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Abstract

The way a human efficiently digests information varies from person to
person. Scientific studies have shown that some people learn better
through the presentation of visual/spatial information compared to
simply reading text. Why then, do vendors expect customers to consume
presented data following only the written word method, as opposed to
advanced graphical representations of the data? We believe the

written approach is dated.

To help visually inclined forensic analysts, incident responders,
researchers, and data scientists, we decided to create a free and
Open Source engine to remove the complexity of creating advanced data
visualizations. The ultimate goal of the project was to allow for the
visualization of any loosely related data without having to endlessly
reformat that data. For the visual/spatial learners the engine will
interpret their data, whether it be a simple or complex system, and

present the results in a way that their brains can understand.

Learning for visual-spatial learners takes place all at once, with
large chunks of information grasped in intuitive leaps, rather than
in the gradual accretion of isolated facts or small steps. For

example, a visual-spatial learner can grasp all of the multiplication
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facts as a related set in a chart much easier and faster than
memorizing each fact independently. We believe that some security
practitioners might be able to better use their respective data sets
if provided with an investigative model that their brains can

understand.

Introduction

With the right tools you can take any relational data set, quickly
massage the format, and visualize the results. Observations and
conclusions can also be drawn from the results of the visualization
that may not have appeared in simple text form. The engine and
methodologies discussed have been used by OpenDNS to track
CryptoLocker and CryptoDefense ransomware, Red October malware, and
the Kelihos botnet. Additionally, specific Syrian Electronic Army
(SEA) campaigns, carding sites, and even a map of the Internet

through Autonomous Systems have been visualized using OpenGraphiti.

Interesting data can also be isolated through the use of Python and
JavaScript-based plugins that can be easily added to the engine
framework. These plugins affect the way the data is visualized and
allow analysts to make sense of their data as it relates to the
question they’re trying to answer. The "big picture" model will help
visually inclined incident responders, security analysts, and malware

researchers stitch together complex data sets.

Why Visualize the Data?

Some people learn better by doing, some by reading, and others by
listening to a lecture. Other people however, may learn better
through visual methods. One such communication tool, often employed

by visually-inclined learners, is known as a graphic organizer.

Graphic organizers are visual representations of knowledge, concepts,

thoughts, or ideas. A graphic organizer, also known as a knowledge



map, concept map, story map, cognitive organizer, advance organizer,
or concept diagram, is a communication tool that uses visual symbols
to express knowledge, concepts, thoughts, or ideas, and the

relationships between them. The main purpose of a graphic organizer

is to provide a visual aid to facilitate learning and instruction.

According to a study conducted by The Institute for the Advancement
of Research in Education at AEL', using graphic organizers improves

student performance in the following areas:

® Retention - Students remember information better and can better
recall it when it is represented and taught visually and
verbally.

® Reading comprehension - The use of graphic organizers helps
improving the reading comprehension of students.

® Student achievement - Students with and without learning
disabilities improve achievement across content areas and grade
levels.

e Thinking and learning skills; critical thinking - When students
develop and use a graphic organizer their higher order thinking

and critical thinking skills are enhanced.

Some students build data literacy as they collect and explore
information in a dynamic inquiry process, using tables and plots to
visually investigate and manipulate and analyze data. As students
explore the way data moves through various plot types, such as Venn,
stack, pie, and axis, they formulate pathways that link visual images

to areas that store knowledge in the brain.

To show the relationships between the parts, the symbols are linked
with each other; words can be used to further clarify meaning. By

representing information spatially and with images, students are able

' http://www.inspiration.com/sites/default/files/documents/Detailed-Summary.pdf



to focus on meaning, reorganize and group similar ideas easily, and

make better use of their visual memory.?

This linkage model transfers very well to applied graph theory and

the visualization of related data sets.

From Data to Visualization

When it comes to representing knowledge, semantic networks are an
extremely useful data structure. They can be used to model nearly
everything and can be applied to a wide range of problems. But before
we dig into more details, let us consider the definition of a

semantic network.

