
Security Content Metadata Model with an Efficient Search

Methodology for Real Time Monitoring and Threat

Intelligence

Preeti Subramanian

Abstract

The Security Content Automation Protocol

(SCAP) federates a number of open standards

that are used to enumerate software flaws

and configuration issues related to security.

They measure systems to find vulnerabilities

and offer methods to score those findings in

order to evaluate the possible impact. There

are a number of SCAP components such as

Common Vulnerabilities and Exposures (CVE),

Common Configuration Enumeration (CCE),

Common Platform Enumeration (CPE),

Common Remediation Enumeration (CRE),

Extensible Configuration Checklist Description

Format (XCCDF), and Open Vulnerability and

Assessment Language (OVAL). Malware

Attribute Enumeration and Characterization

(MAEC) is a standardized language for

encoding and communicating high-fidelity

information about malware based upon

attributes such as behaviours, artefacts, and

attack patterns. These standards render data

in the form of XML.

Although these standards are linked to each

other, there is a lack of commonality in their

XML schema definitions. There is a need for a

unique common metadata schema to

represent important aspects relevant for

designing efficient search mechanism. This

common metadata supports distribution of

data across various repositories that render

SCAP content. Across all security content

databases unique identification and a short

description will be common. In addition, this

model makes building of relations to multiple

components of SCAP intuitive. Differentiating

attributes of security content can be

represented as a list of properties, each

property being a key-value pair. For example,

in the case of CVE, (CVSS, 9.4) represents the

key CVSS and a score of 9.4, where CVSS is

Common Vulnerability Severity Score. In this

model, modifications to the schema of SCAP

components can easily be accommodated by

just adding or deleting a property key-value

pair without changing the model. Searching

on this metadata enables fast response to

queries and helps interlace various SCAP

components; e.g., OVAL references CVE and

each CVE depends on various platforms and

products denoted by CPEs. This model enables

Natural Language Processing (NLP) and

renders meaningful responses to queries such

as most vulnerable applications, OVAL

definitions, vulnerabilities in Adobe Reader in

2014, recent threats etc. 90% of malware

attacks make use of an existing vulnerability in

the system. This archetype aids to resolve

vulnerabilities before an attack happens. In a

case where system events are continuously

monitored, this model also helps understand

an incident in a machine and analyse to

determine if it is a malware attack. It will

additionally help to scrutinize which

vulnerability was exploited by the malware

and most importantly, fix the vulnerability to

prevent further attacks.

Background

As an organizational security protection

mechanism, we need to implement

different silos of security technologies,

vulnerability management, patch

management, incident response or

security information and event

management (SIEM), malware

management, intrusion detection

systems. Each of these operates with

different sets of data, often only

understood by them. However, the

underlying common goal is to protect an

organization or an entity from adversaries.

This poses two questions:

 Firstly, why is there a lack of

commonality or inter-relationship

between these data sets?

 Secondly, why don’t these

products talk to each other and

devise a response mechanism

which works like a single system?

These questions lay the foundation of

Security Content Automation Protocol,

commonly known as SCAP and few other

additional standards being developed part

of the National Institute of Standards and

Technology (NIST) and other standards

bodies.

Understanding SCAP

Security Content Automation Protocol,

SCAP is a suite of specifications that

standardize the format and nomenclature

by which software flaw and security

configuration information is

communicated, both to machines and

humans. SCAP is a multi-purpose

framework of specifications that support

automated configuration, vulnerability

and patch checking, technical control

compliance activities, and security

measurement. Goals for the development

of SCAP include standardizing system

security management, promoting

interoperability of security products, and

fostering the use of standard expressions

of security content.

SCAP is categorized into Languages,

Metrics, Enumeration, Reporting formats

and Integrity.

Languages

SCAP provides conventions to express

vulnerability assessment, security policies

and technical check mechanism in the

form of OVAL, XCCDF and OCIL.

Enumeration

SCAP defines a naming format and a list of

items that are defined in that

nomenclature. It consists of CPE, CCE, CVE

and CWE.

Metrics

 Measurement and scoring systems in

SCAP refers to evaluation of each security

weakness and assign a score to each of

these weaknesses. Common Vulnerability

Scoring System (CVSS) and Common

Configuration Scoring System (CCSS) are

the scoring system.

