggers

= Analysis Subject 2

MD5
SHA1
Command Line
File Type
File Size (bytes)
Analysis Reason
+ Libraries
+ File System Activity
+ Registry Activity
+ Network Activity

+ Process Interactions

21f8b9d9a6fa3alcd3a3f0644636bf09

0392f25130ce88fdee482b771e38a3eaaed0f3e2

N lastline —

"C:\ProgramData\Microsoft\Windows\Start Menu\Programs\Startup\spoolsv.exe" C:\Users\ .\chewbacca.exe

PE executable, application, 32-bit

5,224 645

Process started

Keylogging

v Content Type
Credit Card

Password

Social Security Number

Username

Content
TBO0S- 8 05-1100-9326
grafsndv
L 1-06-6413

Username omitted from public report

25

Supporting Static Analysis

D last

Recognize interesting points in time during the analysis of a
malware

— a sensitive system call has been executed
— malware has unpacked itself

Take a snapshot of the process memory and annotate
interesting regions

Import snapshot into IDA Pro (together with the annotations) for
manual analysis

https://user.lastline.com/malscape#/task/f7b5c2293e574d069e0a48bcd7691b16

26

Supporting Static Analysis

Process Dumps ?

Process

F P F F F FFFPFF PP PP RFPFP

Analysis Subject 1
Analysis Subject 1
Analysis Subject 1
Analysis Subject 2
Analysis Subject 2
Analysis Subject 2
Analysis Subject 3
Analysis Subject 3
Analysis Subject 3
Analysis Subject 4
Analysis Subject 4
Analysis Subject 4
Analysis Subject 6
Analysis Subject 6
Analysis Subject 6

Timestamp

17s
20s
296 s
22s
22s
297 s
27 s
28s
30s
30s
30s
39s
42s
42s
297 s

Dump Type
Process Dump
Process Dump
Process Dump
Process Dump
Process Dump
Process Dump
Process Dump
Process Dump
Process Dump
Process Dump
Process Dump
Process Dump
Process Dump
Process Dump

Process Dump

Snapshot Reason

N lastline —

Observed API function invocation from untrusted memory regi...

Observed API function invocation from untrusted memory regi...

Analysis terminated

Observed code execution in memory region allocated by untr...

Observed code execution in memory region allocated by untr...

Analysis terminated

Observed code execution in memory region allocated by untr...

Observed API function invocation from untrusted memory regi...

Process terminated

Observed code execution in memory region allocated by untr...

Observed code execution in memory region allocated by untr...

Observed API function invocation from untrusted memory regi...

Observed code execution in memory region allocated by untr...

Observed code execution in memory region allocated by untr...

Analysis terminated

27

Supporting Static Analysis

v Path

N lastline —

Windows Process

B c\documentsands onapshots

I c\documents and s This section lists process snaphots

that were taken during the analysis.

Process Dumps ? { Please refer to the AP| documentation

Process

for more information on how to use
these files (e.g., how to load them into
IDA Pro).

B Analysis Subject 1
B Analysis Subject 1 For additional help, click herﬁ

DA View-A || | Rebuilt APIs || Points of Interest [2] | O Hexview-a || | Structures || |

Address

0x0083df92bb
0x003d3124
0x 00434066

Bxﬂi%ﬁﬁﬂ

Description

Code execution in untrusted memory region after interesting system-call
Code execution in untrusted memory region after interesting system-call
Original entry point of c:\docume™i\miller\locals™i\temp\rarsfxB\empprx.exe

Original entry point of c:\docume™i\miller\locals™i\temp\rarsfxB\emprxres.dll

jmov

eax, [esp+arq 4]

28

Evasion

D last

Malware authors are not sleeping

— they got the news that sandboxes are all the rage now
— since the code is executed, malware authors have options ..

Evasion
— develop code that exhibits no malicious behavior in sandbox,
but that infects the intended target
— can be achieved in various ways

29

Evasion
D |ast

* Malware can detect underlying runtime environment

differences between virtualized and bare metal environment
checks based on system (CPU) features
artifacts in the operating system

« Malware can detect signs of specific analysis environments

checks based on operating system artifacts (files, processes, ...)

