

ISEE-3

- International Sun/Earth Explorer 3
- Launched: August 12, 1978
- Heliocentric Orbit
- Study interaction
 between solar wind
 and
 Earth's magnetic field

ISEE-3

- Renamed ICE:
 International Cometary
 Explorer
- First spacecraft in halo orbit at an Earth-Sun L1 (Lagrange point)
- First spacecraft to pass through tail of a comet (Giacobini-Zinner)

ISEE-3 ORIGINAL TRAJECTORY

1978-1985

=

TOTAL S/C WEIGHT: 479 kg EXPERIMENTS: 104 kg HYDRAZINE: 89 kg DIMENSIONS (MAIN BODY) 3D RADIO MAPPING ANTENNA 1.77 m DIAMETER: LENGTH (TIP TO TIP) HEIGHT: 1.58 m MEDIUM GAIN AXIAL: 14 m RADIAL: 92 m 2-GHz (S-BAND) **ANTENNA** SHORT ELECTRIC **ANTENNA** SEARCH COIL X-RAY TELESCOPE AXIAL AV AND ATTITUDE EXPERIMENT CONTROL BAYS THRUSTER MAGNETOMETER SOLAR ARRAY RADIAL THRUSTERS SPIN STABILIZED AT 19.75 RPM AXIAL AV AND ATTITUDE CONTROL THRUSTER SPIN AND DESPIN

THRUSTERS

Old Telemetry Screen

```
ISEE-C;CPU1; 64;ACN;ORB 000;BUS V 28.29;ES CURR 1.34;NE CURR 6.69
OA 0.0; 0.000 RPM; 0.000 SEC;CMD CTR A,B 80,79;S/C 037/22;24:49 (30261143)
S/C HSK; PAGE 4 RESET CTR A,B 640,639;GMT 074/22;18:08.115 78/03/15
-ATTITUDE AND ORBIT CONTROL SUBSYSTEM— --- HYDRAZINE PROPULSION SYSTEM ---
- ELECTRONICS A - - ELECTRONICS B - PRI HTRS 1/2 LOW ACCL CTR 1/2 110
LOGIC PWR ON LOGIC PWR ON SEC HTRS 1/2 OFF ACCL T 1/2 24.4
+28V PWR ON +28V PWR OFF ACL PWR 1/2 2.50 T PRI TK HTRS OFF
TSL 010TSL 010010 PRI TK HTRS100100 SEC TK HTRS OFF
SINIT 01100 OFF SINIT 10110 10001 SEC TK10110 10011 LATCH VALVE OFF
SECT WIDTH 360 SECT WIDTH OFF LATCH VALVA OPEN LATCH VALVE OPEN
FIRINGS 36 FIRINGS 77 LATCH VALVA OPEN LATCH VALVO OPEN
FIRINGS 36 FIRINGS 77 LATCH VALVA OPEN LATCH VALVO OPEN
FIRINGS 36 FIRINGS 77 LATCH VALVA OPEN LATCH VALVO OPEN
FIRING DIS RATIO FIRING DIS THERMO CPL 248.6 TANK PRESS 2.4
THRUST RATI 2 THRUST RATI 114 TANK PRESS 2.7
MANNEUVER TERM MANEUVER INIT
```


Overview

- Restaurant Pagers
- RDS TMC
- Primary Surveillance RADAR
- RFID
- ISEE-3

50 MHz BW

GSM BCCH & Traffic

Dialplan

- 101 Registration
 - Text back 4-to-10 digit number to register
- 411 Info
- 600 Echo Test
- 777 Time
- 778 ANI
- 2103 Me

400 MHz Band

50 MHz – 250 MHz (200 Msps, 120 MHz RF BW)

Spectrum Monitoring

Spot the Antennas

Spot the Antennas

Spot the Antennas

Spot the USRPs

Stitched FFTs

Stitched FFTs

USRP B200 & B210

Restaurant Pagers

Your food is ready?

- Pagers inform waiting customer they can collect their order
 - Assuming their order is ready
- Order & collection rate should be ~same
 - Unless everyone is paged at once

Step 1: Frequency

- Either:
 - Find frequency label on the device
 - Find FCC ID on device and check online
 - Scan spectrum in likely ranges (e.g. 450-470 MHz)

Step 1: Frequency

Flowgraph

Step 2: Channel Selection

Step 3: FSK Deviation

Step 4: Quadrature Demod

Step 5: Baud Rate

Step 5: Clock Recovery

Step 6: Line Encoding

Manchester Encoding

Manchester Violation

Step 7: Compare Changing Bits

Step 8: Finding the ID

Modulator

- Reverse the decoding process:
 - 1. Construct packet
 - a) Preamble (wake up receiver)
 - b) Magic header (sync & system ID)
 - c) Pager number
 - d) Checksum
 - 2. Interpolate (choose samples per bit)
 - 3. Frequency Modulate
 - 4. Apply pulse-shaping filter (ideally)
 - 5. Resample for transmitter

Modulator

Modulator Output

Modulator

Remote Control

Slider

POCSAG

- Other restaurant pager systems adopt a standard
- Decode with gr-pocsag

Modified to end frame decoding when squelch

closes

POCSAG Decode

[04] Address: 001dc15a function: 00000000 [05] (001dc15a) Data: 05[5] 0c[] 03[3] 03[3]

