Extreme Privilege Escalation
on Windows 8/UEFI Systems

Corey Kallenberg @coreykal

Xeno Kovah @xenokovah
John Butterworth @jwbutterworth3
Sam Cornwell @sscOrnwell

MITRE

© 2014 The MITRE Corporation. All rights reserved.

Introduction

= \Who we are:

— Trusted Computing and firmware security researchers at The
MITRE Corporation

= What MITRE is:

— A not-for-profit company that runs six US Government "Federally
Funded Research & Development Centers" (FFRDCs) dedicated to
working in the public interest

— Technical lead for a number of standards and structured data
exchange formats such as CVE, CWE, OVAL, CAPEC, STIX,
TAXII, etc

— The first .org, !(.mil | .gov | .com | .edu | .net), on the ARPANET

© 2014 Th M TRE
e MITRE Corporation. All rights r ved.

Attack Model (1 of 2)

Adminis'r-u br: C:\Windows' system i md.exe "'

Microsofglelindows [Uersion -6hAA2 1
Copypr 1g| ‘c:} 2806 Microsof¥ l.u'pur-atiun. A1l 115‘.‘ reserved.

G:Hl-!indcl‘ system32 >vhoami ‘ ‘

nt au.thu' y~sustem
" We’ve galned administrator access on a victim Windows 8
machine

= But we are still constrained by the limits of Ring 3

'MITRE
© 2014 The MITRE Corporation. All rights r ed.

Attack Model (2 of 2)

= As attackers we always want
— More Power
— More Persistence
— More Stealth

ITR

© 2014 The MITRE Corporation. All rights reserved.

Typical Post-Exploitation Privilege Escalation

Ring 0

Admin Ring 3

= Starting with x64 Windows vista, kernel drivers must be signed and contain
an Authenticode certificate

= |n atypical post-exploitation privilege escalation, attacker wants to bypass
the signed driver requirement to install a kernel level rootkit

= Various methods to achieve this are possible, including:
— Exploit existing kernel drivers
— Install a legitimate (signed), but vulnerable, driver and exploit it

" This style of privilege escalation has been well explored by other
researchers such as [6][7].

"= There are other, more extreme, lands the attacker may wish to explore

© 2014 The MITRE Corporation. All rights reserved.

Other Escalation Options (1 of 2)

Platform
Firmware (UEFI)

SMM

Boot Loader
(MBR)

Ring 0

Admin Ring 3

" There are other more interesting post-exploitation options an
attacker may consider:

— Bootkit the system
— Install SMM rootkit
— Install BIOS rootkit

© 2014 The MITRE Corporation. All rights reserved.

Other Escalation Options (2 of 2)

Signed BIOS Enforcement

Platform
Firmware (UEFI)

SMM

Boot Loader

(MBR) Chipset Protection

Ring0

Secure Boot
Admin Ring 3

" Modern platforms contain protections against these more exotic
post-exploitation privilege-escalations

— Bootkit the system (Prevented by Secure Boot)
— Install SMM rootkit (SMM is locked on modern systems)
— Install BIOS rootkit (SPI Flash protected by lockdown mechanisms)

© 2014 The MITRE Corporation. All rights reserved.

Extreme Privilege Escalation (1 of 2)

Platform
Firmware (UEFI)

SMM

Boot Loader
(MBR)

Ring 0

Admin Ring 3

= This talk presents extreme privilege escalation

— Administrator userland process exploits the platform firmware
(UEFI)

— Exploit achieved by means of a new API introduced in Windows 8
ITR

© 2014 The MITRE Corporation. All rights reserved.

Extreme Privilege Escalation (2 of 2)

Boot Loader
(MBR)

Adiigaming 3

" Once the attacker has arbitrary code execution in the context of the
platform firmware, he is able to:

— Control other "rings" on the platform (SMM, Ring 0)
— Persist beyond operating system re-installations
— Permanently "brick" the victim computer

© 2014 The MITRE Corporation. All rights reserved.

10

Target Of Attack

" Modern Windows 8 systems ship with UEFI firmware

= UEFI is designed to replace conventional BIOS and provides a
well defined interface to the operating system

© 2014 The MITRE Corporation. All rights reserved.

11

Windows 8 API

SetFirmwareEnvironmentVariable
function

Sets the value of the specified firmware environment variable.

Syntax

r C++

BOOL WINAPI SetFirmwareEnvironmentVariable(
In LPCTSTR lpName,
In LPCTSTR lpGuid,
In PVOID pBuffer,
In DWORD nSize

);

= Windows 8 has introduced an API that allows a privileged
userland process to interface with a subset of the UEFI interface

© 2014 The MITRE Corporation. All rights reserved.

12

EFI Variable Creation Flow

SPI Flash

Non Volatile Variables
// - _Hl\ >
Set VAR=AAAAAAAA....) I
UEFI Code
= \\/ind 3

= Certain EFl variables can be created/modified/deleted by the
operating system

— For example, variables that control the boot order and platform
language

" The firmware can also use EFI variables to communicate
iInformation to the operating system

© 2014 The MITRE Corporation. All rights reserved.

13

EFI Variable Consumption

SPI Flash

Non Volatile Variables
UEFI Code

am Windows 8

" The UEFI variable interface is a conduit by which a less privileged
entity (admin Ring 3) can produce data for a more complicated
entity (the firmware) to consume

" This is roughly similar to environment variable parsing attack
surface on *nix systems

© 2014 The MITRE Corporation. All rights reserved.