« Malware can avoid being analyzed

tricks in making code run that analysis system does not see
wait until someone does something

time out analysis before any interesting behaviors are revealed
simple sleeps, but more sophisticated implementations possible

30

Evasion

-.-*Spider Binder 1.2

BEE

Menu | Buy Private Version |
[|Compress File
[]autostart

[v| Anti-Anubis
: L L) - “J
[]%OR Encrypt

Use Other Stub [Private]
[|External Stub

| |Change Icon

D last

31

Evasion

N lastline —

PXCrypter 1.1 Fully undetected

“» PXCrypter 1.1 build 231

WErypter

@ Input Filename:

| || Browse

@ [Change Icon
@ |con Filename:

| || Browse
@ Adv Settings

[] &nti Virtuslization [Microsoft VPC MMware VitualBox)
[4nti Debug [Ollydba SoftIce IDA Generic Debuggers)
[| Anti SandBoxie/ThreatE xpert

I L[Anti SandBoxes (Norman Anubis,CW Generic Sandboxes

[?) [T Melt on exit
@ [Start Hidden (without GUI)
@] Try to Unpack the Executable befare Crypting

UFX Packing Mode l Automatic (Recommended) v [(2]

Owverlay Detection/Processing [Automatic [Recommended) v t (7]
Injection T arget [Defau[l Self (Recommended) v [(7]

Delay [0 I Seconds @

Private Yersion for Current Customers

32

Evasion

g =
& Blackout AIO: Highly Advanced FUD Auto-m

File to Spread and Stub to use

File to Mass Spread
%/ Build Worm

® InjectFile (.exe files) @ Drop File (Any File)

P2P Auto-Spread
Spreads your worm on multiple P2P Applications

ol Te RULTE - vvvwwy . example. com list_of_apps. txt

W Bearshare [l eDonkey [l eMule
W LimeWire

W Grokster [l 1cQ M Kazaa

W Frostwire [l Morpheus [l Shareaza [l Tesla [Winmx
W Checkall

IM Auto-Spread

Spreads your worm by sending messages to contacts on multiple popular IM Client's
W MsN Spread [l Yahoo! Spread W skype Spread

Hey yo checkout this amazing program I just downloaded!
www.example.com/myfile.exe

Antis
Terminates the worm if it found in any of the selected environment's

B Threatexpert [l Wireshark [Sandboxie | [l Anubis

Main Options
Enable LAN Spread P2P Spread

Removable Disk Spread IM Spread
Block Websites

7zip Spread Enable Antis
Disable Regedit Delete Cookies

Add To Startup Disable CMD Disable Tsk manager

Other Functions

[l Open Website when Worm is ran [RABAGEEICR <L

[I e e R k=R =N v ww.example.com/file.exe

W Show a message Message to show when your worm is ran

Removable Disk Spread Options
Spreads your worm on USB Drives, CDs, DVDs and Portable Hard Drives Automatically

Startup Options
Add your worm to startup - Allowing your worm to run on every boot

Drop File as: msconfig.exe

ielg b a2 0e 111078) (s Il Microsoft Configuration Software

Website Blocker
Block's Websites by editing the HOSTS file of anyone who runs your Worm
M Block VirusTotal [l Block Jotti [l Block NoVirusThanks [l Block ClamAv

M Block Google M Block Yahoo [l Block Kaspersky M Block Malwarebytes

33

Detect Runtime Environment
N lastline —

» |nsufficient support from hardware for virtualization

— J. Robin and C. Irvine: Analysis of the Intel Pentium’s Ability to
Support a Secure Virtual Machine Monitor; Usenix Security
Symposium, 2000

— famous RedPill code snippet

Joanna Rutkowska

Swallowing the Red Pill is more or less equivalent to the following
code (returns non zero when in Matrix):

int swallow_redpill () {
unsigned char m[2+4], rpill[] = "\x0£f\x01\x0d\x00\x00\x00\x00\xc3";
((unsigned)&rpill[3]) = (unsigned)m;
((void(*)())&rpill)();
return (m[5]>0xd0) ? 1 : 0;