=== SQUELCHED (residue: 5, 7/16) ===

[06] (001dc15a) Idle

POCSAG Frames

```
[00] Address: 001dc168 function: 00000000
[01] (001dc168) Data: 05[5] 0c[ ] 03[3] 03[3] 03[3]
[02] (001dc168) Idle
=== SQUELCHED (residue: 5) ===
[00] (ffffffff) Idle
[01] (ffffffff) Idle
[02] (ffffffff) Idle
[03] (ffffffff) Idle
[04] (ffffffff) Idle
[05] (ffffffff) Idle
[06] Address: 001dc15b function: 00000000
[07] (001dc15b) Data: 05[5] 0c[ ] 03[3] 03[3] 03[3]
[08] (001dc15b) Idle
=== SQUELCHED (residue: 5) ===
[00] (ffffffff) Idle
[01] (ffffffff) Idle
[02] (ffffffff) Idle
[03] (ffffffff) Idle
[04] (ffffffff) Idle
[05] (ffffffff) Idle
[06] Address: 001dc15b function: 00000000
[07] (001dc15b) Data: 05[5] 0c[ ] 03[3] 03[3] 03[3]
[08] (001dc15b) Idle
=== SQUELCHED (residue: 5) ===
```


POCSAG Frame

```
[00] (ffffffff) Idle
[01] (ffffffff) Idle
                                  5b = 01011011
[02] (ffffffff) Idle
[03] (ffffffff) Idle
[04] (ffffffff) Idle
[05] (ffffffff) Idle
[06] Address: 001dc15b function: 00000000
[07] (001dc15b) Data: 05[5] 0c[ ] 03[3] 03[3] 03[3]
[08] (001dc15b) Idle
=== SQUELCHED (residue: 5) ===
```

Pager Frame Construction

- Preamble
- SYNC
- Address: System & Pager
 - Schedule address to appear in correct slot
 - Pad with IDLEs beforehand
- Pager action
- Trailing IDLE
- Apply BCH(31,21) ECC to each slot

POCASG Modulator

ZigBee

- Roles reversed: pager unit transmits
- Pager unit has integrated RFID reader
- RFID chip stuck on underside of each table
- Placing pager unit on table transmits pager number and table number
- 2.4 GHz ISM band
- Decode with gr-ieee802-15-4

ZigBee Transceiver

Decoded ZigBee

Decoded Pager

Pagers:

38 = 0x26

54 = 0x36

Table:

36 = 0x24

Hostage Pager

- Pagers get angry when system broadcast (beacon) is not heard within timeout
 - Flash & vibrate until they are returned within range
- Take a pager hostage by broadcasting beacon

FM Broadcast Band

FM Broadcast Band

11:30

Radio Data Service

- Subcarrier on commercial FM stations
- Not audible (filtered out)
- BPSK @ 1187.5 bps
- Listen & decode with gr-rds

Stereo FM with RDS: Receiver

Radio Data Service

101.9MHz RDS

1133

Traffic Message Channel

- Type 8A RDS group message
- Compact representation via look-up table:
 - Event
 - Location
 - Duration
- Examples:
 - Congestion
 - Accidents
 - Road work

