
Bar Mitzvah Attack
Breaking SSL with a 13-year old RC4 Weakness

Abstract
RC4 is the most popular stream cipher in the world. In fact, as of March 2015, RC4 is estimated to

protect as much as 30% of SSL traffic, likely amounting to billions of TLS connections every day. Yet it

suffers a critical – and long known – weakness known as the Invariance Weakness. In this paper we will

revisit the Invariance Weakness – a 13-year old vulnerability of RC4 that is based on huge classes of RC4

weak keys, which was first published in the FMS paper in 2001. We will show how this vulnerability can

be used to mount partial plaintext recovery attacks on SSL-protected data, when RC4 is the cipher of

choice, for recovering the LSBs of as many as 100 bytes from the encrypted stream.

As opposed to BEAST, POODLE, CRIME and other attacks on SSL that were published in recent years,

including the Royal Holloway Attack on the usage of RC4, a new attack based upon the Invariance

Weakness does not rely on aggregation of small fragments of plaintext information, but on a “hit”, a

rare event that causes a significant leakage to occur. We show how this unique characteristic can be

used to attack SSL in new scenarios, including the first practical attack on SSL that does not require an

active Man-in-the-Middle. Furthermore, the new attack is not limited to recovery of temporal session

tokens, but can be used to steal parts of permanent secret data such as account credentials and credit

card numbers when delivered over HTTPS. Another variant of the attack recovers a significant part of a

secret with small but non-negligible probability, even if that was transmitted only once over the SSL

connection.

This paper will describe the Invariance Weakness in detail, explain its impacts, and recommend some

mitigating actions.

Introduction

TLS

The Protocol
TLS is the most widely used secure communications protocol on the Internet today. Starting life as SSL,

the protocol was adopted by the IETF and specified as an RFC standard under the name of TLS 1.0 [1]. It

has since evolved through TLS 1.1 [2] to the current version TLS 1.2 [3]. TLS 1.3 is, as of March 2015, in

draft [4]. Various other RFCs define additional TLS cryptographic algorithms and extensions.

SSL is currently used for securing a wide variety of application-level traffic: It serves, for example, as the

basis of the HTTPS protocol for encrypted web browsing, it is used in conjunction with IMAP or SMTP to

cryptographically protect email traffic, and it is a popular tool to secure communication with embedded

systems, mobile devices, and in payment systems.

SSL strives to fulfill two major goals: 1) allow two parties to authenticate each other, and 2) secure the

communication between the two. In many SSL deployments, particular secure web browsing, the

authentication is one-way, meaning that only the client (browser) authenticates the server (web

application), but not vice versa.

SSL sessions consist of two phases: In the SSL Handshaking Protocol the client authenticates the server,

the server (optionally) authenticates the client and both establish cryptographic session keys, ready to

protect the communication. In the Record Protocol the parties use the established session keys and

symmetric key cryptography to encrypt (e.g., using AES block cipher or RC4 stream cipher) and

authenticate (e.g., using HMAC algorithms) to build a secure channel for application-layer data. The

parties can choose between many different authentication and encryption algorithms for the Record

Protocol, essentially divided into the following classes:

 Block Cipher (CBC mode of operation) + HMAC

 Stream Cipher (RC4) + HMAC

 Authenticated-Encryption using block cipher (GCM/CCM mode of operation)

SSL Protocol Weaknesses
In the last couple of years several significant vulnerabilities have been discovered in the SSL protocol,

particularly in the most commonly used variants, AES-CBC and RC4. The AES-CBC variant has seen

significant cryptanalysis (padding oracle attacks [5], BEAST [6], Lucky 13 [7], TIME [16], and POODLE

[15]). And in 2013 AlFardan et-al published an analysis [8] of the RC4 mode, which showed how to

mount an attack that recovers data transmitted over a SSL/RC4 connection. The attack was based on

some of the many know weaknesses of RC4, in particular the significant statistical biases in its first

output bytes, and the weaker statistical biases in the RC4 keystream.