}

34

Detect Runtime Environment
D last

Insufficient support from hardware for virtualization

— J. Robin and C. Irvine: Analysis of the Intel Pentium’s Ability to
Support a Secure Virtual Machine Monitor; Usenix Security

Symposium, 2000
— famous RedPill code snippet

hardware assisted virtualization (Intel-VT and AMD-V) helps
but systems can still be detected due to timing differences

35

Detect Runtime Environment
D last

CPU bugs or unfaithful emulation
— invalid opcode exception, incorrect debug exception, ...
— later automated in: R. Paleari, L. Martignoni, G. Roglia, D. Bruschi:
A fistful of red-pills: How to automatically generate procedures to

detect CPU emulators; Usenix Workshop on Offensive
Technologies (WOOT), 2009

— recently, we have seen malware make use of (obscure) math
instructions

The question is ... can malware really assume that a generic
virtual machine implies an automated malware analysis system?

36

Detect Analysis Engine

D last
Check Windows XP Product ID

HKLM\ SOFTWARE\Microsoft\Windows NT\CurrentVersion\ProductID

Check for specific user name, process names, hard disk names
HKLM\ SYSTEM\CURRENTCONTROLSET\SERVICES\DISK\ENUM

Check for unexpected loaded DLLs or Mutex names
Check for color of background pixel

Check of presence of 3-button mouse, keyboard layout, ...

37

Detect Analysis Engine

«LTAL.UUSFVICOY

-text:00461E39
-text:00461E39
-text:00461E39
-text:00461E3F
-text:00461E3F
-text:00461E3F
-text:00461E45
-text:004061E45
-text:004061E45
-text:004061E4B
-text:00461E4E
-text:004061E4E
-text:004061E4E
-text:004061E4E
-text:004061E4E
-text:004061E4E
-text:004061E58
-text:00461E5A
-text:004061E64
-text:00461E66
-text:00461E70
-text:00461E72
-text:00461E72

-text:00461E72
_text-ARLAIF72

loc_4B1E39:

loc_4B1E3F:

loc_4B1E45:

loc_4B1E72:

mov

mov

push
call
cmp

jz
cnp
jz
cnp
jz

rritar

eax, [ebp-2706h]

[ebp-178h], eax

dword
dword
dword

short
dword
short
dword
short

loc_461E95
ptr [ebp-1706h], ‘xobv’
loc_401E95
ptr [ebp-176h], ‘umeq’
loc_401E95

CODE XREF: .text:00461DCCTj
.text:00401DC3Tj

CODE XREF: .text:00401DD1Tj

CODE XREF: .text:00461E2BTj

ptr [ebp-16Ch]
ptr [ebp-34h]
ptr [ebp-178

h], "awmu® ;

search Known sandboxes’
substring in registry key value
vbox

qemu

umwa

CODE XREF: .text:00401D55Tj
.text:00401D6DTj ...

N lastline —

38

Detect Analysis Engine

Enigma Group's Hacking Forum

HOME FORUMS EXTRA DONATIONS LOGIN REGISTER

User Info
Welcome, Guest. Please login or register.
Did you miss your activation email?
January 31, 2013, 02:42:53 PM
|

Login with username, password and session length

Search: [Achanced search

Enigma Group's Hacking Forum | Hacking | Undetection Techniques | [C++] Anti-Sandbox

Pages: [1]

™ Author Topic: [C++] Anti-Sandbox (Read 2487 times)

blink_212 B C++] Anti-Sandbox
Global Moderator « on: January 28, 2011, 01:46:21 AM »
Veteran

D last

News

Need a hash cracked? Use the Enigma
Group Hash Cracker! It's the largest hash
library on the interwebz.