Traffic Message Channel

Traffic Message Channel

```
[41]:traffic congestion, average speed of 50 km/h, location:1862
user msg# single-grp, duration:15 minutes, diversion recommended, extent:-2 segments, event:7#
user msg# single-grp, duration:15 minutes, diversion recommended, ext<u>ent:-2 segments, event:</u>#
                                                                                                [41]:traffic congestion, average speed of 50 km/h, location:1862
user msg# single-grp, duration:15 minutes, diversion recommended, extent:-2 segments, event:7#
                                                                                               [41]:traffic congestion, average speed of 50 km/h, location:1862
     msq# single-grp, duration:15 minutes, diversion recommended, extent:2 segments, event:72
                                                                                               [39]:traffic congestion, average speed of 30 km/h, location:22340
     msg# single-grp, duration:15 minutes, diversion recommended, extent:2 segments, event:72
                                                                                                [39]:traffic congestion, average speed of 30 km/h, location:22340
     msa# single-grp, duration:15 minutes, diversion recommended, extent:2 seaments, event:80
                                                                                               [823]:(0 sets of) construction work, location:62276
     msg# single-grp, duration:15 minutes, diversion recommended, extent:2 segments, event:80
                                                                                               [823]:(Q sets of) construction work, location:62276
                                                                                               20 [1592]:(Q probability of) sunny periods, location:58180
     msq# single-grp, duration:15 minutes, diversion recommended, extent:1 segments, event:11
     msg# single-grp, duration:15 minutes, diversion recommended, extent:1 segments, event:11
                                                                                                  [1592]:(Q probability of) sunny periods, location:58180
     msg# single-grp, duration:15 minutes, diversion recommended, extent:1 segments, event:11
                                                                                               20 [1592]:(Q probability of) sunny periods, location:58180
     msg# single-grp, duration:15 minutes, diversion recommended, extent:2 segments, event:75
                                                                                               [42]:traffic congestion, average speed of 60 km/h, location:56133
     msg# single-grp, duration:15 minutes, diversion recommended, extent:-3 segments, event:7
                                                                                                [40]:traffic congestion, average speed of 40 km/h, location:65344
     msg# single-grp, duration:15 minutes, diversion recommended, extent:-3 segments, event:7
                                                                                                 [40]:traffic congestion, average speed of 40 km/h, location:65344
     msg# single-grp, duration:15 minutes, diversion recommended, extent:2 segments, event:76
                                                                                                [43]:traffic congestion, average speed of 70 km/h, location:53073
     msg# single-grp, duration:15 minutes, diversion recommended, extent:-2 segments, event:7
                                                                                                [41]:traffic congestion, average speed of 50 km/h, location:63296
     msg# single-grp, duration:15 minutes, diversion recommended, extent:-3 segments, event:7
                                                                                                 [43]:traffic congestion, average speed of 70 km/h, location:51014
     msg# single-grp, duration:15 minutes, diversion recommended, extent:-3 segments, event:7
                                                                                                 [43]:traffic congestion, average speed of 70 km/h, location:51014
     msa# single-arp, duration:15 minutes, diversion recommended, extent:-3 seaments, event:7
                                                                                                 [43]:traffic congestion, average speed of 70 km/h, location:62289
     msa# single-grp, duration:15 minutes, diversion recommended, extent:-3 segments, event:7
                                                                                                 [43]:traffic congestion, average speed of 70 km/h, location:62289
     msg# single-grp, duration:15 minutes, diversion recommended, extent:-3 segments, event:7
                                                                                                 [43]:traffic congestion, average speed of 70 km/h, location:62289
     msg# single-grp, duration:15 minutes, diversion recommended, extent:-2 segments, event:7
                                                                                                 [42]:traffic congestion, average speed of 60 km/h, location:53062
     msg# single-grp, duration:15 minutes, diversion recommended, extent:-2 segments, event:7
                                                                                                 [40]:traffic congestion, average speed of 40 km/h, location:838
     msg# single-grp, duration:15 minutes, diversion recommended, extent:-2 segments, event:7
                                                                                                 [40]:traffic congestion, average speed of 40 km/h, location:838
                                                                                                 [40]:traffic congestion, average speed of 40 km/h, location:838
     msg# single-grp, duration:15 minutes, diversion recommended, extent:-2 segments, event:7
     msg# single-grp, duration:15 minutes, diversion recommended, extent:-2 segments, event:
                                                                                                 [42]:traffic congestion, average speed of 60 km/h, location:3910
     msg# single-grp, duration:15 minutes, diversion recommended, extent:-2 segments, event:7
                                                                                                 [42]:traffic congestion, average speed of 60 km/h, location:3910
     msg# single-grp, duration:15 minutes, diversion recommended, extent:-2 segments, event:7
                                                                                                 [42]:traffic congestion, average speed of 60 km/h, location:3910
     msg# single-grp, duration:15 minutes, diversion recommended, extent:-1 segments, event:7
                                                                                                 [43]:traffic congestion, average speed of 70 km/h, location:6978
     msg# single-grp, duration:15 minutes, diversion recommended, extent:-1 segments, event:7
                                                                                                 [43]:traffic congestion, average speed of 70 km/h, location:6978
     msg# single-grp, duration:15 minutes, diversion recommended, extent:-2 segments, event:7
                                                                                                 [43]:traffic congestion, average speed of 70 km/h, location:12114
                                                                                                 [43]:traffic congestion, average speed of 70 km/h, location:12114
     msa# single-arp, duration:15 minutes, diversion recommended, extent:-2 seaments, event:7
     msa# single-grp, duration:15 minutes, diversion recommended, extent:-2 segments, event:7
                                                                                                 [39]:traffic congestion, average speed of 30 km/h, location:49990
     msg# single-grp, duration:15 minutes, diversion recommended, extent:-2 segments, event:7
                                                                                                 [39]:traffic congestion, average speed of 30 km/h, location:49990
                                                                                                 [43]:traffic congestion, average speed of 70 km/h, location:59208
user msg# single-grp, duration:15 minutes, diversion recommended, extent:-4 segments, event:7#
user msg# single-grp, duration:15 minutes, diversion recommended, extent:-4 segments, event:7#
                                                                                                [43]:traffic congestion, average speed of 70 km/h, location:59208
user msg# single-grp, duration:15 minutes, diversion recommended, extent:3 segments, event:75#
                                                                                               [42]:traffic congestion, average speed of 60 km/h, location:838
#user msg# single-grp, duration:15 minutes, diversion recommended, extent:1 segments, event:11<mark>10</mark>0
#user msg# single-grp, duration:15 minutes, diversion recommended, extent:1 segments, event:1118 [0]: , location:5953
```

