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Abstract

The security features added in modern 64-bit versions of Windows
raise the bar for kernel mode rootkits. The introduction of Driver Signa-
ture Enforcement prevents malware from loading an unsigned kernel mode
driver. PatchGuard was introduced to protect the integrity of the running
kernel, in order to prevent rootkits from modifying critical structures or
hooking system calls. Although time has shown that these security mea-
sures are not perfect, and may in fact be bypassed while actively running,
an alternative approach is to subvert the system by running code before
any of the security features kick in.

Secure Boot has been introduced to protect the integrity of the boot
process. However, the model only works when booting from signed firmware
(UEFI). Legacy BIOS systems are still vulnerable. The Master Boot
Record, Volume Boot Record, and the bootstrap code all reside in un-
signed sectors on disk, with no security features in place to protect them
from modification.

Using a combination of low level anti-rootkit techniques, emulation,
and heuristic detection logic, we have devised a way to detect anomalies
in the boot sectors for the purpose of detecting the presence of bootkits.

1 Introduction

Rootkit authors are facing new challenges when trying to intrude into kernel
mode on modern versions of Windows. In order to load a kernel mode driver,
which is the most straightforward way of running code in the kernel, they have
to overcome Driver Signature Enforcement. It should generally not be possible
for them to obtain a valid digital signature on their modules, so they will need
to get around this defense mechanism in some other way. Even if they manage
to run code in kernel mode, they are still facing the challenge of bypassing Patch
Guard [1,2]. This complicates what they are trying to achieve, namely to make
changes in order to hide something.
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The first kernel mode rootkit that managed to successfully compromise 64-
bit Windows platforms was TDL4 [3]. It did so by manipulating the boot
sectors. Hence, we classify it as a bootkit. During the boot process it would
modify the memory contents of a dll that is loaded by the kernel, so that it
could eventually load its unsigned driver. The chain of events leading up to this
would not be possible without the very first step which involved modifying the
boot sectors1.

TDL4 turned out to still be detectable. The author has used several tech-
niques to detect its presence in the past, including a very generic technique
known as cross view detection. This detection technique is based on the obser-
vation that TDL4, just like most bootkits, would fake the contents of the boot
sectors when they were read, by presenting the original contents instead of what
was actually there. If you could manage to get around TDL4’s modification of
low level disk I/O, you could read the contents of the boot sectors in multiple
ways. Discrepancies could then be detected by comparing the results of various
read operations.

It is uncertain, but possible, that the authors of Rovnix [4,5], also known as
Cidox [6], chose a different approach because they realized that such detection
mechanisms were widely used. In their bootkit, they did not opt for faking
the contents of what they had changed in the boot sectors, but instead relied
on polymorphic techniques for obfuscation. This is a well known approach to
countering signature-based detections, but rarely seen applied to the 16-bit code
within the boot sectors. When analyzing samples of this malware, we began to
realize that it was time to explore new ways of generically detecting bootkits.

Targeting the boot sectors is in no way a new approach taken by malware.
Actually, it dates back to the very first documented computer virus incidents of
Elk Cloner, targeting Apple II, and Brain, targeting the IBM PC [7]. This was
in the 80s.

Still, legacy BIOS is still in use today, so it would seem that old habits die
hard. Anyone designing security solutions will know the challenges related to
backwards compatibility. Secure Boot [8,9], it would seem, is no exception. As
long as there are no security mechanisms in place to protect the integrity of
the very first parts of the code that is being run during the boot process, sys-
tems booting from a legacy BIOS will inherently be vulnerable. Recent reports
indicate that bootkits are still widely used for purposes including conducting
targeted attacks, and are in demand on the black market [10].

In this paper, we will explore how to analyze the behaviour of the code
residing in the boot sectors, and show how we can detect bootkits by looking for
anomalies. We analyze the boot code by emulating it, using a custom, emulated
BIOS, that incorporates anti-rootkit techniques to bypass potential hooks which
may prevent us from reading the true contents of the raw sectors on disk. We
also show how to use this approach for disabling bootkits by breaking their load
chain.

This paper is organized as follows. Section 2 explains the early parts of the

1In other words, it did not support UEFI systems
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BIOS boot process leading up to the execution of bootmgr. In Section 3 we dive
into the details of how to read raw sectors on disk by interfacing with the lowest
level disk driver. We also cover how to bypass hooks at this level. Section 4
explains how to create the emulation environment in which we aim to analyze
the code residing in the boot sectors, including emulating the BIOS. In Section
5 we discuss the anomalies in the behaviour of the boot code that we base our
detection on. Section 6 covers how to regain control of compromised systems by
retrieving the original contents of the boot sectors to break load chains. Finally,
in Section 7, we discuss challenges with our approach when running on systems
with non-standard boot loaders, before concluding the paper in Section 8.

2 BIOS Boot Sequence

Legacy BIOS systems will typically perform a Power-on self-test (POST) during
their pre-boot sequence. The last action taken by the POST is to issue BIOS
interrupt 19h, often referred to as the Bootstrap Loader Service. This will
instruct the BIOS to attempt to load the sector at Logical Block Address (LBA)
0, or following the Cylinder-Head-Sector convention (CHS), head 0, cylinder 0,
sector 1, into memory at address 0:7C00h2, and transfer control there. The
sector at LBA 0 is known as the Master Boot Record (MBR), and will be the
starting point for our analysis of the boot process.

The MBR consists of both code and data [11]. The layout of this sector
is defined in Listing 1. At this early point in the boot process, the CPU is
running in 16-bit real mode. As the BIOS transfers control to the first byte of
the MBR upon issuing interrupt 19h, this code assumes that its first instruction
is being executed with the code segment set to 0, and the instruction pointer
set to 7C00h. As this code is restricted to 440 bytes, it is both compact and
very limited in functionality. The very first part of the code simply copies the
main logic to a different memory location, so that it can use the memory range
starting at 7C00h for later stages. It then transfers control to the main logic,
now residing at this new memory location, which parses the partition table
looking for the partition which is set to be active. If found, the sector holding
the active partion, known as the NTFS Volume Boot Record, or simply VBR, is
loaded into memory at address 0:7C00h, thus overwriting the previous content
at this location. The partition table’s layout is defined in Listing 2. It holds the
information that the boot code needs to determine which parameters to pass
to BIOS interrupt 13h, which is the routine responsible for loading sectors on
disk into memory. The boot sequence continues at address 0:7C00h, this time
holding the contents of the VBR, which is responsible for locating and loading
the signed executable bootmgr into memory.