Forum Stats

39005 Posts in 4766 Topics by
23414 Members
Latest Member: youngi2dre

0

rhkhk This is basicly a combination of my old work, and some other code have ported over from VB. I'll release the current source for what im

a “ working on somewhere else... ©
Posts: 1438
* Respect: +6 Code: [Select
bool detectSandbox(chart exelame, chart user){
EG Fanatic. Ff VUsed for detecting sandboxes. 3o far it detects
#f Brbis, U0, Sunbelt, Sandboxie, Nomman, Windail.

char* str = exeName:
char * pchi

HIND snd:

if((snd = Findlindow("Sandboxiel dClass", WULL))){

return true; ff Detected Sandboxie.

39

Detect Analysis Engine
D last

Enigma Group's Hacking Forum

HOME FORUMS EXTRA DONATIONS LOGIN REGISTER

if((snd = FindWindow ("SandboxieControlWndClass", NULL))) {
return true; // Detected Sandboxie.

} else if((pch = strstr (str,"sample")) || (user == "andy") || (user == "Andy")){
return true; // Detected Anubis sandbox.

} else if((exeName == "C:\file.exe")) {
return true; // Detected Sunbelt sandbox.

} else if((user == "currentuser") || (user == "Currentuser")) {
return true; // Detected Norman Sandbox.

} else if((user == "Schmidti") || (user == "schmidti")) {
return true; // Detected CW Sandbox.

} else if((snd = FindWindow ("Afx:400000:0", NULL))) {
return true; // Detected WinJail Sandbox.

} else {
return false;

40

Avoid Monitoring

D [ast
Open window and wait for user to click

— or, as recently discovered by our competitor, click multiple times ;-)

Only do bad things after system reboots

— system could catch the fact that malware tried to make itself
persistent

Only run before / after specific dates
Code execution after initial call to NtTerminateProcess

Bypass in-process hooks (e.g., of library functions)

41

Avoid Monitoring

N lastline —

SYSTEMTIME SystemTime;

DisableThreadLibraryCalls (hdll);
GetSystemTime (&SystemTime) ;
result = SystemTime.wMonth;

if (SystemTime.wDay + 100 * (SystemTime.wMonth + 100 * (unsigned int)SystemTime.wYear)
>= 20120101)

uint8 t* pmain image = (uint8_t*)GetModuleHandlei (0):
IMAGE DOS_HEADER *pdos_header = (IMAGE DOS_HEADER*)pmain_ image;
IMAGE NT HEADERS *pnt_header = \
(IMAGE NT_ HEADERS*) (pdos_header->e_l1fanew + pmain image);
uintg t* entryPoint = pmain image + pnt_header->OptionalHeader.AddressOfEntryPoint;
result = VirtualProtect (entryPoint, 0x10u, 0x40u, &fl0ldProtect):

if (result)

{
entryPoint[0]
entryPoint[1]
entryPoint[2]

0xE9;

(uint8_t) ((uint8_t *)loadShellCode - entryPoint - 5):

(uint8_t) (((uint8_t *)loadShellCode - entryPoint - 5) >> 8);
entryPoint[3] (uintg_t) (((uint8_t *)loadShellCode - entryPoint - 5) >> 16):
entryPoint[4] (uint8_t) (((uint8_t *)loadShellCode - entryPoint - 5) >> 24);
result = VirtualProtect ((LPVOID)entryPoint, 0x10u, f£10ldProtect, &flOCldProtect):

42

Avoid Monitoring

N lastline —
Code execution after initial call to NtTerminateProcess

01535 ExitProcess (IN UINT uExitCode)

01536 {

01537 BASE API MESSAGE ApiMessage;

01538 PBASE EXIT PROCESS ExitProcessRequest = &ApiMessage.Data.ExitProcessRequest;
01539

01540 ASSERT (! BaseRunningInServerProcess) ;

01541

01542 _SEH2 TRY

01543 {

01544 /* Acquire the PEB lock */

01545 RtlAcquirePebLock () ;

01546

01547 /* Kill all the threads */ . .

01548 NtTerminateProcess (NULL, O0); _ StOp m0n|t0r|ng here
01549

01550 /* Unload all DLLs */

01551 wassnurdonnrrocess () ;- Sammmm [Nteresting stuff happens here ...