Encrypted Location Codes

Location codes: 16-bit for a given

geographical area

Encryption keys: 16-bit

Schedule: One randomly chosen

each day from 31

standard keys

Receiver update: Key ID broadcast

constantly

Daily Key ID

```
-- Performing CODEC loopback test... pass
-- Asking for clock rate 32 MHz
-- Actually got clock rate 32 MHz
-- Performing timer loopback test... pass
  Performing timer loopback test... pass
-- Setting references to the internal GPSDO
-- Initializing time to the internal GPSDO
Starting...
>>> bpsk demodulator enter looking
>>> gr fir fff: using SSE
>>> bpsk demodulator enter locked
രരുരുര Sync State Detected
#user msg# multi-grp (1st), continuity index:3, extent:1 segments, event:1083 [1019]
                                                                                     current temperature (Q), location:5953
First ENCID: 27
#user msg# mucci-grp (1st), continuity index:3, extent:1 segments, event:1083 [1019]
                                                                                      current temperature (Q), location:5953
user msg# multi-grp (1st), continuity index:3, extent:1 segments, event:1083 [1019#
                                                                                      current temperature (Q), location:5953
#user msg# multi-grp (1st), continuity index:3, extent:-1 segments, event:1348 [0]:
                                                                                       location:0
Location: 5953 temperature: 1348
#user msg# multi-grp (1st), continuity index:3, extent:-1 segments, event:1348 [0]:
                                                                                       location:0
#user msg# multi-grp (1st), continuity index:3, extent:-1 segments, event:1348 [0]:
                                                                                       location:0
user msg# multi-grp (1st), continuity index:4, extent:1 segments, event:1083 [1019]
                                                                                      current temperature (0), location:58180
                                                                                      current temperature (Q), location:58180
user msg# multi-grp (1st), continuity index:4, extent:1 segments, event:1083 [1019]#
#user msg# multi-grp (1st), continuity index:4, extent:1 segments, event:1083 [1019]
                                                                                     current temperature (0), location:58180
#user msg# multi-grp (1st), continuity index:4, extent:-1 segments, event:1348 [0]: , יוסכסנוסח: #
Location: 58180 temperature: 1348
user msg# multi-grp (1st), continuity index:4, extent:-1 segments, event:1348 [0]: , location:0#
user msg# multi-grp (1st), continuity index:4, extent:-1 segments, event:1348 [0]: , location:4#
user msg# multi-grp (1st), continuity index:5, extent:-1 segments, event:1349 [0]: , location:0#
user msg# multi-grp (1st), continuity index:5, extent:-1 segments, event:1349 [0]: , location:0#
user msg# multi-grp (1st), continuity index:5, extent:-1 segments, event:1349 [0]: , location:0#
user msg# single-grp, duration:15 minutes, diversion recommended, extent:1 segments, event:1118 [0]: , location:5953#
user msg# single-grp, duration:15 minutes, diversion recommended, extent:1 segments, event:1118 [0]: , location:5953#
user msg# single-grp, duration:15 minutes, diversion recommended, extent:1 segments, event:1118 [0]: , location:5953#
#user msg# single-grp, duration:15 minutes, diversion recommended, extent:1 segments, event:1120 [1592]:(Q probability of) sunny periods, location:58180
#user msg# single-grp, duration:15 minutes, diversion recommended, extent:1 segments, event:1120 [1592]:(Q probability of) sunny periods, location:58180
#user msg# single-grp, duration:15 minutes, diversion recommended, extent:1 segments, event:1120 [1592]:(Q probability of) sunny periods, location:58180
#user msg# single-grp, duration:15 minutes, diversion recommended, extent:1 segments, event:1120 [1592]:(Q probability of) sunny periods, location:52039
#user msg# single-grp, duration:15 minutes, diversion recommended, extent:1 segments, event:1120 [1592]:(Q probability of) sunny periods, location:52039
```

Patterns

- Always three unique temperature reports
 - Key: Event ID
 - Value: Location
- Group of three Event IDs always the 'same'
- Encrypted Location IDs always the same for given Enc ID
- Event IDs identical for period of days/weeks
 - Can vary after some time, but 'hidden' (unobserved) value is always the same

'Temperatures'

```
-- Performing CODEC loopback test... pass
-- Asking for clock rate 32 MHz
-- Actually got clock rate 32 MHz
-- Performing timer loopback test... pass
-- Performing timer loopback test... pass
-- Setting references to the internal GPSDO
-- Initializing time to the internal GPSDO
Starting...
>>> bpsk demodulator enter looking
>>> gr fir fff: using SSE
>>> bpsk demodulator enter locked
രരരേര Sync State Detected
#user_msg#_multi-grp (1st), continuity index:3, extent:1 segments, event:1083 [1019]:current temperature (0), location:5953
First ENCID: 27
#user msg# mutti-grp (1st), continuity index:3, extent:1 segments, event:1083 [1019]:current temperature (0), location:5953
user msg# multi-grp (1st), continuity index:3, extent:1 segments, event:1083 [1019]:current temperature (Q), location:595#
#user_msa#_multi-arp_(1st), continuity index:3, extent:-1 segments, event:1348 [0]: , location:0
Location: 5953 temperature: 1348
#user msg# mucci-grp (isc), concinuity index:3, extent:-1 segments, event:1348 [0]: , location:0
user msg# multi-grp (1st), continuity index:3, extent:-1 segments, event:1348 [0]: , location:0#
#user msg# multi-grp (1st), continuity index:4, extent:1 segments, event:1083 [1019]:current temperature (Q), location:58180
user msg# multi-grp (1st), continuity index:4, extent:1 segments, event:1083 [1019]:current temperature (Q), location:58180#
user msg# multi-grp (1st), continuity index:4, extent:1 segments, event:1083 [1019]:current temperature (Q), location:58180#
                 <u>orn (1st) continuit</u>y index:4, extent:-1 segments, event:1348 [0]: , location:0
Location: 58180 temperature: 1348
user msg# muccr-grp (عدر), concindity index:4, extent:-1 segments, event:1348 [0]: , location:0#
user msg# multi-grp (1st), continuity index:4, extent:-1 segments, event:1348 [0]: , location:4#
user msg# multi-grp (1st), continuity index:5, extent:-1 segments, event:1349 [0]: , location:0#
user msg# multi-grp (1st), continuity index:5, extent:-1 segments, event:1349 [0]: , location:0#
user msg# multi-grp (1st), continuity index:5, extent:-1 segments, event:1349 [0]: , location:0#
user msg# single-grp, duration:15 minutes, diversion recommended, extent:1 segments, event:1118 [0]: , location:5953#
user msg# single-grp, duration:15 minutes, diversion recommended, extent:1 segments, event:1118 [0]: , location:5953#
user msg# single-grp, duration:15 minutes, diversion recommended, extent:1 segments, event:1118 [0]: , location:5953#
#user msg# single-grp, duration:15 minutes, diversion recommended, extent:1 segments, event:1120 [1592]:(Q probability of) sunny periods, location:58180
#user msg# single-grp, duration:15 minutes, diversion recommended, extent:1 segments, event:1120 [1592]:(Q probability of) sunny periods, location:58180
#user msg# single-grp, duration:15 minutes, diversion recommended, extent:1 segments, event:1120 [1592]:(Q probability of) sunny periods, location:58180
#user msg# single-grp, duration:15 minutes, diversion recommended, extent:1 segments, event:1120 [1592]:(Q probability of) sunny periods, location:52039
#user msg# single-grp, duration:15 minutes, diversion recommended, extent:1 segments, event:1120 [1592]:(Q probability of) sunny periods, location:52039
```