2This is a segmented memory address meaning that code segment is set to 0, and the
instruction pointer is set to 7C00h
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typedef struct _MBR

{

BYTE bootCode [440];

DWORD diskSignature;

WORD reserved;

PARTITION partitionTable [4];

WORD sectorEndSignature;

} MBR;

Listing 1: Master Boot Record (MBR)

typedef struct _PARTITION

{

BYTE bootIndicator;

BYTE head;

BYTE sector;

BYTE cylinder;

BYTE type;

BYTE lastHead;

BYTE lastSector;

BYTE lastCylinder;

DWORD relativeSector;

DWORD numberSectors;

} PARTITION;

Listing 2: Partition

The Volume Boot Record, just like the Master Boot Record, contains both
code and data [11]. Its layout is defined in Listing 3. This code also expects
to be executed at 0:7C00h, but this time the first instruction is a simple jump
to the main logic residing at the end of the structure. This structure includes
the BIOS Parameter Block, holding information on the boot disk. Unless the
field hiddenSectors dictates otherwise, the remainder of the boot code will reside
in the 15 sectors3 directly following the VBR. The hiddenSectors field simply
indicates how many sectors on disk to skip before the boot code should expect
to find the rest of the code. These sectors, commonly referred to as the Initial
Program Loader (IPL), contain code only, and is defined in Listing 4. The IPL
sectors will be loaded directly following the VBR in memory.

The purpose of the VBR, together with the 15 sectors of IPL, is to parse the
NTFS file system to locate bootmgr. Once this executable is found, it is loaded
into memory, and execution is transferred to its first byte. This executable, just
like ntldr on Windows XP, is responsible for loading the OS [12], meaning the
kernel and boot drivers4. However, it is a signed executable on disk, so from
this point in the boot process, the security model of Secure Boot should work.
Our focus, for the purpose of exposing bootkits, will be the behaviour of the

3This is the normal size of the IPL
4On 64-bit versions of Windows, bootmgr will actually load an executable named win-

load.exe, which will load the core OS modules, but as this executable is digitally signed as
well, it makes no difference to our analysis
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code starting at the first instruction of the MBR, up to the point where the first
instruction of bootmgr is executed, as all of these sectors may be modified by
an intruder. Figure 1 illustrates how we expect this process to behave.

typedef struct _NTFS_VOLUME_BOOT_RECORD

{

BYTE jumpInstruction [3];

BYTE oemID [4];

BYTE dummy [4];

// BIOS Parameter Block

struct NTFS_BPB

{

WORD bytesPerSector;

BYTE sectorsPerCluster;

WORD reservedSectors;

BYTE fatCopies;

WORD rootDirEntries;

WORD smallSectors;

BYTE mediaDescriptor;

WORD sectorsPerFAT;

WORD sectorsPerTrack;

WORD numberOfHeads;

DWORD hiddenSectors;

DWORD largeSectors;

DWORD reserved;

ULONGLONG totalSectors;

ULONGLONG MFTLogicalClusterNumber;

ULONGLONG MirrorLogicalClusterNumber;

DWORD clustersPerMFTRecord;

DWORD clustersPerindexRecord;

ULONGLONG volumeSerial;

DWORD checksum;

} bpb;

BYTE bootStrapCode [426];

WORD sectorEndSignature;

} NTFS_VOLUME_BOOT_RECORD;

Listing 3: NTFS Volume Boot Record (VBR)

typedef struct _IPL_SECTOR

{

BYTE iplCode [512];

} IPL_SECTOR;

Listing 4: Initial Program Loader Sector
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Figure 1: The early parts of the BIOS boot process

3 Interfacing with the disk

Rootkits being rootkits have a tendency of hiding contents on disk. For bootk-
its, it is quite common to fake any sector they have modified, in order to fool
someone inspecting the boot sectors into believing that everything is fine. They
might also incorporate techniques to complicate removal of the rootkit compo-
nent, which for bootkits normally means complicating the process of writing to
the boot sectors. Before attempting to emulate the boot process, we need to
ensure that we are reading the true contents of the boot sectors.

Figure 2 shows the Windows Storage Stack [12]. It is an illustration of the
various subsystems that a request to read contents on disk will go through. It
does not matter whether the request is initiated from user mode, via NtReadFile
in ntdll, anything layered above it, or from kernel mode via e.g. ZwReadFile.
All requests will end up calling the function registered as NtReadFile within the
System Service Descriptor Table (SSDT)5. From this point on, the requests will
proceed as I/O Requests Packets (IRP) through several subsystems which are
implemented by various kernel mode drivers. Eventually, it will end up in the
disk subsystem, which sits on top of the Hardware Abstraction Layer (HAL).

5The SSDT is a table of function pointers to internal routines implemented within the
kernel, and has been a popular place to install hooks over the years. Modifications of the
SSDT is however protected by PatchGuard on 64-bit versions of Windows.
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Figure 2: The Windows Storage Stack

The disk subsystem is conceptually divided into three parts6, where the mini-
port driver is responsible for implementing hardware specific logic to read and
write to raw sectors on disk. Both read and write requests will eventually mani-
fest themselves as IRPs passed down to the miniport driver. Such IRPs will have
their I/O control codes set to IRP MJ INTERNAL DEVICE CONTROL7, and
are expected to be processed by the dispatch routine registered to handle IRPs
of this type. When the miniport driver is loaded, its initialization routine,
DriverEntry, will initialize a driver object structure [14], and populate the cor-
responding elements of the MajorFunction array with entry points to the dis-
patch routines of its supported IRP types. This means that, if we can obtain
the driver object of the miniport driver, we can retrieve a function pointer to a
routine that implements reading and writing to raw sectors on disk from it.