Reporting Formats

SCAP describes reporting format that

provides necessary constructs to express

collected information in standardized

formats. The SCAP reporting format

specifications are Asset Reporting Format

(ARF) and Asset Identification.

Integrity

An SCAP integrity specification helps to

preserve the integrity of SCAP content and

results. Trust Model for Security

Automation Data (TMSAD) is the SCAP

integrity specification.

SCAP touches all the requirements for

automating information exchange

between two entities. It is a synthesis of

interoperable specifications derived from

community ideas.

SCAP Content Metadata Model

SCAP language and reporting format are

expressed in XML format. XML helps

exchange of complex information in a

simple text structure over the web and it

is highly interoperable. Besides these

advantages, there are drawbacks in

expressing SCAP language and reporting

content in XML format. Large content

articulated in the form of XML becomes

bulky. Since the content is extensive in

nature, search and analysis of this content

becomes a challenging task.

This gives rise to the need of extracting

relevant information in a standardized

manner, which we refer to as ‘metadata

of security content’. This content has to

be concrete and should be understood by

receiver of information, machine or

human to take crucial actions to fix a

malware attack on the system.

Metadata of security content can be

expressed in the form of key value pair.

Each construct of SCAP content has a

property; hence the key becomes the

property name and value being the data

after evaluation.

The diagram below outlines the metadata

design of SCAP content:

Figure 1: Metadata schema diagram

Below is the XML schema definition of SCAP metadata:

<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:scaprepometa="http://www.scaprepo.com/SCAPRepoWebService/schema"targ
etNamespace="http://www.scaprepo.com/SCAPRepoWebService/schema"
attributeFormDefault="unqualified" elementFormDefault="qualified">
 <xsd:element name="metadata">
 <xsd:complexType>
 <xsd:sequence>

<xsd:element name="entities" type="scaprepometa:entitiesType"
maxOccurs="1" minOccurs="1"/>

 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>
 <xsd:complexType name="entitiesType">
 <xsd:sequence>

<xsd:element name="entity" type="scaprepometa:entityType"
maxOccurs="unbounded" minOccurs="1"/>

 </xsd:sequence>
 </xsd:complexType>
 <xsd:complexType name="entityType">
 <xsd:sequence>
 <xsd:element name="id" type="xsd:string" maxOccurs="1"
minOccurs="1"/>

<xsd:element name="uri" type="xsd:anyURI" maxOccurs="1"
minOccurs="0"/>
<xsd:element name="desc" type="xsd:string" maxOccurs="1"
minOccurs="0"/>
<xsd:element name="created-date" type="xsd:date" maxOccurs="1"
minOccurs="0"/>
<xsd:element name="modified-date" type="xsd:date" maxOccurs="1"
minOccurs="0"/>
<xsd:element name="properties"
type="scaprepometa:propertiesType" maxOccurs="1"
minOccurs="0"/>

 </xsd:sequence>
 </xsd:complexType>
 <xsd:complexType name="propertiesType">
 <xsd:sequence>

<xsd:element name="property" type="scaprepometa:propertyType"
maxOccurs="unbounded" minOccurs="0"/>

 </xsd:sequence>
 </xsd:complexType>
 <xsd:complexType name="propertyType">
 <xsd:simpleContent>
 <xsd:extension base="xsd:string">
 <xsd:attribute name="key" type="xsd:string"
use="required"/>
 </xsd:extension>
 </xsd:simpleContent>
 </xsd:complexType>
</xsd:schema>

Here is an example of vulnerability,

Adobe Flash Player (prior to 13.0.0.262

and 14.x through 16.x before 16.0.0.287

on Windows and OS X and prior to

11.2.202.438 on Linux) does not properly

restrict discovery of memory addresses,

which allows attackers to bypass the ASLR

protection mechanism on Windows, and

have an unspecified impact on other

platforms, via unknown vectors, as

exploited in the wild in January 2015.

Table 1: Impact of CVE-2015-0310

Property Value

CVSS v2 Base
Score

10.0(HIGH)
(AV:N/AC:L/Au:N/C:C/I:C
/A:C) (legend)

Impact
Subscore

10.0

Exploitability
Subscore

10.0

Table 2: CVSS Version 2 Metrics of CVE-

2015-0310

Property Value

Access Vector Network exploitable

Access
Complexity

Low
**NOTE: Access
Complexity scored Low
due to insufficient
information

Authentication Not required to
exploit

Impact Type Allows unauthorized
disclosure of
information; Allows
unauthorized
modification; Allows
disruption of service

Table 3 shows an example of metadata of CVE-2015-0310 that specifies vulnerability in

Adobe Flash Player and earlier versions that has high severity score of 10.0.