14

Previous EFI Variable Issues (1 of 2)

Vulnerability Note VU#758382
Unauthorized modification of UEFI variables in UEFI systems

Felegse date g M 14 F=t revised 1 i 14

Lrigdinal Release dale. Ua JUun U004 | Last revised: 14 JUn U4

& Print a Tweet K] send Share

Overview

Certain firmware implementations may not correctly protect and validate information contained in certain UEF] variables.
Exploitation of such vulnerabilities could potentially lead to bypass of security features and/or denial of service for the
platfarm.

Description

As discussed in recent conference publications (CanSecWest 2014, Syscan 2014, and Hack-in-the-Box 2014) certain
LEFI implementations do not correctly protect and validate information contained in the "Setup” UEF! variable. On some
systems, this variable can be overwritten using operating system APls. Exploitation of this vulnerability could potentially
lead to bypass of security features, such as secure boot, and/or denial of service for the platform. Please refer to the
conference publications for further details.

Impact

Allocal attacker that obtains administrator access to the operating system may be able to modify LUEF| variables.
Exploitation of such vulnerabilities could potentially lead to bypass of security features and/or denial of service for the
platform.

= We’'ve already co-discovered[setupforfailure] (with Intel team)
some vulnerabilities associated with EFI Variables that allowed
bypassing secure boot and/or bricking the platform

© 2014 The MITRE Corporation. All rights reserved.

15

Previous EFI Variable Issues (2 of 2)

Vulnerability Note VU#758382
Unauthorized modification of UEFI variables in UEFI systems

Felegse date g M 14 F=t revised 1 i 14

Lrigdinal Release dale. Ua JUun U004 | Last revised: 14 JUn U4

& Print a Tweet K] send Share

Overview

Certain firmware implementations may not correctly protect and validate information contained in certain UEF] variables.
Exploitation of such vulnerabilities could potentially lead to bypass of security features and/or denial of service for the
platfarm.

Description

As discussed in recent conference publications (CanSecWest 2014, Syscan 2014, and Hack-in-the-Box 2014) certain
LEFI implementations do not correctly protect and validate information contained in the "Setup” UEF! variable. On some
systems, this variable can be overwritten using operating system APls. Exploitation of this vulnerability could potentially
lead to bypass of security features, such as secure boot, and/or denial of service for the platform. Please refer to the
conference publications for further details.

Impact

Allocal attacker that obtains administrator access to the operating system may be able to modify LUEF| variables.
Exploitation of such vulnerabilities could potentially lead to bypass of security features and/or denial of service for the
platform.

= However, VU #758382 was leveraging a proprietary Independent
BIOS Vendor (IBV) implementation mistake, it would be more
Interesting if we could find a variable vulnerability more generic
to UEFI

© 2014 The MITRE Corporation. All rights reserved.

16

UEFI Vulnerability Proliferation

A

:zﬁmmdsl moenic)) EiNSyde

e ' | N\,
ML @ sus lenovo. aCer

= |f an attacker finds a vulnerability in the UEFI "reference
Implementation," its proliferation across IBVs and OEMs would
potentially be wide spread.

— More on how this theory works "in practice" later...

© 2014 Th M TRE
e MITRE Corporation. All rights r ved.

17

Auditing UEFI

* Page Discussion Read View source

Welcome
ubK2014 UEEI.Devqupment Kit 2014 (UDK2014)
2% 'y 2 e o Continuing with the
EFI Dev Kit (EDK) A P i UEFI Open Source Community
EDK Il Build Taols i B N
All Projects

* Information

D BT This is the community site surrounding the open source components of Intel's implementation of UEFL. To learn how to use UEFI see our start using UEFI page.

Getting Started To learn more about getting involved in the community see our how to contribute page. EDK IT is @ modern, feature-rich, cross-platform firmware development environment for the UEFI and PI sp
FAQ, Acronyms
Documem; If you have any comments for this site please see the Community_Admins page.
Training For the full list of our community projects, visit the Projects page.
Reporting Issues
Legalese
New Announcements
¥ Mavigation
» Tools March 20, 2014

Announcing the new UDK2014 Release. Goto the UDK2014 page to download the release and documentation. The UDK2014 release will deliver the UEFI 2.4 and PI 1.3 support. Specific details on
the UDK2014 Release Notes .

Feb 11, 2014

Upcomming soon UDK2014 See a sneak pre-view: UDK2014 Features

Archived News News from 2009-2013

http://tianocore.sourceforge.net/wiki/Welcome

= UEFI reference implementation is open source, making it easy to audit
= | et the games begin:

— Svn checkout https://svn.code.sf.net/p/edk2/code/trunk/edk2/

© 2014 The MITRE Corporation. All rights reserved.

18

Where to start?

= Always start with wherever there is attacker-controlled input

= We had good success last year exploiting Dell systems by
passing an attacker-crafted fake BIOS update...

" So let's see if UEFI has some of the same issues

TRE

© 2014 The MITRE Corporation. All rights reserved.

19

Capsule Scatter Write

Firmware Capsule

FFFFFFFF ~ ~

CAPSULE_HEADER Operating System

FIRMWARE_VOLUME_HEADER
FIRMWARE_FILE

FIRMWARE_FILE ~ Capsule Data Block 1

' Capsule Data Block O

Capsule Data Block N-1

00000000 _ 4

" To begin the process of sending a Capsule update for
processing, the operating system takes a firmware capsule and
fragments it across the address space

© 2014 The MITRE Corporation. All rights reserved.