Interfacing with the disk at this level means that we do not need to worry
about hooks that might be present in the layers above. It also means that we
don’t have to implement hardware specific logic ourselves, which may become
somewhat cumbersome depending on the types of disks we want to support.

An example of an alternative approach for reading raw sectors on disk is
given in Appendix A. This code reads the MBR using Programmable I/O
(PIO) [15, 16]. The advantage of using a low level approach such as this, is

6This does not necessarily mean that it is implemented in three distinct drivers
7IRP MJ INTERNAL DEVICE CONTROL is a constant defined to be 15
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that it is highly unlikely that a rootkit will ever be able to fake what you read.
The major drawback is that the approach will not work for all disks.

3.1 Locating the miniport driver

The first challenge is to obtain the device object [17] of the miniport driver
related to the boot disk. The device object includes information on the driver’s
location within the driver stack, and also holds a pointer to the corresponding
driver object. We will be needing this device object when we later attempt to
call one of its dispatch routines.

The system we are running on might have several disks, so we need to de-
termine which disk the system is booting from. Every disk has a unique disk
number. If we can obtain the disk number of the boot disk, we can uniquely
identify the disk we attempting to read the MBR from.

One approach for obtaining this is to make use of the GetSystemDirectory
routine, and then retrieve the drive letter from that, assuming that the system
boots from the same volume as it is installed onto. If the drive letter is C, we
may open a handle to the volume named \\.\C:. Using this handle, we can call
the DeviceIoControl routine to retrieve the volume disk extents structure [18]
related to it. This structure holds a disk extent structure for every disk that
makes up the volume, which includes the disk number. Assuming that the
system will boot from the first disk within the volume, we retrieve the disk
number from the first element in the array.

Using the disk number, we may now retrieve the boot disk’s device
object. A way to do this is to start by opening a handle to either
\Device\HarddiskX\Partition0 or \Device\HarddiskX\DR0, where X is the disk
number. Do this in kernel mode, and then use the ObReferenceObjectByHandle
routine to retrieve the corresponding file object [19]. This structure contains
the device object corresponding to the highest level disk driver, i.e. the driver
on top of the disk driver stack within the disk subsystem as illustrated in Fig-
ure 2. We aim to interface with the miniport driver, which is the lowest level
driver. Whenever an IRP is to be passed from one driver on the stack to the
one just below it, the I/O manager needs to know where to pass it to. This
information is kept within the device objects; specifically, it is kept within the
DeviceObjectExtension member. This member is defined in Listing 5.
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typedef struct _DEVOBJ_EXTENSION

{

SHORT Type;

SHORT Size;

PDEVICE_OBJECT DeviceObject;

ULONG PowerFlags;

PVOID Dope;

ULONG ExtensionFlags;

PVOID DeviceNode;

PDEVICE_OBJECT AttachedTo;

LONG StartIoCount;

LONG StartIoKey;

ULONG StartIoFlags;

PVPB Vpb;

} DEVOBJ_EXTENSION;

Listing 5: Device Object Extention

The field AttachedTo holds the device object of the next disk driver in the
stack, i.e. the disk driver that sits just below it. For the disk driver at the very
bottom of the stack, this field is null. Hence, in order to retrieve the device
object of the lowest level disk driver, we simply walk the chain until we reach
the end of what is essentially a null-terminated linked list.

At this point, it might be tempting to retrieve the function pointer of the
dispatch routine, as this is trivially obtained from the device object by first
retrieving its driver object, and then inspecting the MajorFunction array. The
problem with this approach, is that this has become a popular place for rootkits
to install hooks. Thus, we might still end up being tricked by an active rootkit
component into reading faked content. When designing anti-malware software
that is expected to run on potentially compromised systems, it is generally a
good idea to be paranoid, so we need to obtain the function pointer of the
dispatch routine from a trustworthy source. Furthermore, even after obtaining
the correct location of the miniport driver’s dispatch routine, we also need to
ensure that it has not been inline hooked8.

3.2 Overcoming function pointer hooks

Whereas unprotected memory areas are susceptible to manipulation, signed ex-
ecutables on disk are generally not. As the dispatch routine we are seeking
obviously resides within an executable on disk, we will be using its signed con-
tents as our trustworthy source of information. If we can find the miniport
driver’s dispatch routine within its executable image on disk, we can then work
out where it should reside in memory. This would provide us with the origi-
nal function pointer which may have been replaced within the miniport driver’s
driver object in memory, and thus give us a chance to bypass function pointer
hooks within the MajorFunction array. Additionally, this will also expose the

8An inline hook is an alternative way to hook a routine by replacing some of its contents
with an instruction that transfers control to the hook destination
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expected contents of the dispatch routine, which we can use to bypass inline
hooks. Figure 3 shows a simplified example of a DriverEntry routine.

Figure 3: A simplified example of a DriverEntry routine

The DriverEntry routine is the entry point of the executable, and will be
called whenever the driver is loaded. During initialization, it will set up its
dispatch routines within its driver object’s MajorFunction array, so that the
I/O Manager can locate them when it needs to. While the DriverEntry routine
is the entry point of the executable, and thus also exported, the dispatch routines
are internal, non-exported routines within the image. Because of this, we need
to come up with a way to locate the dispatch routines, and specifically the
dispatch routine responsible for handling internal device control requests, within
the driver’s executable.

One approach for doing this is to rely on recursive disassembly. If we manage
to find the instructions that initialize the MajorFunction array, then we may
retrieve the location of the dispatch routines from there. As these instructions
may reside within a subroutine called from the DriverEntry routine, we have to
apply the disassembly approach recursively as we locate subroutines.

Figure 4 shows an example of the code that we are looking for. It is obtained
by disassembling a driver that sets up dispatch routines. If you study its logic,
you will see that it resembles that of Figure 3.