Implementation Weaknesses
In recent years SSL implementations have received significant attention and scrutiny from security

researchers, and this has resulted in steady discovery of new vulnerabilities (and patching, with or

without disclosure). In 2014 several dozen vulnerabilities were discovered in the OpenSSL library (the

most popular implementation of SSL), Heartbleed being the most severe one in that it allows an attacker

to dump memory segments from the SSL server, in many cases exposing secret key information.

Vulnerabilities in several other implementations were published as well (e.g., CVE-2014-6321 in

Microsoft SChannel).

On RC4

The Stream Cipher
The 4-line Stream Cipher Rivest Cipher 4 (RC4) is one of the simplest cryptographic algorithms,

implementing a pseudo-random generator that is used to implement a stream cipher. The internal state

of RC4 includes a permutation S of [0, 1, .., 255] and two indices i and j in this permutation.

In the key scheduling phase (KSA) an L-byte long RC4 key (for L varying between 5 and 256) is used to

construct the initial state permutation S0. In the encryption phase, RC4 PRGA, which is initialized with

the resultant S0 is used to generate a stream of pseudo-random bytes, denoted as the keystream. Like

most of the Stream Ciphers, these pseudo-random bytes are XOR-ed with the plaintext bytes to

generate the ciphertext bytes.

The building blocks of RC4 are described below.

KSA(K) PRGA(S0)

j = 0
S = [0, 1, 2, …, 255]
for i = 0..255
 j = (j + S[i] + K[i mode L])
 S[i] ↔ S[j]

All
operations
are done
mod 256

i, j = 0, 0
S = S0
while bytes are needed:
 i = i + 1
 j = j + S[i]
 S[i] ↔ S[j]
 Emit S[S[i]+S[j]]

Known for its simplicity and for its respected author, RC4 gained considerable popularity. And given its

impressive performance, being able to encrypt and decrypt almost two times faster than AES, for many

years it was considered to be the default stream cipher.

Security of RC4
RC4 is not a secure cipher.

Back in the 90s, when RC4 was a trade secret of RSA and its details where known but not formally

approved, RC4 was believed to be secure. However, in the following decade, RC4 had undergone

significant scrutiny by cryptography experts, which showed statistical biases in the pseudo-random

stream that allow an attacker to distinguish RC4 from random ([9], [10]) and to predict its allegedly

pseudo-random bits with high probability ([10]).

While this statistical analysis requires many millions of RC4 keystream bytes, two researches in 2001 on

the initialization of RC4 had switched the focus of RC4 analysis to its poor initialization mechanisms. The

first [11] had shown that the second byte of RC4 has huge statistical bias, having twice the expected

probability to be zero. The second [12], later known as the FMS research, had completely broken RC4 in

the way it was used in the WEP protocol. These results had initiated a wave of research efforts and

analysis results on RC4 initialization, a wave whose end is yet to be seen. Correlation between key bytes

and state bytes (e.g., [13]), correlation between key bytes and first output bytes (e.g., [12]), and

between key bytes and further output bytes ([14]), significant statistical biases in the first 256 output

bytes [17], and many other results.

Interestingly, the series of successful attacks didn’t have a significant impact on the popularity of RC4,

and in fact during the wave of CBC attacks on SSL in 2012, some experts recommended switching to RC4.

The Invariance Weakness
The FMS research [12] details two significant RC4 weaknesses. The IV weakness, resulting in a practical

key recovery attack and complete break of RC4 in the WEP protocol, received most of the attention,

leaving the other weakness - denoted in the paper as the Invariance Weakness - in the shadows for 13

years.

The Invariance Weakness, is an L-shape key pattern in RC4 keys, which once it exists in an RC4 key,

preserves part of the state permutation intact throughout the initialization process. This intact part

includes the least significant bits of the permutation, when processed by the PRGA algorithm,

determines the least significant bits of the allegedly pseudo-random output stream along a long prefix of

the stream. These patterns, and a detailed explanation of how they are preserved, are described in

detail in [12] and [13]. These biased stream bytes are XOR-ed with the plaintext bytes, resulting in

significant leakage of plaintext bytes from the ciphertext bytes.