Patterns

Days			

 P_1

 $evt(P_1, L_1) : enc(K_2, L_1)$

 $evt(P_1, L_2) : enc(K_2, L_2)$

 $\operatorname{evt}(P_1, L_3) : \operatorname{enc}(K_2, L_3)$

= evt(period, plain location)

Location = enc(key of the day, plain location)

K₂

 P_2

 $evt(P_2, L_1) : enc(K_2, L_1)$

 $\operatorname{evt}(P_2, L_2) : \operatorname{enc}(K_2, L_2)$

 $evt(P_2, L_3) : enc(K_2, L_3)$

K₃

P₂

 $evt(P_2, L_1) : enc(K_3, L_1)$

 $\operatorname{evt}(P_2, L_2) : \operatorname{enc}(K_3, L_2)$

 $evt(P_{2}, L_{3}) : enc(K_{3}, L_{3})$

Days			
Key ID (random	K ₁	K ₂	

 P_1

 $evt(P_1, L_1) : enc(K_1, L_1)$

 $evt(P_1, L_2) : enc(K_1, L_2)$

 $evt(P_1, L_3) : enc(K_1, L_3)$

Transmitted over the air:

Group Period

Hidden Plain

 L_1

 L_2

 L_3

Event

'Location'

Security Analysis

- 16-bit is **very** short
- Identical group of 'location codes' are broadcast on a daily basis
 - Unknown but re-used plaintext
- 'Singular' events can be correlated from a trusted source
 - Known plaintext

Singular Event from Trusted Source

Input Data

Plain 'Location'	L ₁	L ₂	L ₃		
Key ID					
K ₁	enc(K ₁ , L ₁)	enc(K ₁ , L ₂)	enc(K ₁ , L ₃)		
K ₂	enc(K ₂ , L ₁)	enc(K ₂ , L ₂)	enc(K ₂ , L ₃)		
K ₃	enc(K ₃ , L ₁)	enc(K ₃ , L ₂)	enc(K ₃ , L ₃)		
K ₄	enc(K ₄ , L ₁)	enc(K ₄ , L ₂)	enc(K ₄ , L ₃)		
K ₅	enc(K ₅ , L ₁)	$enc(K_5, L_2)$	enc(K ₅ , L ₃)		

- 1. Bootstrap: find all possible plain locations & keys that result in enc(K_1 , L_1)
- 2. Given those keys, find all possible plain locations recorded with that Key K_1 (i.e. L_2 , L_3)
 - Remember pool of possible plain locations for each L & pool of possible keys for K
- 3. For each remaining K, repeat maintaining pool of possible keys for each K:
 - Find all possible keys given pool of possible plain locations for each L
 - Repeat, filtering pools until only one match remains
 - \rightarrow Remove item from pool when enc(K, L) \neq input data

Algorithm

Results

Location # 1	has	1 possible	plain	codes	Encryption 1		has		possible	
4603 11fb		•			Encryption 1		has		possible	
Location # 2	has	l possible	nlain	codes	Encryption 1		has		possible	
4401 1131	1143	1 possible	o corri	00403	Encryption 1		has		possible	•
Location # 3	la m. c	1 possible	nlain	codoc	Encryption 1		has		possible	
	lias	1 possible	ptain	codes	Encryption 1		has		possible	
4172 104c	•				Encryption 1		has		possible	•
Location # 4	nas	l possible	plain	codes	Encryption 1		has		possible	
5134 140e					Encryption 1		has		possible	
Location # 5	nas	l possible	plain	codes	Encryption 1		has	1	possible	keys
4193 1061					of two story		h			
Location # 6	nas	1 possible	plain	codes	Encryption 1		has		possible	
4527 11af					Encryption 1		has		possible	•
Location # 7	has	1 possible	plain	codes	Encryption 1		has		possible	
4329 10e9					Encryption 1		has		possible	•
Location # 8	has	1 possible	nlain	codes	Encryption 1		has has		possible	•
5611 15eb	IIGS	I possible	PEGILI	cours	Encryption 1		has		possible	
	h	1	-1-4-		Encryption I		has		possible possible	•
	has	l possible	ptain	codes	Encryption 1		lias	1	possible	Keys
4538 11ba					Encryption 1		has	3	possible	kevs
Location # 10	nas	l possible	plain	codes	Encryption 1		has		possible	•
4303 10cf					Encryption 1		has		possible	
Location # 11	nas	l possible	plain	codes	Encryption 1		has		possible	•
4223 107f					LifeTypeTon 2		IIGS	-	possible	KC y 5
Location # 12	nas	1 possible	plain	codes	Encryption 1		has	2	possible	kevs
4834 12e2					Encryption 1		has		possible	
					Encryption 1	J1	nus		possibile	ice y 5

Results

- Convergence expedited by addition of 'singular' events
 - "vehicle fire(s)"
 - "flooding"
 - "object(s) on roadway {something that does not neccessarily block the road or part of it}"
- Even though multiple keys exist for a Key ID, with enough data plain location search yields one match!