In this case, we see that the address of the routine named Dis-
patch InternalDeviceControl is loaded into rax, and then moved to offset E8h
within the structure pointed to by rsi. Although not shown in the disassembly,
rsi is actually pointing to the start of the driver object structure. If you study
the layout of the 64-bit version of the driver object structure, you will find that
the dispatch routine for internal device control requests is stored at this exact
offset. Hence, if we retrieve the address of this routine from the disassembled
code, we can compute the actual location we are searching for.

It turns out that this logic is quite common amongst most drivers at this
level. As they are all initializing the same structure, the offsets will be the
same. Obviously, details such as which registers are used, and the layout of the
instructions will vary. An interesting observation, however, is that for this driver
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Figure 4: Disassembled driver code setting up dispatch routines

type, they all seem to register dispatch routines for at least four types of requests:
Power, PnP, Device Control, and Internal Device Control. Additionally, they
all register a DriverUnload routine to be called whenever the driver is unloaded.
This observation is critical to the success of our approach described shortly.

As we cannot make assumptions of the whereabouts of the instructions we
are looking for, we need to analyze entire routines. This is also true for any
subroutine we come across. Determining the end of any disassembled routine is
a non-trivial task, but this is outside the scope of this paper9, so let us simply
assume that we can at least get close to analyzing entire routines.

Our approach is to search for instructions of interest that modify memory.
These instructions should follow the format: mov [reg + offset], dispatch routine,
where reg is any register, and dispatch routine is anything that could hold the
address of a routine. In scenarios such as the one illustrated in Figure 4, where
the address is kept in a register, we will need to know its value at that point.
This means that we will have to store the state of all interesting registers as
we progress with the disassembly of each routine, so that we can keep track of
instructions such as lea rax, dispatch routine.

The next step is to find the address of interest, namely that of the dispatch
routine for internal device control requests. Simply looking for the pattern mov
[reg + E8h], dispatch routine will not cut it, as it is too prone to causing false
positives: the offset E8h could very well be used for all sorts of other structures.
This is where our critical observation comes into play. Instead of looking for
this offset exclusively, we make the assumption that all five offsets10 will occur

9We are disassembling a single routine multiple times in order to achieve this. Routines
may have several return instructions, and code that comes after a return instruction may still
belong to the routine

10Note that DriverUnload also has an offset in the driver object structure
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within the same routine. In this way, we analyze entire routines, and collect the
addresses of all five routines in the process. When we have reached the end of
a routine, we check if we have successfully obtained the address for each of the
five, and if this is the case, we treat the address corresponding to the offset of
internal device control as the routine we are looking for.

As it turns out, not all drivers actually initialize their dispatch routines
within the MajorFunction array themselves. On 64-bit versions of Windows,
it is actually quite common to call an external driver during initialization, and
let this driver do the job instead. For us, this means that we will not always
find the dispatch routine we are looking for by simply looking at the miniport
driver we are analyzing. Sometimes, we need to extend our analysis to include a
second driver. The usual suspects are storport.sys, ataport.sys, and scsiport.sys.

These three drivers each export an initialization routine named StorPortIni-
tialize, AtaPortInitialize, or ScsiPortInitialize respectively. Because of the way
these routines are named, it becomes a trivial task to recognize them. During
disassembly, we look for calls to imported routines. For each one we find, we use
simple string comparison to check if they follow the format *PortInitialize11.
If we find such a call, we determine which driver they are imported from, and
then perform the exact same analysis on this driver, starting from the exported
routine.

At this point, regardless of which driver implements the dispatch routine, we
should have found its location within the executable image on disk, meaning we
have obtained its Relative Virtual Address (RVA). From this, we can trivially
obtain its Virtual Address (VA) by adding the RVA to the base address of
the module it should reside in, i.e. the address where the driver is loaded in
memory. This will yield the location of the dispatch routine we would expect to
find within the miniport driver’s driver object, and if this address differs from
what we find in the MajorFunction array in memory, we already know that
something is amiss.

Even if the function pointer itself has not been modified, inline hooks could
still exist within the routine. In the next section, we will discuss how to detect
and bypass such code modifications.

3.3 Overcoming inline hooks

Inline hooking is a popular alternative to function pointer hooking. With this
approach, rootkits hot patch a routine in memory with a branch instruction that
will transfer control to the hook destination. Normally, the first few bytes of a
routine are replaced. Even though this technique serves the exact same purpose
as any other hook mechanism, detecting and bypassing such hooks becomes
slighly more involved.

The first step to overcoming inline hooks is to detect them. Our approach
for doing this is to analyze the routine within the image on disk, and compare

11We can ignore caps in this string comparison
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it to the corresponding memory contents12. If we find a discrepancy, we will
need to construct a mechanism that will enable us to call the original routine
in a way that avoids control being transferred to the hook destination.

Branch instructions in the original routine are not only problematic to us,
but for the rootkits as well. Placing inline hooks after a branch instruction may
lead to the hook destination not being reached, which is why you will see that
such hooks are normally placed at the very start of a routine. In the discussion
that follows, let us assume that this is the case.

Our approach to bypassing inline hooks is to construct a trampoline [20] that
will consist of the original instructions retrieved from the image on disk, followed
by a branch instruction that will transfer control to the next instruction in the
routine, directly following the modified contents. This will effectively bypass
the inline hook.

As we detect the presence of an inline hook, we take note of how many bytes
have been patched. When constructing a trampoline to bypass the inline hook,
we need to steal instructions from the original routine. In this process, it is vital
that we ensure that these instructions are valid. The patch performed by the
rootkit will often span several instructions, and may even cut an instruction in
half. Hence, we need to resort to disassembly.

We treat the number of modified bytes as the minimum of what we need
to steal from the original routine. Then, we disassemble the routine on disk to
figure out how many instructions we need to incorporate into our trampoline. It
does not matter if we end up stealing a few more bytes than what was patched,
as long as we make sure we are stealing bytes that make up valid instructions.