01552

01553 /* Notify Base Server of process termination */

01554 ExitProcessRequest->uExitCode = uExitCode;

01555 CsrClientCallServer ((PCSR_API MESSAGE) &ApiMessage,

01556 NULL,

01557 CSR_CREATE API NUMBER (BASESRV_SERVERDLL INDEX, BasepExitProcess),
01558 sizeof (BASE EXIT PROCESS)) ;

01559

01560 /* Now do it again */

01561 NtTerminateProcess (NtCurrentProcess (), uExitCode) ;

43

Avoid Monitoring

D last —
Bypass in-process hooks (e.q., of library functions)

Address Pointer
7FF90000 7FF80560
7FF80560 8>MOV EDI,EDI <- copied from 77pperrFc

7FF80562 - E>JMP ADVAPI32.77DDEFFE Jump to Second instruction Of |ibrary

. _ U function
AdjustTokenPrivlages

77DDEFFC > 8>MOV EDI,EDI <- start
77DDEFFE 5>PUSH EBP

77DDEFFF 8>MOV EBP,ESP

77DDF001 5>PUSH ESI

77DDF002 F>PUSH DWORD PTR SS: [EBP+1C]
77DDF@05 F>PUSH DWORD PTR SS: [EBP+18]
77DDF008 F>PUSH DWORD PTR SS: [EBP+14]
77DDF00B F>PUSH DWORD PTR SS: [EBP+10]
77DDFOQE F>PUSH DWORD PTR SS: [EBP+C]
77DDF011 F>PUSH DWORD PTR SS: [EBP+8]
77DDF014 F>CALL DWORD PTR DS: [<&ntdll.NtAdjustPrivi>; ntdll.ZwAdjustPrivilegesToken

44

Avoid Monitoring

D last

Sleep for a while (analysis systems have time-outs)
— typically, a few minutes will do this

Anti-sleep-acceleration

— some sandboxes skip long sleeps, but malware authors have
figured that out ...

“Sleep” in a smarter way (stalling code)

45

Avoid Monitoring

D last

Anti-sleep-acceleration
— introduce a race condition that involves sleeping

Sample creates two threads
l.sleep() + NtTerminateProcess

2. copies and restarts program
— if ZwDelayExecution gets patched, NtTerminateProcess
executes before second thread is done

Another variation
l.sleep() + DeleteFileW(<name>.bat)

2. start <name>.bat file

46

Avoid Monitoring

N lastline —

unsigned count, tick;

1

2

3 void helper () {

4 tick = GetTickCount ();
5 tick++;

6 tick++;

7 tick = GetTickCount ();
8 }

9
1(1) "Oi‘juiiigil(ﬁ { Real host - A few milliseconds
12 do { Anubis - Ten hours

13 helper () ;

14 count++;

15 } while (count!=0xedelcl);

16 }

Figure 1. Stalling code found in real-world malware (W32.DelfInj)

47

What can we do about evasion?
D |ast

One key evasive technique relies on checking for specific values
in the environment (triggers) ®

. . A
— we can randomize these values, if we know about them ¢ »

— we can detect (and bypass) triggers automatically g
¢ »

Another key technique relies on timing out the sandbox
— we can automatically profile code execution and recognize stalling

48

Bypassing Triggers

D last

|dea

— explore multiple execution paths of executable under test

— exploration is driven by monitoring how program uses certain inputs

— system should also provide information under which circumstances a
certain action is triggered

Approach

— track “interesting” input when it is read by the program

— whenever a control flow decision is encountered that uses such input,
two possible paths can be followed

— save snapshot of current process and continue along first branch

— later, revert back to stored snapshot and explore alternative branch

49

Bypassing Triggers
D last

Tracking input
— we already know how to do this (tainting)

Snapshots

— we know how to find control flow decision points (branches)

— snapshots are generated by saving the content of the process’ virtual
address space (of course, only used parts)

— restoring works by overwriting current address space with stored image

Explore alternative branch

— restore process memory image

— set the tainted operand (register or memory location) to a value that reverts
branch condition