K
ey B

yte 0

K
ey B

yte 1

K
ey B

yte 2

K
ey B

yte 3

Pattern in
Key

Pattern in
Pseudo-random
stream

Least significant bits

Least significant bits

Most significant bits

K
ey B

yte 1
2

K
ey B

yte 1
3

K
ey B

yte 1
4

K
ey B

yte 1
5

O
u

tp
u

t B
yte 0

O
u

tp
u

t B
yte 1

O
u

tp
u

t B
yte 2

O
u

tp
u

t B
yte 3

Most significant bits

These patterns occur for different number of LSBs, a single LSB, 2 LSBs, 3 LSBs to 7 LSBs, resulting with

different classes of weak RC4 keys. Due to the structure of these classes, each class contains the

succeeding classes and thus the first class is the largest, denoted below as the Main Class.

The portion of q-class for L-byte keys (which is the probability of a random key to be in the class) is 2-

(qL+(9-q)). For 16-byte key the portion of the Main Class (1-class) is 2-24 (1 in 16 million) and the portion of

2-class is 2-39 (very rare). These numbers are shown in the following table.

LSBs Applicability Class Probability (8-
byte key)

Class Probability (16-byte
key)

1 Keys with even number of bytes 2-16 2-24

2 Keys with number of bytes that is a
multiple of 4

2-23 2-39

3 Keys with number of bytes that is a
multiple of 8

2-30 2-54

4 Keys with number of bytes that is a
multiple of 16

2-37 2-69

When a key from a q-class is used, the following things happen:

 The initialization phase of RC4 fails to mix the state with key material properly, and preserves

the K least significant bits of its internal state

 As a result, the initial state of RC4 has fixed non-mixed q LSBs

 q least significant bits of the first 30-50 bytes stream bytes comply with a deterministic pattern

with significant probability

 q least significant bits of the first 30-50 plaintext bytes are exposed with significant probability

The probability of the q LSBs to comply with the pattern drops with the stream. This probability is

demonstrated in the following diagrams for a single LSB, 2 LSBs and 3 LSBs.

Figure 1: Single LSB (advantage over 0.5)

Figure 2: 2 LSBs (advantage over 0.25)

Figure 3: 3 LSBs (advantage over 0.125)

The reason for the decreasing probability is the state pattern getting “ruined” with the stream

generation and after 50 bytes emitted by RC4 PRGA, the pattern fades out.

However, subsequent analysis we ran on RC4 streams when using weak keys showed a difference

pattern between stream LSBs, which is less sensitive to this “ruining” effect, and manages to survive for

as many as 100 bytes of the keystream.

The survival probability of difference patterns is demonstrated in the following diagrams for a single LSB,

2 LSBs and 3 LSBs, with reference to the value patterns (the diff pattern is in red and the value pattern

remains in blue).

Figure 4: Single LSB (diff pattern; advantage over 0.5)

Figure 5: 2 LSBs (diff pattern; advantage over 0.25)

Figure 6: 3 LSBs (diff pattern; advantage over 0.125)

Applications of the Invariance Weakness
The Invariance Weakness of RC4 has several cryptanalytic applications, described in detail in [12] and

[13], including statistical biases in the RC4 pseudo-random stream that allow an attacker to distinguish

RC4 streams from randomness and enhancement of tradeoff attacks on RC4. Another application of the

Invariance Weakness, which we use for our attack, is the leakage of plaintext data into the ciphertext

when q-class keys are used.

The authors of [8] had translated statistical biases in the keystream into plaintext leakage attacks. We

follow [8] and use our statistical bias to recover plaintext information. The Invariance Weakness biases

are not as strong as the biases used in [8]. However, these biases have unique characteristics, on one

hand occurring rarely, but on the other hand effective in 100 keystream bytes with extremely high

probability, opening the door to plaintext leakage attacks in several circumstances that were believed to

be completely secure.