Directly following our stolen instructions, our trampoline needs to have a
branch instruction that will transfer control to the next whole instruction fol-
lowing the patched bytes. On 64-bit platforms, a simple jmp instruction will
often not work as it will branch to a location relative to where it comes from,
and this difference needs to be expressed as a 32-bit number. There are several
ways to do this [21], but the author prefers to use a push low dword, followed by
a mov [rsp + 4], high dword and a ret instruction, that enables specifying the
entire 64-bit address of the target location, without modifying any registers.

3.4 Interfacing with the dispatch routine

All dispatch routines take a device object and an IRP as parameters. We have
already obtained the first parameter, and will explain how to set up the second
one in this section.

The miniport driver expects to process an IRP that is passed down from
higher level drivers. It also assumes that the IRP should be passed up the chain
again once the reading or writing operation has completed. We would like to act
as though we are sitting just on top of this driver in the chain, without passing
it back up. The I/O Manager will normally create the IRPs for regular I/O

12When comparing contents on disk with contents in memory, care must be taken regarding
relocations
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operations [12], and is responsible for passing them back up the chain whenever
drivers call the IoCompleteRequest routine.

As we are imitating the higher level driver, we need to allocate and set up
an IRP so that the miniport driver knows what to do. This includes an I/O
Stack Location which will hold the actual parameters with instructions on what
to read or write. It also includes an IoCompletion routine, that will be called by
the I/O Manager when processing has completed. We use the latter as a way
of passing control back to us after the miniport driver has done its work. The
completion routine will also destroy the IRP.

Within its I/O Stack Location, the miniport driver expects to find a SCSI
Request Block (SRB) [13]. This structure holds various data on the disk, such as
Path ID, Target ID, Lun13, and a few other less interesting details on the request.
The important part is stored in the Command Descriptor Block (CDB) [22], at
the very end of the SRB structure.

The size and layout of the CDB varies according to what type of command
we are issuing. The two most common commands for reading raw sectors are
READ (10) and READ (16). The former is typically used for disks where 32
bits are sufficient to describe each possible value of LBA. For disks that have
more than 232 sectors, we must use the latter. The former command is described
in Listing 6.

typedef struct _SCSI_CDB_READ_10

{

UCHAR operationCode; // set to 0x28 for read , or 0x2A for write

UCHAR options;

ULONG logicalBlockAddress;

UCHAR reserved;

USHORT transferLength;

UCHAR control;

} SCSI_CDB_READ_10;

Listing 6: Expected layout of CDB for SCSI command READ (10)

In order to query the capacity of the disk, we may use the READ CAPACITY
(10) command as described in Listing 7. Larger disks will set the Returned
Logical Block Address field in the parameter data to -1 to indicate that the
number of blocks exceed the maximum value possible to specify with 32 bits.

typedef struct _SCSI_CDB_READ_CAPACITY_10

{

UCHAR operationCode; // set to 0x25

UCHAR reserved;

ULONG logicalBlockAddress; // set to zero if the PMI bit is cleared

USHORT reserved2;

UCHAR reserved3; // bit 0 is PMI (Partial Medium Indicator)

UCHAR control;

} SCSI_CDB_READ_CAPACITY_10;

13These three fields are only applicable for SCSI devices, and may be set to null for
ATA/IDE devices
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typedef struct _SCSI_READ_CAPACITY_10_PARAMETER_DATA

{

ULONG returnedLogicalBlockAddress; // number of logical blocks (sectors)

ULONG blockLengthInBytes; // bytes per sector

} SCSI_READ_CAPACITY_10_PARAMETER_DATA;

Listing 7: READ CAPACITY (10) and its parameter data

4 Emulating the boot sequence

Our aim is to analyze the very start of the BIOS boot sequence in order to
look for anomalies in its behaviour. Within the MBR, VBR, and IPL, we will
find 16-bit code intended to be run in real mode. Its purpose is to locate and
load bootmgr, which is the executable responsible for loading the operating
system. Once this executable is found, control is transferred to it, and the
boot process continues to load the kernel and the boot drivers. As bootmgr is
a signed executable on disk, it should not be possible to modify it. That is,
if it is modified, we should be able to detect this by other means. Hence, we
will analyze the boot sequence starting from the first instruction of the code in
MBR, until it reaches the first instruction of bootmgr.

Even though the code we are analyzing is compact, its functionality is very
limited. The logic boils down to finding and loading sectors on disk into memory.
In order to do this, it relies on BIOS interrupts. The code will determine which
sector to load, and then issue an interrupt 13h. This BIOS interrupt accepts
various ways of specifying which sector to load, both in LBA and CHS form,
and a destination address in memory to specify where to load it.

When attempting to emulate this code, we will not only need to emulate the
16-bit code itself. We will also need to emulate the BIOS interrupts. This does
not mean that we need to emulate the entire functionality of the BIOS however:
it will suffice to emulate those interrupts that are issued by the code we are
analyzing. Standard boot loaders mostly rely on interrupt 13h. We are however
running on a potentially compromised system, so we need to incorporate our
anti-rootkit techniques for reading raw sectors on disk, as explained in Section
3, into our interrupt 13h handler.

We will start by setting up our emulation environment. Writing an emulator
capable of emulating 16-bit code is outside the scope of this paper, so we will
assume that we have one. This emulator will have its own separate memory
space, which is isolated in the sense that it is only accessible to the code that
we are emulating, and of course, the emulator itself. We will start by loading
our BIOS into this memory.

4.1 BIOS emulation

For the purpose of emulating the functionality of the BIOS, we have written
a custom, minimalistic BIOS in 16-bit assembly. We will load this BIOS into
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emulator memory at F000:FC0014. Its entry point will be F000:FFF0, and this
is where emulation will start. Since there is no hardware involved, we do not
need to bother with the POST. Instead, we mimic a warm start, which is what
normally happens when a system is rebooted. That is, we set the code segment
to F000h, and the instruction pointer to FFF0h, and then start emulating. At
this location, our BIOS has a jmp instruction that will invoke its initialization
code15.