Table 3: Metadata of CVE-2015-0310

Metadata

Id CVE-2015-0310

Desc Adobe Flash Player before 13.0.0.262 and 14.x through 16.x before
16.0.0.287 on Windows and OS X and before 11.2.202.438 on Linux
does not properly restrict discovery of memory addresses, which
allows attackers to bypass the ASLR protection mechanism on
Windows, and have an unspecified impact on other platforms, via
unknown vectors, as exploited in the wild in January 2015.

URI http://www.scaprepo.com/control.jsp?command=viewXML&id=CVE-
2015-0310

Created-Date 2015-01-27

Modified-Date 2015-02-05

Score 10.0

Exploitability_score 10.0

Impact_score 10.0

Access_vector NETWORK

Access_complexity LOW

Availability_impact COMPLETE

Authentication_status NONE

Confidentiality_impact COMPLETE

Integrity_impact COMPLETE

Ext_ref CONFIRM
http://helpx.adobe.com/security/products/flash-player/apsb15-
02.html

Published-Date 2015-01-23

Generated-Date 2015-01-26

The above data can be stored in

databases, relational databases such as

SQL or big data storage. Big data storage is

designed to store large amounts of data. It

stores information in key-value pair and

supports efficient querying and

information retrieval techniques. Though

big data architecture and use plays an

important role in storage of metadata,

explanation of big data is out of the scope

of the paper.

http://helpx.adobe.com/security/products/flash-player/apsb15-02.html
http://helpx.adobe.com/security/products/flash-player/apsb15-02.html

For information exchange, metadata can be expressed in XML format,

<metadata xmlns="http://www.scaprepo.com/SCAPRepoWebService/schema"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-
instance"xsi:schemaLocation="http://www.scaprepo.com/SCAPRepoWebService/schema
http://www.scaprepo.com/SCAPRepoWebService/schema/metadata.xsd">
 <entities>
 <entity>
 <id>CVE-2015-0310</id>
 <uri>
 http://www.scaprepo.com/control.jsp?command=viewXML&id=CVE-
2015-0310
 </uri>
 <desc>
 Adobe Flash Player before 13.0.0.262 and 14.x through 16.x before
16.0.0.287 on Windows and OS X and before 11.2.202.438 on Linux does not properly
restrict discovery of memory addresses, which allows attackers to bypass the ASLR
protection mechanism on Windows, and have an unspecified impact on other
platforms, via unknown vectors, as exploited in the wild in January 2015.
 </desc>
 <created-date>2015-01-27</created-date>
 <modified-date>2015-02-05</modified-date>
 <properties>
 <property key="Desc">
 Adobe Flash Player before 13.0.0.262 and 14.x through 16.x
before 16.0.0.287 on Windows and OS X and before 11.2.202.438 on Linux does not
properly restrict discovery of memory addresses, which allows attackers to bypass
the ASLR protection mechanism on Windows, and have an unspecified impact on other
platforms, via unknown vectors, as exploited in the wild in January 2015.
 </property>
 <property key="Score">10.0</property>
 <property key="Exploitability_score">10.0</property>
 <property key="Impact_score">10.0</property>
 <property key="Access_vector">NETWORK</property>
 <property key="Access_complexity">LOW</property>
 <property key="Availability_impact">COMPLETE</property>
 <property key="Authentication_status">NONE</property>
 <property key="Confidentiality_impact">COMPLETE</property>
 <property key="Integrity_impact">COMPLETE</property>
 <property key="Ext_ref">

http://helpx.adobe.com/security/products/flash-player/apsb15-
02.html CONFIRM
http://helpx.adobe.com/security/products/flash-player/apsb15-
02.html

 </property>
 <property key="Publisheddate">2015-01-23</property>
 <property key="Modifieddate">2015-01-26</property>
 <property key="Generateddate">2015-01-26</property>
 <property key="Created-Date">2015-01-27</property>
 <property key="Modified-Date">2015-02-05</property>
 </properties>
 </entity>
 </entities>
</metadata>

http://helpx.adobe.com/security/products/flash-player/apsb15-
http://helpx.adobe.com/security/products/flash-player/apsb15-