20

Capsule Processing Initiation

FEFFFFFF [I
3F000000 Capsule Data Block 0
“CapsuleUpdateData” = 3E700000 % 3E700000 DescriptorArray (BlockList) DescriptorArray[0]
Length=0x20000
DataBlock=3F000000
3E000000 Capsule Data Block N-1 DescriptorArray[1]
Length=0x20000
SetFirmwareEnvironmentVariable DataBlock=3D000000
3D000000 Capsule Data Block 1
DescriptorArray[N-1]
Length=0x100
00000000 \ / DataBlock=3E000000

= Operating system creates an EFI variable that describes the
location of the fragmented firmware capsule

= A"warm reset" then occurs to transition control back to the
firmware

© 2014 The MITRE Corporation. All rights reserved.

Capsule Coalescing

FFFFFFFF

3F000000

3E000000

3D000000

CAPSULE_HEADER

FIRMWARE_VOLUME_HEADER

FIRMWARE_FILE

FIRMWARE_FILE

00000000

Capsule Data Block 0

DescriptorArray (BlockList)

Capsule Data Block N-1

Capsule Data Block 1

Capsule Data Block 0

Capsule Data Block 1

Capsule Data Block N-1

=

/

21

SPI Flash

= The UEFI code "coalesces" the firmware capsule back into its

original form.

© 2014 The MITRE Corporation. All rights reserved.

22

Capsule Verification

FFFFFFFF
}“ SPI Flash

Signature Check

CAPSULE_HEADER

FIRMWARE_VOLUME_HEADER

FIRMWARE_FILE

FIRMWARE_FILE

00000000 \ /

= UEFI parses the envelope of the firmware capsule and verifies
that it is signed by the OEM

© 2014 The MITRE Corporation. All rights reserved.

Capsule Consumption

FFFFFFFF

Consume Capsule

00000000

CAPSULE_HEADER

FIRMWARE_VOLUME_HEADER

FIRMWARE_FILE

o

= Contents of the capsule are then consumed....

— Flash contents to the SPI flash

23

}Q SPI Flash

— Run malware detection independent of the operating system

— Etc...

© 2014 The MITRE Corporation. All rights reserved.

25

Opportunities For Vulnerabilities

" There are 3 main opportunities for memory corruption
vulnerabilities in the firmware capsule processing code

1. The coalescing phase
2. Parsing of the capsule envelope
3. Parsing of unsigned content within the capsule

= Qur audit of the UEFI capsule processing code yielded multiple
vulnerabilities in the coalescing and envelope parsing code

— The first "BIOS reflash" exploit was presented by Wojtczuk and
Tereshkin and involved reading the UEFI code which handled

BMP processing and exploiting an unsigned splash screen image
embedded in a firmware[1]

ITR

© 2014 The MITRE Corporation. All rights reserved.

26

Coalescing Bug #1

EFI_STATUS
EFIAPI
CapsuleDataCoalesce (
IN EFI_PEI_SERVICES **PaiServices,
IN EFI_PHYSICAL_ADDRESS *#*BlockListBuffer,
IN OUT VOID +#*MemoryBase,
IN OUT UINTN #*MemorySize
)
{
V4
// Get the size of our descriptors and the capsule size. GetCapsulelnfo()
/7 returns the number of descriptors that actually point to data, so add
// one for a terminator. Do that below.
/7
GetCapsuleInfo (BlockList, &NumDescriptors, &CapsuleSize);
if ((CapsuleSize == 0) || (NumDescriptors == 0)) {
return EFI_NOT_FOUND;
}

Descriptors3ize = NumDescriptors #* sizeof (EFI_CAPSULE_BLOCK_DESCRIPTOR);
if (*MemorySize <= (CapsuleSize + DescriptorsSize)) { <= Bug 1

return EFI_BUFFER_TOO_SMALL;
}

Edk2/MdeModulePkg/Universal/CapsulePei/Common/CapsuleCoalesce.c

= Bug 1: Integer overflow in capsule size sanity check
— Huge CapsuleSize may erroneously pass sanity check

© 2014 The MITRE Corporation. All rights reserved.

27

Coalescing Bug #2

EFI_STATUS
GetCapsuleInfo (
IN EFI_CAPSULE_BLOCK_DESCRIPTOR *Desc,

IN OUT UINTN #NumDescriptors OPTIONAL,
IN OUT UINTN *CapsuleSize OPTIONAL
)
{
UINTN Count;
UINTN Size;

while (Desc->Union.ContinuationPointer != (EFI_PHYSICAL_ADDRESS) (UINTN) NULL) {
if (Desc->Length == 0) {
Y4
// Descriptor ppints to another list of block descriptors somewhere
V4
Desc = (EFI_CAPSULE_ELOCK_DESCRIPTOR #) (UINTN) Desc->Union.ContinuationPointer;
} else {
Size += (UINTN) Desc->Length; <= Bug 2
Count++;
Desc++;
}
}

if (NumDescriptors != NULL) {
#*NumDescriptors = Count;

}

if (CapsuleSize != NULL) {
*#CapsuleSize = Size;

}
Edk2/MdeModulePkg/Universal/CapsulePei/Common/CapsuleCoalesce.c

= Bug 2: Integer overflow in fragment length summation
— CapsuleSize may be less than true summation of fragment lengths

© 2014 The MITRE Corporation. All rights reserved.