Our BIOS aims to only fulfill some minimal requirements, as we are only
interested in emulating the boot sequence up to a certain point. It starts out by
setting up the stack. Then, it proceeds to initialize the Interrupt Vector Table
(IVT). This structure serves the same purpose as the Interrupt Descriptor Table
(IDT) in protected mode, which is to store up to 256 interrupt vectors that
hold the code segment and instruction pointer of the various interrupt handlers.
This IVT resides from address 0:0 to 0:3FF, as each element describing the
location of the routine responsible for handling the interrupt takes 4 bytes.
Whenever the code we are emulating issues an interrupt, the emulator will
emulate this instruction by looking up the corresponding interrupt handler in the
IVT, and then transfer control there. This means that, whenever we encounter
an interrupt 13h in the code we are emulating, the emulator will set the code
segment and instruction pointer to what is stored in the corresponding element
within the IVT, effectively calling the interrupt handler responsible for loading
sectors on disk into memory.

We register interrupt handlers for interrupts 10h, 13h, and 16h, which are the
routines for handling video, disk I/O, and keyboard services respectively. The
rest of the IVT is populated with dummy routines that will simply issue an iret
instruction causing emulation to continue, without any action taken, should they
be called. Whenever an interrupt handler is called, the ah register is expected
to hold a function code. This will tell the BIOS which service to perform. As an
example, for interrupt 13h, setting the value of ax to 2 will instruct the BIOS to
read from a sector (i.e. load it into memory), whereas setting the value to 3 will
instruct it to write to a sector. We do not need to implement the functionality
of every possible function code. Instead, for function codes that aren’t normally
used by the boot loader, we will simply pretend as if nothing happend and let
emulation continue.

For the interrupt 10h routine concerning video features, there are two func-
tion codes that we should include. Function code 3, Get cursor position and
shape, and function code 15, Get current video mode. Boot loaders may call
either of these two and expect to get some valid data back. We do not intend
to support video output, we just aim to satisfy the majority of boot loaders to
enable emulating them up until the point where they load bootmgr.

The reason why we choose to implement interrupt 16h will be discussed in
more detail in Section 7. For now, it will suffice to say that we would like
to know if the boot loader expects keyboard input, as this will complicate the

14The BIOS normally resides at the end of the F000h segment
15This means that we are actually emulating the BIOS initialization code
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emulation process.
The most import interrupt by far is interrupt 13h. We will have to support

regular read and write function codes (2h and 3h), the extended read and write
function codes (42h and 43h) intended for accessing larger disks, as well as the
regular and extended version of retrieving drive parameters (8h and 48h). For
function code 41h, Check Extentions Present, it is a good idea to indicate that
they are, so that boot loaders may use the extended features if they require it.

Even though the parameters to these interrupts are somewhat obscure, they
are well documented [23]. For the function codes retrieving disk parameters, we
obtain the required information on the boot disk before we start emulation, so
that we can indicate the size of the disk, and so on, in the format that the boot
loader expects. When it comes to the function codes for reading from disk, we
need to incorporate our anti-rootkit techniques from Section 3. As this operation
is rather involved, we break out of the emulation loop at this point. The BIOS
will indicate which sector to read to the emulator, and emulation will commence
again once the reading operation has completed, that is, when the contents from
disk has been written to emulator memory. As boot loaders should never need
to write contents to disk, it is generally a good idea to ignore write requests.
Figure 5 illustrates what happens when we encounter an interrupt 13h in the
emulated boot loader.

Figure 5: Emulating interrupt 13h
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Some boot loaders expect to find various data on the current system stored
in the BIOS Data Area [24], which is located at 40:0h. We do not need to
populate the entire thing, but a few fields such as memory size at 40:13h should
at least be present. This is not a structure we are planning to use for anything,
but rather we just need to populate it with enough data to make most boot
loaders work.

The last action taken by our initialization code is to fake interrupt 19h.
Even though we could have issued an interrupt 19h to our own code within
the emulator, it’s simpler, and more straightforward, to do this outside of the
emulated code. Actually, we read the contents of the MBR, and write it to
emulator memory at 0:7C00h, before starting the emulation process. This way,
the only action we need to take from within our BIOS is to set the expected
values of two registers, and issue a far jmp to 0:7C00h, thus starting emulation
of the first instruction in MBR. The expected values of the two registers are
201h in ax, and 80h in dl. Failing to do this actually causes some boot loaders
to fail. From here on, emulation continues with the code residing in the MBR.

5 Heuristic Detection Techniques

Bootkits will generally aim to load an unsigned kernel mode driver at some
point during the boot process. This possibility opens up as they manipulate the
boot sectors so that they manage to run code before various security features
kick in. The details of exactly how this is achieved varies between different
bootkit implementations. What is common among most bootkit implementa-
tions, however, is that they normally do not rely on a single modification of the
boot process to achieve their goal. Instead, they use a series of modifications
that eventually enable them to load a driver. We will refer to the series of
modifications and resulting control transfers as the bootkit’s load chain.

Simply put, it is rather inconvenient to load a kernel mode driver before
the kernel itself has loaded. The attack surface from an intruder’s point of
view is a total of roughly 17 unsigned sectors on disk that make up the MBR,
VBR, and IPL. The time window for the initial modification, that is, the first
step in the load chain, ends when bootmgr has been loaded into memory and
control has been transferred to it. At this point, the bootkit must have already
manipulated the boot process in some way, so that it can regain control at a
later stage. Most bootkits rely on regaining control after the kernel and a few
required boot drivers have been loaded, at which time they may find a chance
to load their unsigned driver.

We are focusing our analysis exclusively on the emulation of the MBR, VBR,
and IPL, under the assumption that something must be modifed during their
execution. Furthermore, we are expecting to observe the same modifications
taking place during emulation of this code.

At this early stage, there are severe limitations to what an intruder may
achieve. The code introduced by the bootkit will be interfacing with the BIOS.
This means that, when we emulate it, it will interface with our custom BIOS;
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normally to read sectors on disk, and modify contents in memory, in an attempt
at eventually passing control to the next stage of its load chain.