Aviation RADAR

ATCRBS, PSR & SSR

Air Traffic Control Radar Beacon System

Primary Surveillance Radar

Secondary Surveillance Radar

Primary:

- Traditional RADAR
- 'Paints skins' and listens for return
- Identifies and tracks primary targets,
 while ignoring 'ground clutter'
- Range limited by RADAR equation $(\frac{1}{d^4})$

ATCRBS, PSR & SSR

Air Traffic Control Radar Beacon System

Primary Surveillance Radar

Secondary Surveillance Radar

Secondary:

- Directional radio
- Requires transponder
- Interrogates transponders, which reply with squawk code, altitude, etc.
- Increased range $(\frac{1}{d^2})$

Primary Surveillance RADAR

- Transmits a 'bang' (the main pulse)
- Listens for returns (echoes)

The Modes

- A: reply with squawk codeC: reply with altitude
- S: enables Automatic Dependant Surveillance-Broadcast (ADS-B), and the Aircraft/Traffic Collision Avoidance System (ACAS/TCAS)

The Modes

- A: reply with squawk codeC: reply with altitude
- S: enables Automatic Dependant Surveillance-Broadcast (ADS-B), and the Aircraft/Traffic Collision Avoidance System (ACAS/TCAS)

- Mode S not part of ATCRBS, but uses same radio hardware (same frequencies)
 - Increasing problem of channel congestion

Position

Heading

Altitude

Vertical rate

Flight ID

Squawk code

A Typical 747 has...

2 x 400 W voice HF

31 radios

- 3 x 25 W voice/data VHF
- 2 x 100 W 9GHz RADARs
- 2 x GPS, 1.5GHz 60 W voice/data SATCOM
- 2 x 75MHz marker beacons
- 3 x VHF LOC localiser
- 3 x UHF glide slope
- 2 x LF ADF automatic direction finder
- 2 x VOR VHF omni-directional range
- 2 x 1GHz 600 W transponders
- 2 x 1GHz 700 W DME distance measuring equipment
- 3 x 500mW 4.3GHz radar altimeters
- 3 x 406MHz EPIRB

Mode S Response Encoding

 Data block is created & bits control position of pulses sent by transmitter

Pulse Position Modulation

- Pulse lasts 0.0000005 seconds (0.5 μs)
- Need to sample signal at a minimum of 2 MHz
 (assuming you start sampling at precisely the right moment and stay synchronised)
- Requires high-bandwidth hardware and increased processing power
- Ideally, oversample to increase accuracy

Mode S Frame

Mode S Response: AM signal

Waiting for krump-dev..

Welcome to Aviation Mapper

Click here for info, feedback and to share - if you like this, let me know.

I need to find a new receiver site near the airport ASAP - please help!

International & MELBO MELBO cross-country flight paths sent as flight plans using IFR waypoints

& UNDER

2709 km

Data SIO, NOAA, U.S. Navy, NGA, GEBCO

@ 2012 Cnes/Spot Image @ 2012 Whereis® Sensis Pty Ltd

3°56'15.16" N 93°48'49.69" E elev -1305 m

http://maps.spench.net/aviation/

MACLA O

Google earth

Eye alt 5231.14 km 🔘

Moffett Field ASR-9

Primary Surveillance RADAR

Primary Surveillance RADAR

Primary Surveillance RADAR

Dual PRF Mode: Weather

TABLE 1 MMAC Academy ASR-9 System Characteristics

Frequency	2.7 GHz			
Peak Power	1.1 MW			
Pulse Length	1 μs	short	scanNum; tiltNum;	
Pulse Repetition Frequency	Dual PRF (1160 Hz average)	short short	az;	/* Unused in WSP system */ /* Deg x 10 */
Antenna Gain	34 dB	short	el;	/* Deg x 10 */ /* Primary PRF */
Azimuth Beamwidth	1.4°	short short	prf1; prf2;	/* 2nd PRF for dual-prf radars (ASR-9)
Elevation Beamwidth	4.8°	short	flags;	/* END_OF_TILT bit, among others */
Rotation Rate	12.5 rpm	short	nProds ;	/* Number of products in radial */
Range Gate Spacing	116 m			
Azimuthal Resolution	1.4°			
Sensitivity	1 m² @ 111 km			
System Stability	48 dB			

Radar energy entering this trapping layer can be refracted through an effective curve with a radius smaller than that of the Earth, returning to scatter off the surface some distance from the radar. If the layer is of large horizontal extent radar energy scattered back into the atmosphere from the surface after this process can be trapped a second time, and in this way a surface duct can be formed which may carry energy to large distances beyond the unambiguous range of the radar and return multiple-trip echoes by the same ray path. These echoes will display at arbitrary ranges on the PPI (the residual between some multiple of the unambiguous range and the true range to the remote reflector), but at the true azimuth of the reflect or. Note however the dual PRF technique employed by the ASR-9 radars, which should eliminate multiple-trip returns.

Magnitude Histogram

Magnitude Histogram

Above Noise Floor

Above Noise Floor

Pulse Length Histogram

Pulse Envelope

Pulse Envelope

Pulse Envelope

Strong Pulse Separation

PRF Histogram

Strong Pulses vs. Time

Strong Pulses vs. Time (zoomed)

Pulse Power vs. Time

Pulse Power vs. Time (zoomed)

Distance Between Pulses

Pulse and echo power over time

Raw RADAR Return Plot

Each scanline is synchronised to an emitted pulse

Scanline is amplitude of samples over time (also range of the return)