28

Envelope Parsing Bug (Bug #3)

EFI_STATUS
ProduceFVEProtocolOnBuffer (
IN EFI_PHYSICAL_ADDRESS BaseAddress,

IN UINT64 Length,
IN EFI_HANDLE ParentHandle,
IN UINT32 AuthenticationStatus,
OUT EFI_HANDLE #FvProtocol OPTIDONAL
)

{
EFI_STATUS Status;
EFI_FW_VOL_BLOCK_DEVICE *FvbDev;
EFI_FIRMWARE_VOLUME_HEADER *FwVolHeader;
UINTN BlockIndex;
UINTN BlockIndex2;
UINTN LinearOffset;
UINT32 FvAlignment;
EFI_FV_BLOCK_MAP_ENTRY *PtrBlockMapEntry;

FwVolHeader = (EFI_FIRMWARE_VOLUME_HEADER #) (UINTN) BaseAddress;

Vs

/7 Init the block caching fields of the device

// First, count the number of blocks

V4

FvbDev->NumBlocks = 0;

for (PtrBlockMapEntry = FwVolHeader->BlockMap;
PtrElockMapEntry->NumBlocks != 0;
PtrBlockMapEntry++) {

FvbDev->NumBlocks += PtrBlockMapEntry->NumBlocks;

}

V4

// Second, allocate the cache

Va4

FvbDev->LbaCache = AllocatePool (FvbDev->NumBlocks * sizeof (LBA_CACHE)); <= Bug 3

Edk2/MdeModulePkg/Core/Dxe/FwVolBlock/Fw\VolBlock.c

= Bug 3: Integer overflow in multiplication before allocation
— LbaCache may be unexpectedly small if NumBlocks is huge

© 2014 The MITRE Corporation. All rights reserved.

29

Miscellaneous Coalescing Bug (Bug #4)

EOOLEAN

IsOverlapped (

UINTS8
UINTN
UINTS8
UINTN
)

/7

*Buffi,
Sizel,
*Buff2,
Size2

/7 If buffi’s end is less than the start of buff2, then it’s ok.
/7 Also, if buff1’s start is beyond buff2’s end, then it’s ok.

/Y

if (((Buffil + Sizel) <= Buff2) || (Buff1l >= (Buff2 + Size2))) { <= Bug 4
return FALSE;

¥

return TRUE;

}

Edk2/MdeModulePkg/Universal/CapsulePei/Common/CapsuleCoalesce.c

" Bug 4: Integer overflow in IsOverlapped
— Can erroneously return False if Buff1+Sizel overflows

— This didn’t directly lead to a vulnerability but we had to abuse it to
successfully exploit the other bugs

© 2014 The MITRE Corporation. All rights reserved.

30

Vulnerabilities Summary

T else {
!/
//To enhance the reliability of check-up, the first capsule’'s header is checked here.
//More reliabilities check-up will do later.
1T (CapsuleS1ze == ©)

!

//Move to the first capsule to check its header.

!/

CapsuleHeader = (EFI_CAPSULE_HEADER*)((UINTN)}Ptr->Union.DataBlock);

if (IsCapsuleCorrupted (CapsuleHeader)) {

return NULL;

¥

CapsuleCount ++;

CapsuleSize = CapsuleHeader->CapsuleImageSize;

ValidateCapsulelntegrity: Edk2/MdeModulePkg/Universal/CapsulePei/Common/CapsuleCoalesce.c

= We spent ~1 week looking at the UEFI reference implementation
and discovered vulnerabilities in security critical code

" The presence of easy to spot integer overflows in open source and
security critical code is... disturbing

— Is no one else looking here?

© 2014 The MITRE Corporation. All rights reserved.

31

Onward To Exploitation

|

" The aforementioned code runs with read-write-execute permissions
— Flat protected mode with paging disabled
— No mitigations whatsoever

= However, successful exploitation in this unusual environment was
non-trivial

© 2014 The MITRE Corporation. All rights reserved.

32

Coalescing Exploit Attempt

}Q SPI Flash

DescriptorArray[0]
Length=FFFFFF2B
DataBlock=Wherever

FFFFFFFF

00000000 K J

= Attempt #1: Provide a huge capsule size and clobber our way
across the address space to some function pointer on the stack
area

© 2014 The MITRE Corporation. All rights reserved.

33

Coalescing Exploit Fall

e

]—@ SPI Flash

DescriptorArray[0]
Length=FFFFFF2B
DataBlock=Wherever

00000000 K)

= Qverwriting certain regions of the address space had undesirable results

= We had to come up with an approach that skipped pass the forbidden
region

See whitepaper for full details on the exploitation technique © 2014 The MITRE CorporatiOM rights reserved.

34

Coalescing Exploit Success

FFFFFFFF

Overwrite function pointer

o

ReturnAddress — DestPtr Two

Adjust Next DestPtr Shellcode Address

Intended Coalescing Space Corrupt DescriptorArray

Relocated DescriptorArray

00000000 \\‘ J

= Came up with a multistage approach that involved corrupting the
descriptor array

— Achieve surgical write-what-where primitive
— Combined bugs #1, #2, #4 and abused a CopyMem optimization

See whitepaper for full details on the exploitation technique © 2014 The MITRE Corporaﬂom rights reserved.

35

Envelope Parsing Exploitation

FvbDev->LbaCache = AllocatePool (FvbDev->NumBlocks * sizeof (LBA_CACHE)); <= Bug 3

£
/7 Last, fill in the cache with the linear address of the blocks
e
BlockIndex = 0;
Linear0ffset = 0;
for (PtrBlockMapEntry = FwVolHeader->BlockMap;
PtrBlockMapEntry->NumBlocks '= 0; PtrBlockMapEntry++) {
for (BlockIndex2 = 0; BlockIndex2 < PtrBlockMapEntry->NumBlocks; BlockIndex2++) {
FvbDev->LbaCache [BlockIndex] .Base = LinearOffset;
FvbDev->LbaCache [BlockIndex] .Length = PtrBlockMapEntry->Length;
Linear0ffset += PtrBlockMapEntry->Length;
BlockIndex++;
}
}

Edk2/MdeModulePkg/Core/Dxe/FwVolBlock/FwVolBlock.c

= Exploitation of the "envelope parsing" bug was complicated for
several reasons

= Note that in order to trigger the undersized LbaCache allocation, the
NumBlocks value must be huge

— This effectively means that the corrupting for() loops will never
terminate

© 2014 The MITRE Corporation. All rights reserved.