A semantic network, or frame network, is a network which represents
semantic relations between concepts. This is often used as a form of
knowledge representation. It is often represented as a directed or
undirected graph consisting of vertices and edges, which represent

relationships.

In other words, a semantic network can be represented as a graph
connecting any kind of information by any kind of relationship. From
detailed to very high-level data, it is up to the user to design a
model to describe relevant and meaningful knowledge. Consider the

example shown in Figure 1.

2 hitp://en.wikipedia.org/wiki/Visual_learning



Figure 1 - Example of a precise network’
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The set of entities (nodes and edges) of this graph is also referred
to as the "domain"; it describes the variety of different names,
types, features, and attributes of the network. This forms the model

of our information.

When we want to study the structure of this information - for
example, how the elements relate to each other, or whether certain
patterns are more or less redundant than others - we want to focus on
the ontology of the network (or the model of the model). After
designing an accurate model of the information, the next logical step
is to leverage advanced graph theory and topological data analysis to

expose unique insights from the shape of the semantic network.

3 Neiswender, C. 2011. "Semantic Network (Relational Vocabularies)." In The MMI Guides: Navigating the
World of Marine Metadata. http://marinemetadata.org/guides/vocabs/voctypes/voccat/semanticnetwork.
Accessed June 30, 2014.



Transforming Raw Data Into Relational Information

To transform a raw data file into a relational graph, before jumping
into any script implementation, the first thing to do is to identify
the various entities and relationships contained in the data. The

following are a few entities and relationships that may be used:

® Social Network: Facebook, Twitter, Linkedin

0 Nodes: People, Companies, Bands

Attributes: Name, Age, Creation Date
0 Edges: Friends, Couple, Employer, Fan, Subscriber
® UML class diagram:
0 Nodes: Classes, Namespaces
0 Attribute: Members, Methods
0 Edges: Inheritance, Association, Aggregation, Dependency
® Network map:
0 Nodes: IPs, Servers, Hosts, Routers, Firewalls
O Attributes: Port, Hostname, Country

0 Edges: Protocol, Bandwidth, Latency

Of course, there is more than one representation for any given
problem. The designer should align their perspective with the data.
When the structural model has been decided, the source data should be

parsed to populate a relational data set following the design.

Visualizing Knowledge

There are many approaches to the problem of graph visualization. One
such methodology revolves around the use of force-directed layouts.
Because the main purpose of the engine is to analyze the topology of
our knowledge base, it is necessary to choose a visualization

technique that will let the data drive its own layout.



The general concept is relatively simple in that every node is
treated as a particle, and every edge as a force on the particles. By
implementing an engine capable of running a particle physics model we
can transform relational data, however loosely related, into a 2D or
3D structure - completely defined by the shape of the relational
structure. This relational structure serves to highlight hidden
clusters or topological patterns that may have previously gone

unnoticed.

Discovered in 1991, the Fruchterman and Reingold layout® is one of
the classic force-directed layouts. The main idea is to treat
vertices in the graph as "atomic particles or celestial bodies,
exerting attractive and repulsive forces from one another". This

concept is depicted in Figure 2.

Figure 2 - Force system concept

Repulsion Attraction

4 ftp://ftp.mathe2.uni-bayreuth.de/axel/papers/reingold:graph_drawing_by force_directed_placement.pdf



Without entering into excessive technical depth about the math
supporting the model, the principles are relatively elementary:
® Connected nodes attract each other

® Non-connected nodes repulse each other

Using a slightly more detailed explanation, the attractive force
£, (d) and the repulsive force f£,(d) both depend on the distance
between the nodes and a constant k controlling the density of the

layout.

The algorithm also adds a notion of temperature which controls the
displacement of the vertices; the higher the temperature, the faster

the movement.

The physics represent a system inspired by electrical or celestial
forces with a general technique called "simulated annealing," where
increasing/decreasing the temperature affects the particles’
thermodynamic vibration, helping them to progressively reach an
equilibrium state where all the node forces become even. That state
usually looks like a visually pleasing molecule-shaped layout where

relational clusters will aggregate in the same areas.