Using the Invariance Weakness to Attack SSL

SSL Usage of RC4
SSL Record Protocol uses RC4 for encryption in many SSL cipher suites. In the Handshaking protocol, RC4

encryption keys are generated for upstream and downstream communication. In the Record protocol,

the upstream key is used for encryption of client-to-server communication, whereas the downstream

key is used for encryption of server-to-client communication. It is important to note that the encryptions

are statefull, using the first keystream bytes for encrypting the first message, the succeeding keystream

bytes for encrypting the next message, etc. Given that the Invariance weakness is expressed only in the

first 100 bytes of the keystream, it can be used only for the first 100 bytes of the protected upstream

traffic and the first 100 bytes of the protected downstream traffic. Given that the first encrypted

message in each direction is the SSL Handshake Finished message (36-bytes in typical usage of SSL),

about 64 bytes of secret plaintext data are left for the attack.

This flow is depicted in the following diagram.

Record Protocol

Client Server

Handshake Protocol

Finished [36]

Finished [36]

Upstream Key

Downstream Key

Upstream Key

Downstream Key

HTTP Request [n]

Use Bytes 0..35 of the
Upstream keystream

Use Bytes 0..35 of the
Downstream keystream

Use Bytes 36..36+n of
the Upstream

keystream

The first 36 bytes of the upstream keystream are used for encrypting the Finished message. The next

bytes are used to encrypt the actual application data.

The Attack Scenario
Our attacks are based on the following scenario: the attacker sniffs a large number of SSL connections

encrypted with RC4, waiting for a “hit”; that is the arrival of a weak key. Once a weak key arrives, the

attacker predicts the LSBs of the keystream bytes, and uses these to extract the LSBs of the plaintext

bytes from the ciphertext with significant advantage.

In order to fulfill this scenario, the attacker needs to determine which SSL sessions are the ones in which

weak keys were used. For this isolation the attacker can use the fact that the first encrypted bytes

include the SSL “Finished” message and HTTP request, both having predictable information. Thus, when

a weak key is used, the plaintext patterns are XOR-ed with keystream patterns, generating ciphertext

patterns visible to the attacker.

[7], [8] and other previous attacks on SSL, use tiny statistical biases to aggregate tiny pieces of plaintext

information. In order to make this aggregation possible, the target object must be encrypted many

times, with the same key in [7 and with different keys in a broadcast scenario in [8]. As opposed to these

attacks, our attack scenario, when a weak key arrives, gets at once a significant amount of data on the

target object, providing immediate partial plaintext recovery. On the other hand, this partial plaintext

recovery cannot be extended into full plaintext recovery by continuing the attack and listening to more

sessions.

What can you do with LSBs?
The above scenario allows the attacker to recover the least significant bits of up to a hundred secret

bytes. When the target object is a session cookie, the attacker reduces the effective size of the cookie,

allowing acceleration of brute force attack on the session cookie for the sake of Session Hijacking. For

example, learning the LSBs of ASP session cookies, which contain 16 characters of 5-bit entropy each,

reduces 16 bits of the cookie entropy and thus can be used for faster brute force attack on the session

cookie value. For PHP session cookies this acceleration can increase to up to a factor of 232.

When the target object is an n-character password, an attacker possessing the password LSBs can

accelerate a dictionary attack with a factor of 2n, reducing the security of an 8-char password by a factor

of 256. Furthermore, an attacker who runs a brute force attack on a login API, can scan a database of

known popular passwords, extract the passwords that comply with the LSB pattern and try only these,

reducing the number of attempts by a factor of 2n.