In this example, CVE-2015-0310 is related

to product Adobe Flash Player versions

11.2.202.429, 16.0.0.257, 14.0.0.145, and

14.0.0.125 then we can certainly map

them to product enumeration, CPEs:

cpe:/a:adobe:flash_player:11.2.202.429,

cpe:/a:adobe:flash_player:16.0.0.257,

cpe:/a:adobe:flash_player:14.0.0.145, and

cpe:/a:adobe:flash_player:14.0.0.125

Further, it can be associated to weakness

enumeration CWE-264 - Permissions,

Privileges, and Access Controls which

contains detection methods and potential

mitigation information and to

vulnerability assessment signatures

articulated in OVAL.

Searching on SCAP Metadata

The creation of SCAP Metadata judiciously

reduces the size of security content to be

examined. Subsequently, efficient search

mechanisms can be implemented on this

data to get information for vulnerability

assessment and incident response

information.

Each SCAP entity in this model is

correlated to other relevant entities using

references as described in previous

section. With this information, tracing the

query across different entities of SCAP

becomes straight-forward.

For instance, a vulnerability search results

in CVEs and each CVE has a detection

signature that is written in OVAL. Each

vulnerability and detection signature is

mapped to a remediation patch or

hardening measure. This helps fix an issue

before an attack happens, and thus acts as

the first line of defence against malware.

Natural Language Processing (NLP) can be

implemented that can define linguistics of

security content search interactions.

Search implementation can also be

enhanced to include date/time related

queries.

Examples of Metadata Search

Below are a few examples of metadata

searches:

Search query “Recent threats” lists a set

of latest vulnerabilities that might be a

threat to your organization

Figure 2: Search query ‘Recent threats’

Another search query “last month adobe

vulnerabilities” lists all vulnerabilities

reported in the previous month. (See

Figure 3)

Figure 3: Search query ‘last month adobe

vulnerabilities’

The above query lists all vulnerabilities. In

order to further refine this search, we can

look for vulnerabilities which have a high

severity score.

Such queries can assist system

administrators to identify which

vulnerabilities are critical and need to be

addressed quickly.

 For a search query “Adobe vulnerabilities

having score 10.0”, see figure 4)

Figure 4: Search query ‘Adobe

vulnerabilities having score 10.0’

How to use metadata?

Local and remote scan can be performed

on systems to collect system information

and produce results in a standard format.

Based on system metadata, data analytics

can be implemented on results content to

understand and co-relate various

parameters of data. For instance, risk can

be computed based on the count and

score of vulnerabilities present in each

system of an organization.

This metadata also supports storage of

organizations’ benchmark, compliance

data such as PCI DSS, ISO, and HIPAA and

compliance checks that need to be

performed on the systems to know if

systems are yielding to the benchmark set

by the organization.

Once the data is collected from various

systems, a holistic view of the security

posture of the organization can be

observed from metrics, figures and

plotting graphs.

Also, if an incident occurs in the system,

we can co-relate various entities of SCAP

and fix the issue.

Figure 5 shows the flow of incidence

response mechanism.

 Figure 5: Flow of Incidence Response

Real Time Threat Monitoring using

Security Content Metadata Model

We measure the security posture of an

organization using various assessments

and auditing products. Each product

produces large data sets that are limited

to the nature of the product.

“How do we identify incidents in a sea of

data?”

SCAP metadata along with malware

characteristics and events data from

systems defines the groundwork of

incident response framework. A scan

report (see Reporting Format Section)

consists of data collected from the

system. Once we get the required data,

we can arrive at an actionable measure to

fix the issue.

This can be explained with an example:

A bizarre exe inj_adb.exe exists in the

system and was executed with PID as an

argument. This PID is the process ID of a

sandboxed Adobe Reader process. As a

result, a new file is created named ‘adbe’.

This appears suspicious and requires some

action.

When system information is collected and

events are reported, we can co-relate this

incident with the product Acrobat Reader.

Using system information, it will be clear

that the version of Acrobat Reader in

Windows is 11.0.8, which is vulnerable to

attacks.