Dealing With Large Graphs

Most modern databases include millions or billions of entries, so a
modern tool to analyze them must handle large data sets efficiently.
All 3D engines and particle systems have their physical limitations,
and force-directed. Also, force-directed layout algorithms usually
increase in complexity as the size of the graph grows. How do we work

around these issues?

Entity Grouping
One way 1is to decrease the amount of information by looking at the
data from a higher level. Instead of dealing with individual

entities, you can create nodes that represent groups of entities. The



possibilities are endless depending on the subject you want to
visualize. For instance, if you want to visualize the whole known
universe with its planets and stars, it would make sense to structure
your representation by a fractal approach where you would look first
at galaxies, followed by stars, planets, continents, countries, and
cities to reduce the size of the point cloud. You could then
interactively decide to add more details as necessary as you move
closer to a certain city. This would give access to the whole of the

information without having to deal with all of it at once.

Sampling

Another interesting way to limit the size of a dataset, without
completely losing the big picture, is to use sampling methods -
taking a certain percentage or a random sample of the complete
dataset. The random subset could be built using a uniform or normal
distribution, or any other user-defined distribution. Using the
previous universe analogy, you would randomly remove half the
galaxies, half the planets/stars, and half the cities before
processing the result. The data scientist will have to adjust the

hypotheses or assumptions based on the way the data is pruned.

When dealing with graphs, an easy way to take random sample of a
large graph is to use a Random Walk approach. You would select random
entry points in the graph and trace a random path in the graph

starting from those points, as depicted in Figure 3.



Figure 3 - Random walk diagram

There are many ways to tweak an exploration technique of this nature.
It highly depends on the user modifications and the biases involved
in the selection of the random candidates, but in general, a random
walk will capture the structure of a very large graph fairly

accurately.

Parallelization

After every other pruning technique has been used, the remaining
technique is to employ parallelization. You can effectively add more
computing power to a system by distributing the calculation. This can
happen remotely using Grid Computing technologies, or locally using
the performance of multiple threads, cores, or processes. However,
the processing algorithm must to be modified to work in a parallel

fashion, which is unfortunately not always possible.



With current graphic card technology, we can take advantage of
efficient graphics processing units (GPUs) and distribute the
calculation across their ever increasing number of cores and threads.
GPUs are becoming exceptionally efficient at processing geometrical
data such as vectors, colors, matrices, textures, or any kind of
computation involving a combination of the aforementioned data types.
Using technologies such as Open Graphics Library (OpenGL) rendering,
OpenGL Shading Language (GLSL) shaders and Open Computing Language
(OpenCL) physics seems like the obvious choice to leverage the power

of GPUs.

Learning how to leverage GPUs (or any parallel platform) with
technologies such as OpenGL, GLSL and OpenCL (among many others) is

definitely one key to push through the theoretical barrier.

With OpenCL for example, a task can be fully, or even partially,
distributed over several compute units. The efficiency of the whole
system can then be maximized by optimizing the different parts of the

algorithm (Memory access, Instructions, and Concurrency, etc.).

About OpenGraphiti

To simplify the visualization process we have created a tool named
OpenGraphiti. OpenGraphiti is an open source 2D and 3D data
visualization engine for data scientists to visualize semantic
networks and to work with them. It offers an easy-to-use API with
several associated libraries to create custom-made datasets. It
leverages the power of GPUs to process and explore the data and sits

on a homemade 3D engine.

Here is list of the technologies used:
® C/C++ source code
® OpenGL rendering library

e Python scripts



® Web integration with Emscripten Javascript scripts
® OpenCL parallel programming library

® GLSL Shaders

® GLM math library

® GLSL Shader

® NetworkX

Like any good visualization tool, data is required. In addition, the
data set must be formatted in such a way that OpenGraphiti can apply
the algorithms to affect the spatial representation and

interconnectivity of the data nodes and edges.

Creation of Data Files

Suppose you have a graph

G = (V,E)

where V = {0, 1, 2, 3} and E = {(0, 1), (0, 2), (1, 2), (2, 3)}.