— let the process continue to run

50

Bypassing Triggers

D last

Unfortunately, it is not that easy

when only rewriting the operand of the branch, process state
can become inconsistent
input value might have been copied or used in previous calculations

x = read input();

y = 2*x + 1;

check (y) ;

print (“x = %d, x”);

void check (int magic) {

if (magic != 47)
exit () ;

o6 oo

¢

51

Bypassing Triggers
D last

Unfortunately, it is not that easy
— when only rewriting the operand of the branch, process state
can become inconsistent
— input value might have been copied or used in previous calculations

x=0¥ T~
= read input();
;\;_?*x + 1;
check (vy) ;
print (“x = %d, x”);

void check (int magic) {
if (magic != 47)
exit () ;

@ oe

L

52

Bypassing Triggers

D last

Unfortunately, it is not that easy

— when only rewriting the operand of the branch, process state
can become inconsistent

input value might have been copied or used in previous calculations

x=0¥ ~~
= read input();
yoZ 22x 4 17

void check (int_mawgic) {

if (magiﬁ/f= 47)

exit () ;

[e——

od o

¢

53

o oe

Bypassing Triggers

D last

¢ ©

Unfortunately, it is not that easy

— when only rewriting the operand of the branch, process state
can become inconsistent

input value might have been copied or used in previous calculations

x=0¥ ~~
= read _input(); e > <::::::>

void check (int_magic) { =7)

if (magiﬁ/f= 47)

exit () ;

[e——

54

- -0

Bypassing Triggers

D last

¢ ©

Unfortunately, it is not that easy

— when only rewriting the operand of the branch, process state
can become inconsistent

input value might have been copied or used in previous calculations

x=0 /-\ .
= read_input(); e >
checkAy) 7 ' magic = 0
print
o exit () ;

void check (int_magic) { =7)

if (magiﬁ/f= 47)

exit () ;

[e——

55

N
»>e

o »
» ") Q
Bypassing Triggers s
¢ °
D |ast
Unfortunately, it is not that easy
— when only rewriting the operand of the branch, process state
can become inconsistent
— input value might have been copied or used in previous calculations
x=0¥ ~~
= read _input(); e >
checkAy) 7 ' magic = 0 magic = 47
print (
. exit () ; printf (“x = %d”,x);
void check (int_magic) { =7 This prints x=0!
if (magnK= 47)
exit () ; We have to remember that y depends on x,

) and that magic depends on y.

56

Bypassing Triggers

D last

Tracking of input must be extended
— whenever a tainted value is copied to a new location,
we must remember this relationship
— whenever a tainted value is used as input in a calculation,
we must remember the relationship between the input and the result

Constraint set

— for every operation on tainted data, a constraint is added that captures
relationship between input operands and result

— currently, we only model linear relationships

— can be used to perform consistent memory updates when exploring
alternative paths

— provides immediate information about condition under which path is selected

57

®
‘&
N2

Bypassing Triggers A

¢ O

N lastline —

. Constraint set

x = read input();

y = 2*x + 1;

check (y) ;
“X

print (= %d, x");

void check (int magic) {
if (magic != 47)
exit () ;

58

/Q
6?

Bypassing Triggers A

D lastline —
 Constraint set
Xx=0 ¥ X == input
x = read input(); .
Vo= 2%x + 1; y==27x+1
check (y)=

magic ==y

void check (int magic) {
if (magic != 47)
exit () ;

59

;Q
6?

Bypassing Triggers A

¢ O

N lastline —

. Constraint set

x=0 ¥ X == input
x = read input(); .
Ve= 2*x + 1; y==2*x+1
check (y)= magic == y
print (%
T .~ magic == 47

void check (int magic)yﬁ”"
if (magic !'= 47) 7
exit () ;

60

\\
»-e

d ®

>&

Bypassing Triggers

D last

¢ O

Constraint set

x=0 ¥

X == input

x = read input();

+ y==2"x+1

magic ==y
v magic == 47
. . solve for alternative
void check (int magic) { '-...__Pranch
if (magic != 47) 7 ‘
exit () ;
} y == magic == 47
X ==input == 23

Now, print outputs “x = 23”

61

Bypassing Triggers
D last

Path constraints
— capture effects of conditional branch operations on tainted variables

— added to constraint set for certain path

x = read input () ; Q
(x > 10)

if
if (x < 15) x<=10 x>10
interesting () ;

exit () ; exit(); Q

x>10 x > 10
X <15 x>=15
interesting () ; exit () ;

@ oe

L

62

Bypassing Triggers

« 308 malicious executables
— large variety of viruses, worms, bots, Trojan horses, ...