We ran an experiment on a database of most commonly used passwords, where we group passwords

according to their least significant bits. For a single LSB the most common 1000 passwords were

grouped into 252 sets, leaving the brute force attacker an average of only 4 attempts, below the barrier

for most brute force protection policies. The estimation for the number of web accounts that are

protected with one of the top 1000 most commonly-used passwords varies between 10-15 percent,

setting the stage for an attack that uses the Invariance Weakness to extract the LSBs of the password in

hope that the user is one of the careless 10%.

We used a passwords popularity analysis from [18] to estimate the number of brute force attempts an

attacker needs to make once he has the LSBs of a password known to be in the top 100, 1000 and

10,000 (we took the numbers from [18] as is).

 Portion of web
accounts

Number of LSB
groups

Brute force worst
case (#Attempts)

Brute force
average case
(#Attempts)

Top 100 4.4% 68 6 1.5

Top 1000 13.2% 252 24 4

Top 10,000 30% 557 201 18

The entropy of a 16-digit credit card number is usually considered to be 5 digits, since the first 6 digits

are non-secret, the last 4 digits are freely exposed on receipts and for validation purposes, and there is a

1-byte checksum (Luhn algorithm). An attacker possessing the LSBs of a credit card number, reduces the

search domain from 100,000 into only 1500. These 1500 candidate numbers can be tested by making

attempts for small amount payments in retail web applications to find the valid one after 750 attempts

on average. Thus the reduction in the credit card entropy from 100,000 potential numbers into 1500

potential numbers is significant, and increases the practicality of attacks.

A Man-in-the-Middle Attack
The first attack we describe resembles the RC4 attack from [8], with the attacker using a large number of

encryptions of secret data, e.g., a session cookie, in order to recover parts of this cookie. One way to

obtain this large number of encryptions is through the BEAST scenario, where JavaScript malware is

downloaded from an attacker-controlled website and runs in the victim’s browser, repeatedly sending

HTTPS requests to the victim web server. Session cookies are automatically included in each of these

requests in a predictable location, and can thus be targeted in the attack. The attacker, who needs new

SSL connections for new RC4 keystream prefixes, can enforce termination of the SSL session after the

target encrypted cookie is sent; the browser will automatically establish a new SSL session when the

next HTTPS request is sent.

The attack in [8] recovers the session cookie with probability of 50% after 226 sessions. Our attack is

expected to have a hit – 1-class key being used – every 224 connections. Since such a hit is translated to

long keystream pattern with probability of 1%-5%, several dozen hits are required to complete a

successful partial plaintext recovery. For the sake of simplicity, in the rest of the discussion we use a

single number of 1 billion as the number of attempts required to mount the attack, reflecting the

number of encryptions the attacker is expected to see until being able to recover the data.

As opposed to the BEAST attack, the current attack does not require that the same key is used in all

encryptions, but follows [8] in requiring that the key be changed between encryptions.

Moreover, as opposed to the attack in [8], which is highly sensitive to situations wherein the session

cookie expires or the browser is closed by the user (in which case the attack has to begin from the start),

our attack is completely insensitive to these cases. When a weak key is used, the learnt information is on

the session cookie from that particular request, regardless of anything that happened before the hit,

and anything that will happen after the hit.

A Non-Targeted Passive Attack
The nature of the Invariance Weakness, allowing the attacker to learn significant plaintext data from a

single hit (that is a single message that was encrypted with a weak key) opens the door to new attack

scenarios which were not possible in any of the previous attacks. The next attack we’ll describe is a

passive variant of the aforementioned attack.

In it, the attacker eavesdrops on the inbound traffic to a popular retail or financial web application,

aiming to steal credit card number info (a similar attack works on passwords). The attacker is required to

wait 1 billion connections for a weak key usage event, this event being visible through fixed or

structured data in this application, propagating through the keystream patterns into the ciphertext. The

attacker then uses the Invariance Weakness to predict keystream LSBs, and uses these to calculate

plaintext LSBs from ciphertext LSBs. It is important to note that the compromised credit card number or

password is of a random victim, with the attacker not having any control over its identity.