LAS ASR-9

Distortion Map

ATSC

PN511

Correlation Peaks

My Account

Contact Us

About FasTrak

FAO

How to Use I-15 Express Lanes

South Bay Expressway

Customer Service Centers

Get FasTrak

San Diego Toll Roads

News and Events

About FasTrak

FasTrak is the electronic toll system that allows customers to use any toll road, bridge, or express lane in California without stopping to pay. To participate, drivers must have a prepaid FasTrak account and a transponder properly installed on their windshield when they use a FasTrak toll

road or from a account

Click he

Click I

accoun

If found please return to: FasTrak Customer Service Center P.O. Box 26927 San Francisco, CA 94126 (877) 229-8655

RETURN POSTAGE GUARANTEED

South Bay Expressway

FasTrak

- Traffic toll tag
 - Contains your ID
- Interrogation signal in 900 MHz ISM band
 - Wake up' signal activates tag
 - Pulse-Position Modulated payload
- Tag replies with backscatter modulation
 - Reflects transmitter's RF energy (tiny amount)
 - Modulates reflection with Frequency Shift Keying

Highway to Hell: Hacking Toll Systems

Interrogation Signal

Wake Up/Preamble

Interrogation Payload

Backscatter Carrier

Interrogation Signal

(no tag detected)

last_id_count_txt: 0

Received Signal

(no tag detected)

last id count txt: 0

Received Signal

Last ID:

Actions betting sections betting betti

last id count txt: 0

Received Signal

Author father fa

Title 21 Specification

frequencies correspond to data bits of and in respectively. The message information is conveyed by the subcamer modulation requencies of the transponder backscattered signal and not by amplitude of phase.

- b. Data Bit Rates.
 - The data bit rate for transponder-to-reader data messages shall be 300 kbps.
- c. Field Strength.
 - The field strength at which a transponder data message is transmitted using backscatter technology is dependent upon the incident field strength from the reader, the transponder receive and transmit antenna gains, and any RF gain internal to the transponder. The transponder and antenna gain taken together shall effect a change in the backscattering cross section of between 45 and 100 square centimeters.
- d. Standard Transponder Data Message Format.
 - The standard portion of a transponder data message shall consist of a header and transaction record type code. The subsequent length, data content and error detection scheme shall then be established by the definition for that transaction record type.
- e. Transponder Data Message Formats for AVI Toll Collection.
 - There may be numerous transponder-to-reader data message formats. The format is determined by the transaction record type code sent by the transponder. The following is the reader-to-transponder message format presently specified for AVI electronic toll collection applications:
 - Transponder Transaction Type 1 (Data Message).
 Transponder transaction type 1 (data message) allows for unencrypted transponder ID numbers to be transmitted. Type 1 (data messages) shall be structured using the following ordered data bit fields:

Field Definition	No. Bits	Hexadecimal Value
Header Code		
Selsyn	8	AA
Flag	4	С
Transaction Record Type Code	16	1
Transponder ID Number	32	
Error Detection Code	<u>16</u>	
	76	
	Total:	

f. Transponder End-of-Message Frame

The End-of-Message signal for transponder data messages shall consist of a minimum of 10 microseconds of no modulation.

Preamble Detection

(no tag detected)

last id count txt: 0

Preamble Detection

last id count txt: 8

Slicer Time!

Totales listines listines listines listines betwee testines listines listin

Reading a Tag Outside

Time-domain Amplitude (LF)

Time-domain Amplitude (LF)

Time-domain Amplitude (UHF)

GNU Radio > baudline

GNU Radio + baudline

Time-domain Amplitude

Time-domain Amplitude

Time-domain Amplitude

Total Delta V Requirement to Bring ISEE-3 Back to L1

Arecibo Radio Observatory

View from above

Ionospheric heaters

Still a good start...