>

.~
o
cp ®

lastline —

Additional code is likely

for error handling

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

Check for Internet connectivity 20 none 136 | .
Check for mutex object 116 0% - 10% 21-
Check for existence of file 79 10% - 50% 711 :
Check for registry entry 74 50% - 200% 37
Read current time 134 > 200% 43 |
Read from file 106 Relevant behavior:
Read from network 134

time-triggers
flename checks
bot commands

&

63

Combating Evasion

D last
« Mitigate stalling loops

1. detect that program does not make progress
2. passive mode

 find loop that is currently executing

» reduce logging for this loop (until exit)
3. active mode

» when reduced logging is not sufficient

 actively interrupt loop

* Progress checks
— based on system calls
too many failures, too few, always the same, ...

64

Passive Mode

D last

« Finding code blocks (white list)
for which logging should be reduced

— build dynamic control flow graph)
Stalling Code Region ™. Nyt

— run loop detection algorithm
— identify live blocks and call edges

— identify first (closest) active loop
(loop still in progress)

— mark all regions reachable from O
. Function f
this loop

Function m Function g

65

Active Mode

D last

e Interrupt loop
— find conditional jump that leads out of white-listed region

— simply invert it the next time control flow passes by

* Problem
— program might later use variables that were written by loop

but that do not have the proper value and fail

« Solution
— mark all memory locations (variables) written by loop body
— dynamically track all variables that are marked (taint analysis)

— whenever program uses such variable, extract slice that computes
this value, run it, and plug in proper value into original execution

66

Experimental Results

; D lastline —
Description | # samples % # AV families . 1,525/ 6,237 stalling samples
base run 29,102 — 1329 " .
stalling 9,826 33.8% 620 reveal additional behavior
loop found | 6,237 | 21.4% 425 « At least 543 had obvious signs
of malicious (deliberate) stalling
Description Passive Active
#samples | % | # AV families | # samples | % | # AV families
Runs total 3,770 - 319 2,467 - 231
Added behavior (any activity) 1,003 26.6% 119 549 22.3% 105
- Added file activity 949 25.2% 113 359 14.6% 79
- Added network activity 444 11.8% 52 108 4.4% 31
- Added GUI activity 24 0.6% 15 260 10.5% 51
- Added process activity 499 13.2% 55 90 3.6% 41
- Added registry activity 561 14.9% 82 184 7.5% 52
- Exception cases 21 0.6% 13 273 11.1% 48
Ignored (possibly random) activity 1,447 38.4% 128 276 11.2% 72
- Exception cases 0 0.0% 0 82 3.3% 27
No new behavior 1,320 35.0% 225 1,642 66.6% 174
- Exception cases 0 0.0% 0 277 11.2% 63

67

Evasion in a Broader Context

lastiine —

T 4
-

oo
x|
%

Obfuscated
Polymorphic

L

Mal

ICIOUS

Binary

ICIOUS

Binary

Mal

AARRL

R
eSS
o

Obfuscated
Polymorphic

AR
e

V\
55

v
o

ICIOUS

Mal

4+
Q.
e
O
%)
©
>
[$]
-

honeyclient

ICIOUS

Mal

JavaScript

S0

68

Conclusions

D last

Visibility and fidelity are two critical factors when building successful
dynamic analysis systems

— full system emulation is a great point in the design spectrum

Automated analysis of malicious code faces number of challenges
— evasion is one critical challenge

We shouldn’t simply give up; it is possible to address many evasion
techniques in very general ways

69

N lastline

N lastline —

THANK YOU!

For more information visit www.lastline.com
or contact us at info@lastline.com.

70