136

Total Address Space Annihilation

FFFFFFFF

—
3EB21D83
3EB18E78 Entire Address
Space Corrupted
3DE1A910
3DE1A890
00000000
-—

= Loop will corrupt entire address space and hang the system

© 2014 The MITRE Corporation. All rights reserved.

| 37 |

Other Complications

3DE1A944

3DE1A940

3DE1A910

3DE1A89C

3DE1A898

3DE1A894

3DE1A890

= | baCache pointer is overwritten by the corruption, further complicating
things

= Values being written during the corruption are not entirely attacker
controller

© 2014 The MITRE Corporation. All rights reserved.

38

Corruption Direction Change

FFFFFFFF LbaCache Pointer
Overwritten
PR _ O
277 O Loop Basic Block
[}

loc_3EB21E44:
8B 4D FC mov ecx, [ebp+vBlockIndex]
8B S5E 30 mov ebx, [esi+EFI_FW_VOL_BLOCK_DEVICE.LbaCache]

3ER18E78 Cl E1 @3 shl ecx, 3
89 14 19 mov [ecx+ebx+LBA_CACHE.Base], edx ; LbaCache[i].Base = AttackerValue*i
8B 56 30 mov edx, [esi+EFI_FW_VOL_BLOCK_DEVICE.LbaCache]
8B 58 04 mov ebx, [eax+LBA CACHE.Length]
89 5C QA @4 mov [edx+ecx+LBA_CACHE.Length], ebx ; LbaCache[i].Length = AttackerValue
8B 55 F4 mov edx, [ebptvlLinearOffset]

FvbDev <‘,:| 93 50 @4 add edx, [eax+4]

3DE1A910 FF 45 FC inc [ebp+vBlockIndex]

FF 45 F8 inc [ebp+vBlockIndex2]
_ 8B 4D F8 mov ecx, [ebp+vBlockIndex2]

3DE1A890 FvbDev->LbaCache 89 55 F4 mov [ebp+vLinearOffset], edx
3B @8 cmp ecx, [eax]
72 D4 jb short loc_3EB21E44

00000000

= QOverwriting the LbaCache pointer changes the location the
corruption continues at

© 2014 The MITRE Corporation. All rights reserved.

39

Difficulties Recap

= We’ve got serious hoops to jump through to successfully exploit
the envelope parsing vulnerability

— Corrupting of base pointer for corruption (LbaCache)
— Only partially controlled values being written
— Corrupting loop will never terminate

TRE

© 2014 The MITRE Corporation. All rights reserved.

40

Self-overwriting Code

We are now
corrupting the loop

FFFFFFFF code itself..
O
3EBE1E44 e AttackerValue = 2D98BBS.
e Overwrites top of loop code on iteration=38E
e *(DWORD *)3EB21E44 = AttackerValue (B8 8B D9 02) [endianness]
g
loc_3EB21E44:
B8 8B D9 @2 5E mov eax, 5E02D98Bh
8B 5E 3¢ mov ebx, [esi+EFI_FW VOL_BLOCK_DEVICE.LbaCache]
3EB18E78 C1E1 83 — shl — eex; 3 - -
89 14 19 mov [ecx+ebx+LBA_CACHE.Base], edx ; LbaCache[i].Base = AttackerValue*i
8B 56 3@ mov edx, [esi+EFI_FW_VOL_BLOCK_DEVICE.LbaCache]
8B 58 04 mov ebx, [eax+LBA_CACHE.Length]
89 5C A 04 mov [edx+ecx+LBA_CACHE.Length], ebx ; *(DWORD *)3EB21E44 = AttackerValue
3DE1A910 FvbDev 8B 55 F4 mov edx, [ebp+vlLinearOffset]
93 50 04 add edx, [eax+4]
FF 45 FC inc [ebp+vBlockIndex]
FvbDev->L h FF 45 F8 inc [ebp+vBlockIndex2]
3DE1A890 kiDe baCache 8B 4D F8 mov ecx, [ebp+vBlockIndex2]
89 55 F4 mov [ebp+vLinearOffset], edx
3B @8 cmp ecx, [eax]
00000000 72 D4 ib short loc_3EB21E44

= Our approach to escaping the non-terminating for loop was to massage the
corruption so the loop would self-overwrite

= |n this case, we overwrite the top of the basic block with non-advantageous
x86 instructions

— Overwritten values only "semi-controlled"

© 2014 The MITRE Corporation. All rights reserved.

41

Self-overwriting Success

We are now

corrupting the loop
FFFFFFFF code itself..
o ©
3EBE1E44 e AttackerValue = 2D98CBF.