According to Facebook user statistics, the number of daily active users in Facebook is close to 1 billion.

The number of times each of these users executes a login, either visiting Facebook several times, or

pressing a Like button in another application, can be roughly estimated as 4. Thus a passive

eavesdropper sniffing on Facebook inbound lines waiting for hits, will see 256 weak keys on the daily 4

billion logins, 4 of which are expected to generate a long stream pattern and expose the password LSBs.

Luckily Facebook had recently removed RC4 from its list of SSL supported ciphers.

Group Attacks
In the BEAST-like variant the attacker is required to generate 1 billion connections from the victim’s

browser. On the other hand, in the passive variant the attacker needs to sniff on 1 billion connections to

the same web application. In another variant of the attack, combining the two, the attacker obtains

these 1 billion connections actively from a group of victim users. The attacker needs to get Group Man-

in-the-Middle setup, being a man in the middle for a group of users. Since the most natural methods of

establishing man-in-the-middle are DNS poisoning and making users connect to a malicious hotspot

(either of which will establish the attacker as Man-in-the-Middle for a group of users), this Group Man-

in-the-Middle situation is practical.

The attacker then runs the BEAST-like attack with each of the potential victims, terminating their

connections immediately after the session cookie being sent, until one of them gets a successful hit, a

weak key that propagates successfully into a long pattern. This event is expected to occur after a total

number of 1 billion SSL connections from all users altogether. This attack scenario is unique, and stems

from the unique nature of this attack, with every hit leaking a large quantity of secret information.

One-Time Encryption
From the perspective of a victim, the severity of an attack is proportional to the damage of the attack

and to its likelihood. Consider a user who uses SSL to protect his most precious secret, and sends it only

once over SSL. Interestingly, this one-time operation has a risk of one in 64 million to get a weak RC4 key

and one in a billion to leak parts of his precious secret. It is true that one in a billion is a tiny fraction, but

still, it is not a negligible fraction. The implication is the disturbing fact that every web user is clearly

risking his data every single time he sends it over an RC4/SSL connection.

Conclusion and Recommendations
In this paper we demonstrated how the Invariance Weakness can be used to mount new attacks on SSL

when using RC4. We improved the size of the prefix for which plaintext info leaks into 100 bytes. We

showed how the “Reset Insensitivity” of the Invariance Weakness sets the stage for new attack

scenarios, including the first passive attack on SSL.

The security of RC4 has been questionable for many years, in particular its initialization mechanisms.

However, only in recent years has this understanding begun translating into a call to retire RC4. In this

research we follow [8] and show that the impact of the many known vulnerabilities on systems using

RC4 is clearly underestimated.

While waiting for a broad-brush retirement of RC4, specific parties should consider the following actions

to protect themselves from its weaknesses:

 Web application administrators should strongly consider disabling RC4 it in their applications’ TLS

configurations.

 Web users (particularly power users) are encouraged to disable RC4 it in their browser’s TLS

configuration.

 Browser vendors would do well to consider removing RC4 from their TLS cipher lists.

 Organizations leveraging Imperva SecureSphere to protect their business-critical web applications

and data, and wherein SecureSphere is set to handle TLS connections on behalf of the applications,

can configure SecureSphere to stop using the weak ciphers and work only with robust ciphers.

References
1. T. Dierks and C. Allen. The TLS Protocol Version 1.0. RFC 2246, Internet Engineering Task Force,

Jan. 1999. URL http://www.rfc-editor.org/rfc/rfc2246.txt.

2. T. Dierks and E. Rescorla. The Transport Layer Security (TLS) Protocol Version 1.1. RFC 4346,

Internet Engineering Task Force, Apr. 2006. URL http://www.rfc-editor.org/rfc/rfc4346.txt.

3. T. Dierks and E. Rescorla. The Transport Layer Security (TLS) Protocol Version 1.2. RFC 5246,

Internet Engineering Task Force, Aug. 2008. URL http://www.rfc-editor.org/rfc/rfc5246.txt.