5.1 Interrupt 13h hooks

Bootkits often seek to perform in-memory patching of executables that have
not yet been loaded. Whereas modifying contents on disk have a high chance
of triggering alarms, modifying contents in memory is normally a safer bet.
They might attempt to modify bootmgr, the kernel, or perhaps even some of
the boot drivers, in order to ensure that control is returned to some other code
they control at a certain stage in the boot process. A common technique used
to accomplish this is to hook the interrupt 13h handler. There are no security
mechanisms in place to ensure that the IVT has not been corrupted at this
stage. Hence, several bootkit implementations will replace the interrupt vector
corresponding to interrupt 13h with a location within their own code, while
storing its original contents, so that they can call the routine that performs the
actual operation. In this way, they are capable of intercepting every disk I/O
operation that will be performed later on in the boot process. Typically, their
hook routine will look for a specific byte pattern. If the pattern is found, they
will know where to patch. Otherwise, they will simply call the original BIOS
interrupt handler as if nothing happened. This enables them to modify contents
on the fly, as it is being read from disk and loaded into memory, effectively
patching memory contents.

Being wary of this trick, we take note of the original value of our interrupt
13h vector once it has been initialized. When emulation is complete, we verify
that it is still intact. If the contents of the IVT within emulator memory has
been modified, it usually indicates trouble, and may be treated as an anomaly.
There are however examples of software solutions that hook interrupt 13h with
good intentions, such as full disk encryption solutions. Challenges related to
this practice are discussed in Section 7.

5.2 Patching bootmgr in memory

When emulation reaches the point where bootmgr is just about to run, the
entire contents of it has already been loaded into memory. Bootmgr is a rather
special executable, and is not loaded the same way Windows normally loads
executables. Instead, it is simply loaded into memory just as it appears on disk,
meaning its memory image should be identical to its disk image. As its image
on disk is digitally signed, we can trust that it has not been tampered with.
Should the memory image not match the image on disk, we will treat this as an
anomaly. This usually means that code in the boot loader has hooked interrupt
13h, and patched bootmgr while it was loaded into memory. There should be
no legitimate reasons for patching bootmgr, so this anomaly may be used to
detect bootkits in a safe manner without risking false positives.
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5.3 Behavioural anomalies when replacing MBR

In cases where the MBR has been replaced, which is the most common approach
for bootkits by far, we may observe an interesting artifact in the behaviour of
the boot code. Even though bootkits aim to manipulate the boot process, they
normally do not want to contribute to it. That is, they generally do not include
any code that actually takes part in loading the required components. Instead,
they usually load the original MBR after they have made the changes they need
to at this stage, and then pass control back to it. From here on, they let the
boot process continue as if nothing has happened, and wait for control to be
passed back to code they control at a later point. An intruder does not want
to change more than is strictly necessary for the successful compromise of the
system, as this can result in the system not booting at all. This approach also
gives the bootkit a higher chance of working across multiple systems.

As the code residing in the original MBR expects to be run at 0:7C00h,
the boot code planted by bootkits will normally load the original MBR at this
exact address. Consequently, we will observe an anomaly in the number of times
instructions at address 0:7C00h are emulated. This is illustrated in Figure 6.

The normal case is to emulate instructions at address 0:7C00h twice. The
first time will be the first instruction of the MBR, and the second time will
be the first instruction of the VBR. When bootkits have replaced the MBR
however, the first instruction will be the first instruction of the bootkit’s MBR.
As this MBR seeks to load the original MBR to the location where it is currenly
residing, it too, just like regular MBRs, will normally copy itself to a different
memory location before loading the original (overwriting itself). This will lead to
instructions at 0:7C00h being executed three times, which should be considered
an anomaly. If we notice this artifact when we emulate the boot process, we
know that the MBR has been replaced.
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Figure 6: Normal boot code behaviour for bootkits targeting the MBR

6 Disabling bootkits

The most straightforward approach to disabling rootkits in general is to break
their load chain. For bootkits, this can be achieved by retrieving and restoring
the original contents of the modified parts of the boot sectors. The techniques
detailed in this section are based on the observation that bootkits normally
restore the original contents in memory during boot. Thus, at some point
during the emulation process, we should be able to obtain the original contents
from emulator memory. The key is to determine what has been modified.

From a recovery point of view, bootkits may be divided into two categories:
those that modify the MBR, and those that either modify the VBR and/or IPL.
We may distinguish between the two using the technique described in Section
5.3, i.e. by counting the number of times instructions are executed at 0:7C00h.

For bootkits targeting the MBR, we will normally find the original MBR
contents in emulator memory the second time 0:7C00h is being emulated. Hence,
we simply stop emulation at this point, and recover the contents.

In cases where either the VBR or IPL has been targeted, we let emulation
continue all the way to the first instruction of bootmgr. At this point, we retrieve
the contents of both the VBR and the IPL from emulator memory. Instead of
determining exactly which part has been modified, we intend to replace all
related sectors on disk with what we have recovered in this case.

By writing the recovered contents back to where it should reside on disk, we
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are effectively breaking the bootkit’s load chain. As this causes the bootkit to no
longer load during boot, we finish off by rebooting the system. When it comes
back up, the rootkit component should be gone, and further inspection of the
system may be performed to reveal any components that may have previously
been hidden.

Keeping in mind that bootkits often have a habit of blocking write operations
to the boot sectors, we use anti-rootkit techniques as discussed in Section 3 when
writing the recovered contents back to where it belongs on disk. If we choose not
to utilize such techniques, we may be fooled into believing that the operation
succeeded even though it did not.

It is worth mentioning that these operations should be handled with care,
as they can easily be detrimental to the system. One approach to minimize the
chance of causing damage is to make use of emulation to verify that the system
will still boot after the intended changes have been made. Although this will
never ensure that the operation will not cause harm, it will at least flag those
cases where it definitely does.

7 Challenges

Even though heuristic detection techniques are efficient at detecting threats that
have never before been seen, they inherently also have the potential of causing
false positives. When flagging a certain behaviour as malicious, one will risk
flagging benign software that have similar behaviour as well.