Overwrites top of loop code on iteration=BB

*(DWORD *)3EB21E42 = (AttackerValue * OxBB) % Ox100000000
= 14E9CF8F
= 85 CF E9 14 [endianness]

*(DWORD *)3EB21E46 = BF 8C D9 02 [endianness]

*

|’
3EB18E78 loc_3EB21E44:
E9 14 BF 8C D9 jmp 183EDD5Dh
Cl E1 @3 shl ecx, 3
89 14 19 mov [ecx+ebx+LBA_CACHE.Base], edx ; *(DWORD *)3EB21E42 = AttackerValue*i
8B 56 30 mov edx, [esi+EFI_FW VOL_BLOCK_DEVICE.LbaCache]
3DE1A910 FvbDev 8B 58 04 mov ebx, [eax+LBA_CACHE.Length]
89 5C @A 94 mov [edx+ecx+LBA_CACHE.Length], ebx ; *(DWORD *)3EB21E46 = AttackerValue
8B 55 F4 mov edx, [ebpt+vlLinearOffset]
3DE1ASSQ FvbDev->LbaCache 93 50 04 add edx, [eax+4d]
FF 45 FC inc [ebp+vBlockIndex]
FF 45 F8 inc [ebp+vBlockIndex2]
183EDDSD Shellcode 8B 4D F8 mov ecx, [ebp+vBlockIndex2]
Bk 89 55 F4 mov [ebpt+vLinearOffset], edx
= E:ﬁ 3B @8 cmp ecx, [eax]
= 72 D4 ib short loc_3EB21E44
00000000 Slanaan ’ -
SEEEES

= With some brute force we discovered a way to overwrite the looping
basic block with advantageous attacker instructions

— Jump to uncorrupted shellcode

© 2014 The MITRE Corporation. All rights reserved.

42

Exploitation Mechanics Summary

= Vulnerable code runs with read-write-execute permissions and
no mitigations

= However, successful exploitation was still complicated

= Capsule coalescing exploit allows for surgical write-what-where
primitive resulting in reliable exploitation of the UEFI firmware

— Address space is almost entirely uncorrupted so system remains
stable

= Capsule envelope parsing vulnerability can be exploited but
corrupts a lot of the address space

— System probably in an unstable state

" In both cases, attacker ends up with control of EIP in the early
boot environment

© 2014 The MITRE Corporation. All rights reserved.

43

Exploitation Flow (1 of 8)

FEFFFFFF [N

I’'m not satisfied by the
limits of Ring3, | must
grow my power

Address Space

00000000 K /

nt au

= Qur Sith attacker is unimpressed with his ring 3 admin privileges
and seeks to grow his power

© 2014 The MITRE Corporation. All rights reserved.

44

Exploitation Flow (2 of 8)

FFFFFFFF [N

9 3£700000 Evil DescriptorArray

SetFirmwareEnvironmentVariable

10000000

/

= Attacker seeds an evil capsule update into memory

= Attacker then uses SetFirmwareEnvironmentVariable to prepare the firmware to
consume the evil capsule

= Shellcode to be executed in the early boot environment is staged in memory

© 2014 The MITRE Corporation. All rights reserved.

45

Exploitation Flow (3 of 8)

FFFFFFFF

Evil DescriptorArray

= Warm reset is performed to transfer context back to UEFI

© 2014 The MITRE Corporation. All rights reserved.

46

Exploitation Flow (4 of 8)

FFFFFFFF

UEFI Checks for Capsule Variable

_ 3E700000 Evil DescriptorArray

10000000

= Capsule processing is initiated by the existence of the
"CapsuleUpdateData" UEFI variable

© 2014 The MITRE Corporation. All rights reserved.

47

Exploitation Flow (5 of 8)

FFFFFFFF

_ 3E700000 Evil DescriptorArray

10000000

= UEFI begins to coalesce the evil capsule

© 2014 The MITRE Corporation. All rights reserved.

48

Exploitation Flow (6 of 8)

FFFFFFFF

_ 3E700000 Evil DescriptorArray

10000000

= UEFI becomes corrupted while parsing evil capsule

© 2014 The MITRE Corporation. All rights reserved.

49

Exploitation Flow (7 of 8)

FFFFFFFF

_ 3E700000 Evil DescriptorArray

10000000

= Attacker gains arbitrary code execution in the context of the early
boot environment

— Platform is unlocked at this point

© 2014 The MITRE Corporation. All rights reserved.

50

Exploitation Flow (8 of 8)

FFFFFFFF

3EZ00000

Evil DescriptorArray

Establish SMM Agent

= Attacker can now establish agents in SMM and/or the platform
firmware to do their bidding

© 2014 The MITRE Corporation. All rights reserved.

51

Unnatural Powers

= With these new powers, our attacker can:
— Brick the platform
— Defeat Secure Boot[2]
— Establish an undetectable SMM rootkit[8][5]
— Subvert hypervisors[9]
— Subvert TXT launched hypervisors|3]
— Circumvent operating system security functions[11]
— Survive operating system reinstallation attempts
— Other?

© 2014 The MITRE Cor M TRE
orporation. All rights r ved.

52

Demo Time

© 2014 The MITRE Corporation. All rights reserved.

54

Vendor Response

= We told Intel & CERT about the bugs we found on Nov 22"d and Dec
4t 2013

— We conveyed that we would extend our typical 6 month responsible
disclosure deadline, and we would be targeting public disclosure in
the summer at BlackHat/Defcon

— We also directly contacted some of the OEMSs that we already had the
capability to send encrypted email to

" Intel queried UEFI partners to ask if they were using the affected
code

= |f the vendors said they thought they would be affected, then Intel
sent them the details

" Then we didn't hear anything for a while

= Eventually Intel indicated which vendors said they were vulnerable,
and which systems would be patched.

= This information is conveyed in CERT VU #552286

" The UEFI forum is in the process of setting up a UEFI Security
Response Team to better coordinate these sort of disclosures in
the future. Shooting to go live by Sept 1.

© 2014 The MITRE Corporation. All rights reserved.

55

What can you do about it?