Suppose further that:

® Vertex 0 has the attributes: {"type": "A", "id": 0}

® Vertex 1 has the attributes: {"type": "B", "id": 1}

® Vertex 2 has the attributes: {"type": "C", "id": 2}

® Vertex 3 has the attributes: {"type": "D", "id": 3}

And that:

® Fdge (0, 1) has the attributes: {'src': 0, 'dst': 1, 'type': 'belongs',
'id': 0}

® FEdge (0, 2) has the attributes: {'src': 0, 'dst': 2, 'type': 'owns',
'id': 1}

® Fdge (1, 2) has the attributes: {'src': 1, 'dst': 2, 'type': 'has',
'id': 1}

® FEdge (2, 3) has the attributes: {'src': 2, 'dst': 3, 'type': 'owns',

'id': 1}



This would provide a graph similar to what is presented in Figure 4.

Figure 4 - Connected nodes

As you can see, there is a list of "node" objects, each of which
contain the node attributes and IDs, as well as a list of edge
objects, each of which have the edge attributes, and the fields src
and dst, which indicate the source and destination vertices,

respectively.

The creation of semantic graphs in a JSON format that OpenGraphiti
understands is relatively trivial. One way to represent such a

dataset is to use the SemanticNet python library.

This python library can help you create graphs in a easy way using a
simple API. An example of a graph (Figure 5) and the script used to

create it (Figure 6) are shown below.



Figure 5 - Sample semantic graph
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Figure 6 - Sample code to generate a graph

#!/usr/bin/env python

import sys

import semanticnet as sn

graph = sn.Graph ()

a = graph.add node ({"label™ : "A"})

b = graph.add node({"label" : "B"})

c = graph.add node ({"label" : "C"})
graph.add edge(a, b, {"type" : "belongs"})
graph.add edge (b, c, {"type" : "owns"})
graph.add edge(c, a, {"type" : "has"})

graph.save json ("output.json")




This trivial example shows how easy it is to create customized

graphs. The user can define any attribute (type or other) for the
nodes or edges and then connect the elements as needed. When the
graph is saved (or loaded) it can be analyzed using the NetworkX

graph theory library or/and combined with OpenGraphiti.

Use Cases with OpenGraphiti

There are a seemingly endless number of applicable use cases for the
visualization of loosely related data. Some examples include the
analysis of security data, such as firewall, intrusion detection and
prevention systems (IDS/IPS), and malware infection alerts could be
visualized to expose a previously unrecognized patterns in a
malicious actor activity, or even a misconfiguration of a technical
control that allows too much, or too little, access to data, files,

or networks.

Financial analysts could, for example, analyze data to track venture
investment with data points such as the investor, the type of company
being invested in (the target), its vertical market, or even the
success (or failure) of the target before, during, or after the
merger or acquisition. Trends may be observed to support a new model
for investment and exit success above and beyond a simple

spreadsheet.

Social network analysis (SNA) can be visualized to show relationships
between people and their relationships with other people or things.
Data could be visualized to articulate the interconnections across
related networks in the fields of anthropology, biology,
communication studies, economics, geography, history, information
science, organizational studies, political science, social

psychology, development studies, and sociolinguistics, among others.



Conclusion

We feel that OpenGraphiti should help lower the barrier to entry for
those looking to visualize complex related data sets. The engine will
allow for the wvisualization of any data, however loosely related, in

a medium that is easy to generate, navigate, and articulate.

The use cases presented here only scratch the surface of what is
possible. We are confident, however, that the potential may be
limited only by the imagination and diligence of those leveraging the

tool.

Combining intelligent data mining techniques with smart data
visualization is the key to better understand the complex problems we
are trying to solve. To take a significant step in the monitoring and
managing of a large scale state machine in constant evolution,
passive introspection is not enough. It is necessary to build an
interface which acts on the system through manual or algorithmic

modification.

By presenting and open-sourcing OpenGraphiti, we hope to put in place
the first blocks in the foundation of a next-generation data analysis
tool aimed at surfacing new techniques to build a large-scale,

distributed, and graph-based data monitoring system.

Documentation and source code for OpenGraphiti shall be made

available via GitHub at: https://github.com/opendns/graphiti.
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