Weak Signal → Low RBW

numpy & matplotlib

After Improving Pointing

- ~45 dB C/N
- Moving peak below due to Doppler shift

Verifying Transmitted Signal

Moment of First Contact

Dual Channel Recording

Raw Captured Baseband

PLL Lock

Propulsion System

```
Current time: 2014-06-24 13:50:54.153003
Data arrived: 2014-06-24 13:50:54.161531
                                   Data source: Rate: 1027, drops: 0000
Data lag
           : -0.008515
Complete frame count: 9, sync reset count: 3, minor frame discontinuities: 5
frame counter
cmd ctr b
                                    [0010] = 251
                                                                                 (008: 96)
cmd ctr a
                                    [0010] = 149
                                                                                 (008: 0)
non ess current
                                    [0015] = 3.951613 A (valid)
                                                                                 (004: 3.911290)
28v bus
                                    [0016] = 28.144000 V (valid)
                                                                                 (008: 28.136000
ess current
                                    [0015] = 0.233871 A (valid)
                                                                                 (002: 0.225806)
                                                                                                                                                                                                                                            (136, 87)
                                                                                                                                                                                                                                           (136, 101)
(134, 121)
                                                                                                                                                                                                                                                         000
                                    [0014] = 5.277778 A (valid)
                                                                                 (000: 5.158730)
sa current
shunt dump current
                                    [0003] = 0.685484 A (valid)
                                                                                 (004: 0.887097)
hps 1 thruster select
                                    [0007] = 0000000000000
                                                                                 (009: 010110000110)
                                                                                                                                                                                                                                                    11
12
13
14
14
14
14
14
16
17
17
18
19
19
19
19
55
55
55
55
55
55
hps 1 sector initiate
hps 1 sector width
                                    [0007]
                                           = 475
                                                                                 (009: 252)
                                    [0007] = 2
                                                                                 (009: 0)
hps 1 num pulses
                                    [0008] = 4
                                                                                 (009: 2)
hps 1 firing ratio
                                    [0008] = 15
hps 1 ratio select
                                    [0008] = enabled
                                                                                 (013: disabled)
hps 1 logic pwr
                                    [00081 = on
                                                                                 (016: off)
hps 1 init term
                                    [00081 = 0]
                                                                                 (009: 1)
hps 1 complete
                                    [0008] = incomplete
hps 1 28v on
hps 2 thruster select
                                           = off
                                    [0007] = 0000000000000
                                                                                 (009: 011111100100)
hps 2 sector initiate
                                    [0007] = 0
                                                                                 (008: 712)
hps 2 sector width
                                    [0007] = 0
hps 2 num pulses
                                    [0007] = 0
                                                                                 (008: 1078)
hps 2 firing ratio
hps 2 ratio select
hps 2 logic pwr
                                    [0006]
                                           = 0
                                                                                 (015: 9)
                                           = disabled
                                                                                 (015: enabled)
                                    [0006] = on
                                                                                 (008: off)
hps 2 init term
hps 2 complete
hps 2 28v on
                                           = 0
                                                                                 (015: 1)
                                           = complete
                                                                                 (008: incomplete)
                                                                                                                                                                                                                                                         001
003
                                    [0006] = off
                                                                                 (008: on)
hps 1 prm tk htrs
                                    [0004] = off
hps I sec tk htrs
                                    [0004] = low
                                                                                 (003: off)
hps 2 prm tk htrs
                                    [0004] = off
                                                                                 (011: low)
hps 2 sec tk htrs
hps 1 2 prm ln htrs
hps 1 2 sec ln htrs
                                    [0004] = low
                                                                                 (003: off)
                                                                                 (003: off)
                                           = low
                                                                                 (003: off)
                                                                                                                                                                                                                                            (136, 38)
accel pwr monitor
                                    [0003] = 119
                                                                                                                                                                                                                                                         001
hps 1 tc
                                    [0003] = -55.088889 C (valid)
                                                                                 (001: -51.600000)
                                                                                                                                                                                                                                            (136, 41)
hps 2 tc
                                           = -10.810811 C (valid)
                                                                                                                                                                                                                                            (136, 51)
hps 1 temp supercom
                                                                                                                                                                                                                                            (134, 57)
                                                                                                                                                                                                                                            (134, 67)
                                    100041
                                                                                 (012: 253)
                                                                                                                                                                                                                                                         004
hps 2 temp supercom
                                    [0003] = 19.1595852499
spin rate
spin period
                                    [0003] = 3.13159179688
                                                                                 (006: 19.2120075047)
mag rate
                                    [0003] = 18.7810935769
                                    [0003] = 3.19470214844
mag_period
                                                                                 (006: 3.123046875)
                                    [0003] = 207.686910423
fss angle
                                    [0004] = 91.6409684294
                                                                                 (001: Data out of expected range)
                                    [0003] = 0.000000 psi (valid)
hps 1 tk press
                                                                                                                                                                                                                                           (136, 115)
hps 2 tk press
                                    [0003] = 4.800000 psi (valid)
                                                                                                                                                                                                                                           (136, 121)
                                    [0004] = 0
hps 1 lv a
                                                                                                                                                                                                                                            (134, 61)
                                                                                                                                                                                                                                                         004
hps 2 lv b
                                    [0004] = 0
                                                                                                                                                                                                                                            (134, 61)
hps 1 lv c
hps 2 lv d
                                           = 0
                                                                                                                                                                                                                                            (134, 61)
                                                                                                                                                                                                                                                          004
                                    [0004] = 0
                                                                                                                                                                                                                                            (134, 61)
accelerometer
                                    [0234] = 119
                                                                                 (010: 221)
                                                                                                                                                                                                                                            (137, 40)
```

Receiving

Telemetry: 16 bps

Telemetry: 64 bps

Telemetry: 512 bps

Telemetry: 2048 bps

Telemetry During Thruster Firing

No Thrust

Hydrazine Propulsion System

New Orbit

A SPACECRAFT FOR ALL

The ISEE-3 was launched to study the Sun in 1978, but ended up redefining space flight. Now it's on a new mission to become citizen science's first spacecraft, with data accessible by everyone.

SEE THE JOURNEY

SEE LIVE VIEW

www.spacecraftforall.com

#cyberspectrum

Other Applications

What you need

Dish + LNB + power injector + USRP + GNU Radio

(set-top box with LNB-thru)

D1 TLM1: 12243.25 MHz

Beacon with Phase Modulation* (PM): 1PPS and two telemetry streams (sidebands)

Visualisation

Let's try one...

- Feed entire baseband spectrum into GR
- Perform 'channel selection' to isolate stream of interest

(create new baseband centred on stream)

Frequency Xlating FIR Filter
Decimation: 10
Taps: firdes.low_pass(1, s...
Center Frequency: 0

Sample Rate: 1M

Frame analysis

- Header
 - SYN SYN SYN (EBCDIC)
- Character-oriented encoding:
 - SOH
 - STX
 - ETX
 - CRC (CCITT-16)
- Numbers of fixed-length messages
 - Each contains an ID

```
222.
```


Un-pack & find patterns

Graphing the Data

Software Defined Radio Direction Finding

SDR Direction Finding

Center freq:

2.432G

Two WiFi channels, and then some...

FLEX Pagers & Baudline

900 MHz ISM – Smart Meters

3G W-CDMA

Signature of UMTS: repeating data in CPICH at 10 ms intervals

gnss-sdr: Decoding L1

The Entire HAM Band

OpenBTS

- Open-source 2G GSM stack
 - Asterix softswitch (PBX)
 - VoIP backhaul

802.11agp (OFDM) Decoding

Automatic Picture Transmission

Automatic Identification System