= Run Copernicus. It has been updated to automatically report if
your system is on the VU # 552286 affected list

— http://www.mitre.org/capabilities/cybersecurity/overview/cybersecur
Ity-blog/copernicus-question-your-assumptions-about or just
search for "MITRE Copernicus"

®" We also have a binary integrity checking capability for

Copernicus. This can help you detect if your BIOS has been
backdoored

— The capability is freely available, but it's not as simple and
foolproof as the public Copernicus (it will have false
positives/negatives). And we don't really have the resources to
support it for everyone. Therefore we prioritize who we work with to
use it, based on the number of systems that will be checked. So if
you're serious about checking your BIOSes, email
copernicus@mitre.org

= We also need this data to feed further research results on the state of
BIOS security in the wild on deployed systems. Unlike the IPMI people,
we can't just portscan networks to get 100k research results :P

© 2014 The MITRE Corporation. All rights reserved.

http://www.mitre.org/capabilities/cybersecurity/overview/cybersecurity-blog/copernicus-question-your-assumptions-about
http://www.mitre.org/capabilities/cybersecurity/overview/cybersecurity-blog/copernicus-question-your-assumptions-about
http://www.mitre.org/capabilities/cybersecurity/overview/cybersecurity-blog/copernicus-question-your-assumptions-about
http://www.mitre.org/capabilities/cybersecurity/overview/cybersecurity-blog/copernicus-question-your-assumptions-about
http://www.mitre.org/capabilities/cybersecurity/overview/cybersecurity-blog/copernicus-question-your-assumptions-about
http://www.mitre.org/capabilities/cybersecurity/overview/cybersecurity-blog/copernicus-question-your-assumptions-about
http://www.mitre.org/capabilities/cybersecurity/overview/cybersecurity-blog/copernicus-question-your-assumptions-about
http://www.mitre.org/capabilities/cybersecurity/overview/cybersecurity-blog/copernicus-question-your-assumptions-about
http://www.mitre.org/capabilities/cybersecurity/overview/cybersecurity-blog/copernicus-question-your-assumptions-about
http://www.mitre.org/capabilities/cybersecurity/overview/cybersecurity-blog/copernicus-question-your-assumptions-about
http://www.mitre.org/capabilities/cybersecurity/overview/cybersecurity-blog/copernicus-question-your-assumptions-about
http://www.mitre.org/capabilities/cybersecurity/overview/cybersecurity-blog/copernicus-question-your-assumptions-about
http://www.mitre.org/capabilities/cybersecurity/overview/cybersecurity-blog/copernicus-question-your-assumptions-about
mailto:copernicus@mitre.org

56

What can you do about it?

= If you're a security vendor, start including BIOS checks
— If you're a customer, start asking for BIOS checks

= We are happy to freely give away our Copernicus code to get
vendors started with incorporating checking BIOSes. All we ask
for in return is some data to help further our research.

= We want BIOS configuration & integrity checking to become
standard capabilities which are widely available from as many
vendors as possible.

— No more massive blind spot please!

MITRE
© 2014 The MITRE Corporati All'rights r ved.

57

Conclusion

= UEFI has more tightly coupled the bonds of the operating
system and the platform firmware

= Specifically, the EFI variable interface acts as a conduit by which
a less privileged entity (the operating system) can pass
Information for consumption by a more privileged entity (the
platform firmware)

— We have demonstrated how a vulnerability in this interface can
allow an attacker to gain control of the firmware

= Although the authors believe UEFI to ultimately be a good thing
for the state of platform security, a more thorough audit of the
UEFI code and its new features is needed

= Copernicus continues to be updated to give the latest
Information about whether vulnerabilities affect your BIOS

ITR

© 2014 The MITRE Corporation. All rights reserved.

58

Questions & Contact

= {ckallenberg, xkovah, jbutterworth, scornwell} @ mitre . org
= Copernicus @ mitre . org

= @coreykal, @xenokovah, @jwbutterworth3, @sscOrnwell

= @MITREcorp

" P.s., go check out OpenSecurityTraining.info!
= @OpenSecTraining

© 2014 The MITRE Cor M TRE
orporation. All rights r

ved.

59

References

= [1] Attacking Intel BIOS — Alexander Tereshkin & Rafal Wojtczuk — Jul. 2009
http://invisiblethingslab.com/resources/bh09usa/Attacking%20Iintel%20BI0OS.pdf

= [2] A Tale of One Software Bypass of Windows 8 Secure Boot — Yuriy Bulygin —
Jul. 2013 http://blackhat.com/us-13/briefings.htmi#Bulygin

= [3] Attacking Intel Trusted Execution Technology - Rafal Wojtczuk and Joanna
Rutkowska — Feb. 2009
http://invisiblethingslab.com/resources/bh09dc/Attacking%20Intel%20TXT%20-
%20paper.pdf

= [4] Defeating Signed BIOS Enforcement — Kallenberg et al., Sept. 2013 -
http://www.mitre.org/sites/default/files/publications/defeating-signed-bios-
enforcement.pdf

= [5] BIOS Chronomancy: Fixing the Core Root of Trust for Measurement —
Butterworth et al., May 2013
http://www.nosuchcon.org/talks/D2 01 Butterworth BIOS Chronomancy.pdf

= [6] IsGameOver() Anyone? — Rutkowska and Tereshkin — Aug 2007
http://invisiblethingslab.com/resources/bh07/IsGameOver.pdf

= [7] Defeating Windows Driver Signature Enforcement — jOOru - Dec 2012
http://jO0ru.vexillium.org/?p=1455

© 2014 The MITRE Corporation. All rights reserved.