4. T. Dierks and E. Rescorla. The Transport Layer Security (TLS) Protocol Version 1.3,

http://tools.ietf.org/html/draft-ietf-tls-tls13-04

5. B. Canvel, A. Hiltgen, S. Vaudenay, and M. Vuagnoux. Password interception in a SSL/TLS

channel. Advances in Cryptology-CRYPTO 2003, pages 583–599, 2003.

6. T. Duong and J. Rizzo. Here come the ⊕ Ninjas. 2011.

http://www.hit.bme.hu/~buttyan/courses/EIT-SEC/abib/04-TLS/BEAST.pdf

7. N. AlFardan and K. G. Paterson. Lucky 13: Breaking the TLS and DTLS record protocols. In IEEE

Symposium on Security and Privacy, 2013. URL http://www.isg.rhul.ac.uk/tls/Lucky13.html.

8. Nadhem J. AlFardan, Daniel J. Bernstein, Kenneth G. Paterson, Bertram Poettering, Jacob C. N.

Schuldt. On the Security of RC4 in TLS and WPA, USENIX Security Symposium 2013

9. S. R. Fluhrer and D. McGrew. Statistical analysis of the alleged RC4 keystream generator. In B.

Schneier, editor, FSE, volume 1978 of Lecture Notes in Computer Science, pages 19–30.

Springer, 2000.

10. I. Mantin. Predicting and distinguishing attacks on RC4 keystream generator. In R. Cramer,

editor, EUROCRYPT, volume 3494 of Lecture Notes in Computer Science, pages 491–506.

Springer, 2005.

11. I. Mantin and A. Shamir. A practical attack on broadcast RC4. In M. Matsui, editor, FSE, volume

2355 of Lecture Notes in Computer Science, pages 152–164. Springer, 2001.

12. S. R. Fluhrer, I. Mantin, and A. Shamir. Weaknesses in the key scheduling algorithm of RC4. In S.

Vaudenay and A. M. Youssef, editors, Selected Areas in Cryptography, volume 2259 of Lecture

Notes in Computer Science, pages 1–24. Springer, 2001.

13. I. Mantin. Analysis of the stream cipher RC4. Master Thesis, the Weizmann Institute of Science.

14. I. Mantin. A Practical Attack on the Fixed RC4 in the WEP Mode. In Advances in Cryptology -

ASIACRYPT 2005

15. This POODLE Bites: Exploiting the SSL 3.0 Fallback. Google Security Advisory

https://www.openssl.org/~bodo/ssl-poodle.pdf

16. A Perfect CRIME? Only TIME Will Only TIME Will Tell. Tal Be'ery, Amichai Shulman.

https://media.blackhat.com/eu-13/briefings/Beery/bh-eu-13-a-perfect-crime-beery-wp.pdf

17. S. Sen Gupta, S. Maitra, G. Paul, and S. Sarkar. (Non-) random sequences from (non-) random

permutations – analysis of RC4 stream cipher. Journal of Cryptology, pages 1–42, 2012.

18. 10,000 Top Passwords. https://xato.net/passwords/more-top-worst-passwords/#.VPiyH_ysVew

http://www.rfc-editor.org/rfc/rfc2246.txt
http://www.rfc-editor.org/rfc/rfc4346.txt
http://www.rfc-editor.org/rfc/rfc5246.txt
http://tools.ietf.org/html/draft-ietf-tls-tls13-04
http://www.hit.bme.hu/~buttyan/courses/EIT-SEC/abib/04-TLS/BEAST.pdf
http://www.isg.rhul.ac.uk/tls/Lucky13.html
https://www.openssl.org/~bodo/ssl-poodle.pdf
https://media.blackhat.com/eu-13/briefings/Beery/bh-eu-13-a-perfect-crime-beery-wp.pdf
https://xato.net/passwords/more-top-worst-passwords/#.VPiyH_ysVew