The severity of false positives in detection techniques depends on the scenario
in which they are used, as well as which other techniques they are combined
with. As an example, we can choose to classify a modification of the MBR as
malicious, and at the same time use a whitelisting approach to avoid trigger-
ing a detection on systems that have well known boot loaders installed, such
as GRUB. Combining techniques to minimize the chance of false positives is
however outside the scope of this paper. Instead, we will discuss a few scenarios
that complicates using the emulation approach for detection.

Inherently, when emulating the boot process, we are assuming that there is
no need for user input at any stage. Our assumption should hold true for any
bootkit that has modified the process, as they have everything to gain from not
notifying the user of their presence. The assumption does however not hold true
for boot loaders that enable loading multiple operating systems, nor for full disk
encryption solutions that require users to enter a password during boot.

Some boot loaders will present the user with a choice of which operating
system to boot. Even though it is perfectly possible to send keyboard input
commands to our BIOS, it is hard to know which choice to make.

For systems running a full disk encryption solution that asks for a password
at startup, this problem becomes even harder. Unless we can somehow retrieve
the password to continue the boot process, we have no chance of making our
emulation approach work.

There is also another challenge with full disk encryption solutions: they
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will normally hook interrupt 13h so that they can decrypt sectors as they are
loaded into memory. Hence, during emulation, we might observe boot code that
manipulates the IVT set up by our BIOS. If hooking interrupt 13h is classified
as malicious, this can lead to false positives.

We have not invested any time to research how to get around these problems
in certain cases, nor in general. Preseumably, it should not be possible at all
in the general case. What we can do, however, is to detect whenever the boot
code asks for user input. In this way, we can at least know that our emulation
approach will not work for the system we are currently running on.

In order to query for user input, the boot code will issue interrupt 16h to
poll for keystrokes. This is trival to detect during emulation as the code will
call our BIOS. We assume that the boot code will never poll for keyboard input
unless it is expecting the user to enter something, so if this interrupt is issued,
we abort emulation, and report that we cannot determine whether or not the
system is compromised by using our emulation approach.

8 Conclusion

In this paper, we have shown how bootkits may be detected by looking for
anomalies in the behaviour of the code residing in the boot sectors. Our ap-
proach is to emulate the boot code using a custom BIOS that incorporates
techniques to interface with the lowest level disk driver in ways that bypass
potential hooks. This heuristic detection technique is highly generic in nature,
but face challenges for non-standard boot loaders. We have also shown how to
use the same approach for breaking bootkits’ load chains, so that we can disable
active rootkit components to regain control of compromised systems.
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A Reading the MBR using PIO

#define ATAPI_DRIVE_MASTER 0xa0

#define ATAPI_DRIVE_SLAVE 0xb0

#define ATAPI_BUS_PRIMARY 0x1f0

#define ATAPI_BUS_SECONDARY 0x170

#define ATAPI_DATA_PORT(bus) (bus)

#define ATAPI_FEATURES(bus) (bus + 1)

#define ATAPI_SECTOR_COUNT_PORT(bus) (bus + 2)

#define ATAPI_ADDRESS1_PORT(bus) (bus + 3)

#define ATAPI_ADDRESS2_PORT(bus) (bus + 4)

#define ATAPI_ADDRESS3_PORT(bus) (bus + 5)

#define ATAPI_DRIVE_SELECT_PORT(bus) (bus + 6)

#define ATAPI_COMMAND_PORT(bus) (bus + 7)

#define ATAPI_DCR(bus) (bus + 0x206)

#define ATAPI_STATUS_DRQ_FLAG (1 << 3)

#define ATAPI_STATUS_BSY_FLAG (1 << 7)

#define ATAPI_COMMAND_READ_WITH_RETRY 0x20

#define ATAPI_COMMAND_WRITE_WITH_RETRY 0x30

#define MAX_STATUS_POLL_SPIN_COUNT 0x8000

#define SECTOR_SIZE 0x200

NTSTATUS ReadMBRUsingPIO(VOID *pMBR , INT drive , INT bus)

{

NTSTATUS ntStatus = STATUS_SUCCESS;

INT status = 0;

UINT i = 0;

UINT spinCounter = 0;

WORD *pOutput;

if (NULL == pMBR)

{

return STATUS_INVALID_PARAMETER;

}

pOutput = (WORD *)pMBR;

//

// Ensure exclusive access to CPU before proceeding (not shown)

//

GainExclusiveAccessToCPU ();

//

// Set options for reading from MBR

//

_outp(ATAPI_DRIVE_SELECT_PORT(bus), drive);

_outp(ATAPI_SECTOR_COUNT_PORT(bus), 1);

_outp(ATAPI_ADDRESS1_PORT(bus), 1); // Read from sector: 1

_outp(ATAPI_ADDRESS2_PORT(bus), 0); // Read from cylinder low part: 0
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_outp(ATAPI_ADDRESS3_PORT(bus), 0); // Read from cylinder high part: 0

_outp(ATAPI_COMMAND_PORT(bus), ATAPI_COMMAND_READ_WITH_RETRY );

//

// Wait until the sector buffer is ready

// Currently we poll until DRQ is set , and BSY is reset

//

// Since error conditions will set all (or most) bits of status to high ,

// there is a chance that we might end up polling indefinitely since

// we are waiting for BSY to be reset (i.e. set low ).

// This is why we are using a max counter in an attempt to avoid nasty hangs.

//

do

{

status = _inp(ATAPI_COMMAND_PORT(bus));

spinCounter ++;

if (spinCounter > MAX_STATUS_POLL_SPIN_COUNT)

{

ntStatus = STATUS_UNSUCCESSFUL;

goto _done;

}

} while ( !( status & ATAPI_STATUS_DRQ_FLAG) && (status & ATAPI_STATUS_BSY_FLAG) );

//

// Read contents of MBR

//

for (i = 0; i < SECTOR_SIZE / sizeof(WORD); i++)

{

pOutput[i] = _inpw(ATAPI_DATA_PORT(bus));

}

_done:

//

// Critical part done - Release exclusive access to CPU (not shown)

//

ReleaseExclusiveAccessToCPU ();

return ntStatus;

}

Listing 8: Reading the MBR using PIO
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