http://invisiblethingslab.com/resources/bh09usa/Attacking Intel BIOS.pdf
http://invisiblethingslab.com/resources/bh09usa/Attacking Intel BIOS.pdf
http://invisiblethingslab.com/resources/bh09usa/Attacking Intel BIOS.pdf
http://blackhat.com/us-13/briefings.html
http://blackhat.com/us-13/briefings.html
http://blackhat.com/us-13/briefings.html
http://invisiblethingslab.com/resources/bh09dc/Attacking Intel TXT - paper.pdf
http://invisiblethingslab.com/resources/bh09dc/Attacking Intel TXT - paper.pdf
http://invisiblethingslab.com/resources/bh09dc/Attacking Intel TXT - paper.pdf
http://invisiblethingslab.com/resources/bh09dc/Attacking Intel TXT - paper.pdf
http://www.mitre.org/sites/default/files/publications/defeating-signed-bios-enforcement.pdf
http://www.mitre.org/sites/default/files/publications/defeating-signed-bios-enforcement.pdf
http://www.mitre.org/sites/default/files/publications/defeating-signed-bios-enforcement.pdf
http://www.mitre.org/sites/default/files/publications/defeating-signed-bios-enforcement.pdf
http://www.mitre.org/sites/default/files/publications/defeating-signed-bios-enforcement.pdf
http://www.mitre.org/sites/default/files/publications/defeating-signed-bios-enforcement.pdf
http://www.mitre.org/sites/default/files/publications/defeating-signed-bios-enforcement.pdf
http://www.nosuchcon.org/talks/D2_01_Butterworth_BIOS_Chronomancy.pdf
http://invisiblethingslab.com/resources/bh07/IsGameOver.pdf
http://invisiblethingslab.com/resources/bh07/IsGameOver.pdf
http://invisiblethingslab.com/resources/bh07/IsGameOver.pdf
http://j00ru.vexillium.org/?p=1455

60

References 2

= [8] Copernicus 2 - SENTER The Dragon — Kovah et al. — March 2014
http://www.mitre.org/sites/default/files/publications/Copernicus2-SENTER-the-
Dragon-CSW-.pdf

= [9] Preventing and Detecting Xen Hypervisor Subversions — Rutkowska and
Wojtczuk — Aug 2008 http://www.invisiblethingslab.com/resources/bh08/part2-
full.pdf

= [10] A New Breed of Rootkit: The Systems Management Mode (SMM) Rootkit —
Sparks and Embleton — Aug 2008 http://www.eecs.ucf.edu/~czou/research/SMM-
Rootkits-SecurecomO08.pdf

= [11] Using SMM for "Other Purposes" — BSDaemon et al — March 2008
http://phrack.org/issues/65/7.html

= [12] Using SMM to Circumvent Operating System Security Functions — Duflot et
al. — March 2006 http://fawlty.cs.usfca.edu/~cruse/cs630f06/duflot.pdf

© 2014 The MITRE Corporation. All rights reserved.

http://www.mitre.org/sites/default/files/publications/Copernicus2-SENTER-the-Dragon-CSW-.pdf
http://www.mitre.org/sites/default/files/publications/Copernicus2-SENTER-the-Dragon-CSW-.pdf
http://www.mitre.org/sites/default/files/publications/Copernicus2-SENTER-the-Dragon-CSW-.pdf
http://www.mitre.org/sites/default/files/publications/Copernicus2-SENTER-the-Dragon-CSW-.pdf
http://www.mitre.org/sites/default/files/publications/Copernicus2-SENTER-the-Dragon-CSW-.pdf
http://www.mitre.org/sites/default/files/publications/Copernicus2-SENTER-the-Dragon-CSW-.pdf
http://www.mitre.org/sites/default/files/publications/Copernicus2-SENTER-the-Dragon-CSW-.pdf
http://www.mitre.org/sites/default/files/publications/Copernicus2-SENTER-the-Dragon-CSW-.pdf
http://www.mitre.org/sites/default/files/publications/Copernicus2-SENTER-the-Dragon-CSW-.pdf
http://www.mitre.org/sites/default/files/publications/Copernicus2-SENTER-the-Dragon-CSW-.pdf
http://www.mitre.org/sites/default/files/publications/Copernicus2-SENTER-the-Dragon-CSW-.pdf
http://www.mitre.org/sites/default/files/publications/Copernicus2-SENTER-the-Dragon-CSW-.pdf
http://www.mitre.org/sites/default/files/publications/Copernicus2-SENTER-the-Dragon-CSW-.pdf
http://www.invisiblethingslab.com/resources/bh08/part2-full.pdf
http://www.invisiblethingslab.com/resources/bh08/part2-full.pdf
http://www.invisiblethingslab.com/resources/bh08/part2-full.pdf
http://www.invisiblethingslab.com/resources/bh08/part2-full.pdf
http://www.eecs.ucf.edu/~czou/research/SMM-Rootkits-Securecom08.pdf
http://www.eecs.ucf.edu/~czou/research/SMM-Rootkits-Securecom08.pdf
http://www.eecs.ucf.edu/~czou/research/SMM-Rootkits-Securecom08.pdf
http://www.eecs.ucf.edu/~czou/research/SMM-Rootkits-Securecom08.pdf
http://www.eecs.ucf.edu/~czou/research/SMM-Rootkits-Securecom08.pdf
http://www.eecs.ucf.edu/~czou/research/SMM-Rootkits-Securecom08.pdf
http://phrack.org/issues/65/7.html
http://phrack.org/issues/65/7.html
http://fawlty.cs.usfca.edu/~cruse/cs630f06/duflot.pdf