•Collects events from system

•Collects processes, ports,
applications information

Events
collection

•Suspicious events are marked as
incidents

Incident
Identification •Products are identified using co-

relation

•Vulnerabilities related to
products are identified

•Remediation is identified for the
vulnerabilities present and
prevents further attacks

Analytics and
Correlation

The CVE explains that the Acrobat Reader

Windows sandbox is vulnerable to NTFS

junction attack. An NTFS junction point is

a symbolic link to a directory that acts as

an alias of that directory. This vulnerability

allows malware to write an arbitrary file

to the file system under user permissions.

This could be used to break out of the

sandbox leading to execution at higher

privileges. This is marked as CVE-2014-

9150.

Remediation suggests removal of adbe

file, inj_adb.exe and unwanted .dll

present in the location of the sandboxed

process, in conjunction to upgrading this

Adobe product to fix known

vulnerabilities. Common Remediation

Enumeration CRE gives us the patch to be

installed to upgrade Adobe Acrobat

Reader.

This vulnerability is related to weakness

enumeration CWE-362, Concurrent

Execution using Shared Resource with

Improper Synchronization ('Race

Condition').

From these CWE, we arrive at attack

patterns CAPDEC-26 and CAPDEC-29.

CAPDEC stands for Common Attack

Pattern Enumeration and Classification, a

community resource for identifying and

understanding attacks.

Additionally, this scenario of ascertaining

unwanted behaviour and fixing issue

caters to safeguarding us against attacks

in future.

Summary

The metadata model stores security

intelligence. Due to efficient analytics and

correlation of various SCAP entities, it

reduces the time of attack detection and

remediation of the outbreak. 90% of the

attacks make use of vulnerabilities that

exist in the computer systems. Due to the

complexity of attacks and enormous

volume of data it may not be possible to

quickly identify vulnerabilities and attacks

and take appropriate actions to remediate

those weaknesses. If remediation fixes

take days and weeks to execute, this

opens a large window for attackers to

exploit our systems. Hence, it is vital to

work on a small set of information crafted

as metadata that accommodates

meaningful information to trace an attack,

resolve and protect our systems from

future attacks.

What next?

This metadata model can be used as a

foundation to design complex attack

detection and prevention mechanisms.

This will be inevitable in near future

because hackers are designing novel

techniques of attacking and compromising

the system. Mechanisms consuming this

metadata should be able to relate events

from a system report them as incidents in

case an action is needed, and eventually

stop an attack from happening. As the

underlying SCAP content evolves,

metadata schema should be able to

accommodate various attributes of attack

detection and protection.

Acronyms and Abbreviations

SCAP Security Content Automation
Protocol

CVE Common Vulnerabilities and
Exposures

CCE Common Configuration
Enumeration

CPE Common Platform Enumeration

CRE Common Remediation
Enumeration

XCCDF Extensible Configuration
Checklist Description Format

OVAL Open Vulnerability and
Assessment Language

MAEC Malware Attribute Enumeration
and Characterization

SIEM Security Incidents and Events
Management

CVSS Common Vulnerability Scoring
System

CCSS Common Configuration Scoring
System

XML Extensible Mark-up Language

XSD XML Schema Definition
ASLR Address space layout

randomization

References

 The Technical Specification for the

Security Content Automation Protocol

(SCAP): SCAP Version 1.2 (September

2011)

http://csrc.nist.gov/publications/nistp

ubs/800-126-rev2/SP800-126r2.pdf

 National Cyber Awareness System

Vulnerability Summary

http://web.nvd.nist.gov/

 Metadata repository

https://www.scaprepo.com/SCAPRep

oWebService

 Adobe Security Bulletin

http://helpx.adobe.com/security/pro

ducts/flash-player/apsb15-02.html

Author:

Preeti Subramanian

Working as Software Architect at

SecPod Technologies

Bangalore, India

Email: spreeti@secpod.com

http://csrc.nist.gov/publications/nistpubs/800-126-rev2/SP800-126r2.pdf
http://csrc.nist.gov/publications/nistpubs/800-126-rev2/SP800-126r2.pdf
https://www.scaprepo.com/SCAPRepoWebService
https://www.scaprepo.com/SCAPRepoWebService
http://helpx.adobe.com/security/products/flash-player/apsb15-02.html
http://helpx.adobe.com/security/products/flash-player/apsb15-02.html
mailto:spreeti@secpod.com

